EwWp4s3 - O

;e | EWD453.html

Finding the maximal -strong components in a directed graph.

Given a directed graph, i.e. a set of vertices and a set of directed
edges, each leading from one vertex to another, it is requested to partition
the vertices into so-called "maximal strong components". A strong component
is a set of vertices, such that the edges between them provide a directed
path from any vertex of the set to any vertex of the set and vice versa;

a single vertex is a special case of a strong component: then the path can
be empty. A maximal strong component is a strong component to which no

further vertices can be added.

In order to establish this partitioning, we have to be able to make
two kinds of assertions: the assertion that vertices belong to the same
strong component, but also ;-because“we haVé to find maximal strong components--

the assertion that vertiogs doanbf belong to the same strong component.

for the first tybébof assertion, we may use the following

Theorem 1. Cyclically connected vertices belong to the sameistrong‘component.

Besides (directedj connections between individual vertices, we can
talk about Aiqected‘connecfions between different strong components: we say
‘that there is a‘CDnnection from a strong component A to a strong componen£‘
B if there exists a di:ected edge from a vertex of A +to a vertex of B.
Because A and. B are strongicompcnenfs; tHere is then a path ffom any
vertex of A to any Véftex'of‘ 8 ; And as airesult, Theorem ! can be gene-

ralized into

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD04xx/EWD453.html

EWD453 - 1

.

Theorem la. Vertices of cyclically connected strong components belong to the

same strong component.

Corollary 1. A non-empty graph has at least one maximal strong component

without outgoing edges.

So much for theorems asserting that vertices belong to the same strong
- component. Because for different points to be in the same strong component,
there must be paths between them in both ways, assertions that vertices do

not belong to the same strong component can be made on account of

Theorem 2. If the vertices are subdivided into two sets svA and svB,
" such that there exist no edges originating in a vertéx of svA and termina-
ting in a vertex of svB , then
fifstly: s the set of maximal stroﬁg components does‘not depend on
7!’ the presence or abserce of edges originating in avvertéx'
of svB and'terminatihg iﬁ é'vértex of svA , and

- secondly: o . no $trong component comprisesVVErticesffrom both sets.

From Theorem 2 it follows that as soon as a strong COmponeni without
outgoing edges has been found, we can take its Vertices as set svA and
conclude that this‘strong component is @ maximal strong component and that

- all ingoing edges of svA can further be ignored. We conclude
‘Theorem 2a. A strong componeht'whose qufgoingkedgés, if any, are all ingoing

B

edges‘bf maximal strong comhbnents,‘is itself a maximal.strong'component.

~Or, to put it in another way: once the first maximal strong component
’Qithout outgoing edges --the existence af which is guaranteed by Corollary 1--

;has been,?dund>/—fidentified as such by'Qeihg a strong component without out-

EWD453 - 2

going edges-- the remaining maximal strong components can be found by solving
the problem for the grapﬁ consisting of the remaining verticesvand only the
given edges between them. Or, to put it in still another way, the maximal
strong components of a graph‘can be ordered according to "age", such that

each maximal strong component has only outgoing edges to "elder" ones.

In order to be able to be a little bit more precise, we denote by

sv: the given set of vertices (a constant)
se: the given set of edges (a constant)
pv: a partitioning of the vertices of sv .

The final relation to be established can then be written as

R: pv = MSC(se)

-

~in which for the fixed set sv the function MSC, i.e. the pértitioning in

' Maximal Strong Components, is regarded as a function of ‘the set of edges se.

The éorrespondihgiinvariént‘relatidn;is‘éuggestsd by the standard
technique bf'feplacingta'constant by a~va:iablé}’fse1- say; whose value will
always be a subset of se:
 P: oL pv = MSE(éeT); ‘ T; e
_Relation P is easily initialized for empty se! --i.e. eathtVertex of . sv
is a maximal strong component all by itself-- . Because sel is bounded in

_ - ‘ . . o
‘'size by se , monotonically incressing - se! is guaranteed to terminate; if
we can accomplish this under invariance of P , relation R has been estab-
‘lished by the time that sel =se . In our diécuSsions it;will be convenient

also to have a name, se2 say, for thé‘iémaining edges,ki}g.‘,se}='set ¥ se?

CEWbs3 -3 e

Our task is clearly tobdiécovér.the most donvenient order in which edges
are to be added to sel , where "convénienéé” is related to the ease with
which the invariance of relation P is maintained. This, as we know, can also
be phrased as: what is our general intermediate stat;, what types of pv-values
“do we admit? In order to describe such a general intermediate state, it seems
practical to group the vertices of sv also in disjoiht subsets (as we have

done for the edges: se! and se2). After all: we are interested in partition-

ing vertices!

The general intermediate state should be a generalization of both initial
and final state% At the beginning, for none of the vertices it has been estab-
lished to whi¢h~maximal‘stFong component in MSC(se) they belong, eventually
it has been establiéﬁéd fd: all vertices. Analogous to“se1‘ we can introduce

(initially empty amdkfinally comprising all vertices) svi, where

. svl "contains al;_vertiéegvof .sv , for which the maximal strong componeht_

in MSC(se) to which they belong has been identified.

We intend to use Theorem 2a for deciding that a strong component is a
maximal one, that is, after having established something about all its out-
goin§ edges. When we,now“identify:
sel with the ‘set of all précessed edges, and
© se2. with the set of all unprocessed edges, i.e. edges whose'presence has not

yet been taken'ihfo:account,
‘then we see that

‘Pl all oqtgbing edges of verticeslin év1 ‘are in sel.

e

EWD453 - 4 X

It is, however, tdb crude to group all remaining vertices in a single
set sv2. The way in which sv! is defined implies that, each time a new
maximal strong component of MSC(se) hés been identified, all the pertices
of that maximal strong component have to be transferred together to sv!
Between two such transfers,‘in general a number of edges ha¥eto be processed
(i.e transferré& from se2 +to sel), and for the description of the inter-
mediate states that have to be taken into account with respect to "processing
one edge at a time", the remaining vertices have to be separated a little bit
more subtly, viz, into two disjoint subsets, sv2 and sv3 say, (with

sv = svl ¥ sv2 F sv3), where sv3 contains the totally unprocessed vertices,
P2: no edge in sel! begins or ends at a vertex in sv3

(sv3 is initially‘equal to sv and finally empty).

Transfer from sv3 to svl can then take place in two steps:
BT : .

from sv3 to sv2 (oneat a,time)'andvfrom “sv2 to svi (togetﬁér with all

‘other vertices from thg.Same‘definite makihél strong component) .

In other words: ahong the vertices:of sv2 we shall try tovﬁuild up

v(by enlargiqa s§1) the next maximal strong component.of ‘MSC(se) to be trahs—ﬂ
 ferred fo svt., The méximal strong compdnents in MSC(se1) --note the argument!--
are such that they comprise either vertices from‘,sv1 oniy, or verticeé from

 sv2 only,’or a (éingle) vertex from sv3 . We propose a limitatioq on the
‘ connectiqns thaf Eﬁe edges of ;§1 pfgvide between the maximal strong compo-

. nents in MSC(§§1) that coﬁtaiglnodes from 592 only: between those maximal
strong components the edges of sel shall provide no more and, né less than a
single directed path, leéding from the "oldest" to the>"youngest" one. We
call these maximal stioﬁg components ”the-eleménts of thé chéin".kThis choice

is suggested by fhe fdllowing‘cohsidétations;v~

RS S

- EWD45% - 5

Firstly; we are‘iooking for a cyclic path that would allow us to apply
Theorem-1 or 1a , in order to decide that-different vertices belong to the
same maximal strong component. Under the assumption that we are free to pre-
scribe which edge will be the nggt one to be added'té sel , there does not
seem to be muéh advantage in introducing disconnected maximal strong components

in MSC(se1) among those built up from vertices of sv2 .

Secondly, the directed path from the "oldest" to the "youngest" com-
ponent in the chain --as "cycle in statu nascendi"-- is easily maintained, as

is shown by the following analysis.

Suppose that se2 contains an edge that is outgoing from one of the
vertices of the youngest maximal strong component in the chain. Such an edge

"e" is then transferred from se2 +to sel , and the state of affairs is

-

easily maintained:

1) if_&é ‘léadsvtb a vertex from sy1f; it:can be:ignored oniaccoqﬁtfof/.
Theorem 2. | o

2) if é leads to a vertex from sv2 , the youngest glement of the chain
can be combined with zero or mdre next older elements to form the new youngest
element of the chain; more precisely: if‘ e leads to a vertex in the youngest
elemeﬁt, it caﬁ be ignored, if it leads to an older element in the chain, a

. cycle between strong COmponeﬁté has been‘detected and then Theorem 1a tells
us, that a nﬁmber of the younger elements of the chaih‘haVe to be combined
into a singlev9ne, thus reﬁuqiﬁg the léngth‘qf the ehain,‘mgasured'in numbef‘

of elements.

3) if e leads to a vertex from sv3 ». that latter vertex is transfefred

EWD4S3. - 6

to sv2 and as new youngest element (a maximal strong component in MSC(sel)

all by‘itself) it is appended to the chain, whose length is increased by one.

If there exists no suﬁh edge "e", there are two possibilities. Either
the chain is non-empty, but then Theorem 2a tells us, that this maximal
strong component of MSC(Se1) is a maximal strong component of MSC(se) as
well: the youngest element is removed from the chain and its vertices are
transferred from sv2 to svl. Or the chain is empty: if sv3 is not empty,
an arbitrary element of sv3 cén_be transfefred to sv2 , otherwise the

computation is finished.

In the above degree of detail we can describe our algorithm as follows:

sel, se2, svl, sv2, sv3 := empty, sé, empty, empty, sv;
}gg sv3 # empty ~r{the‘chéin'is empty}';5 * ;

™~

‘transfer a vertex v from sv3 to sv2 and initialize the

chain Qith {v};
 §2 sv2}£ empty »v{the chain‘is'nbn~empty}
- Qg‘sg2 éonfains an edge sfartihg in a vertex of the yﬁungest
w':éleméﬁt of the chain - -
transfer such an edge e from se2 to se! j

if e leads to a vertex v in svl - skip

e leads to a vertex v in sv2 - compaction

= ﬂ e 1leads to a vertex v in sv3 - extend chain and trans-

B e i

fer v from sv3 to svZ

fi

od; {the chain is non—émpty}

remove youngest element and transfer its vertices from sv2 - to sv!
. od {the chain is again empty}

od

EWD453 - 7

Note 1. As soon as vertices are transferred from sv2 to sv! , their in-
 ;’comin§ edges (if ahy) that are still in se2 could be transferred simul-
taneously from se2 to sel , but the price for this "advanced" processing
--the gain of which is doubtful-- is that we have to be able to select for
a given vertex the set of its incoming edges: as the algorithm is described,
we only need to find for each vertex its outgoing edges. Hence the above

arrangement. (End of note 1.)

Note 2. Termination of the innermost repeti{ion is guaranteed by decrease

of the number of edges in se2; termination of the next embracing repetition
is guaranteed by decrease of the number of vertices in sv2 ¥ sv3 ; termination
of the outer repetition is guaranteed by decrease of the number of verticeé

in sv3 . The mixed reasoning,‘sometimes in terms of edges and sometimes in
terms of vertic;s“ is a symptom of fhé non—tfiviality of the algorithm we

fare'déveloping;‘(Ehd of-note 2.)

To the degree ofkdetéil iﬁ which we have désc:ibed our algorithm, each
edge is‘transférred once ffom sed -to fse{; and'each'vertex is transferred
-once from sv3 via sv2 tob svl : as sQ;h oﬁr algorithm implies an ‘amount
of work linear in the number of edges and vertipés; in our next refinement
we shouldutfy'not‘to spoil thét pleasant‘properfy,~as we would do if, for
‘instance, thé test, @hether v is in svf ;, sv2 ’dr ‘sv3 '—-whfchﬂoccurs
within the innermost repetition!-~ implied a search with a computation time’
proportiohél to-the number of vertices.'Tﬁe reétricted way ih‘which OQr
vertex sets are_manipﬁlated,.in particular the fact that thé vertices enter
and leave»thé ghain iﬁ last-iﬁ—first-out fééhion, can be exploited for fh;s

purpose. o

EWD45% - 8

‘We consider our vertices consecutively numbered and tabulate the function
"rank(v)", where v ranges over all vertex numbers; we assume NV to denote

the number of vertices:

rank(v) = 0 means: vertex nr. v is in sv3

.,
.

rank(v) >0 means: wvertex nr., v is in =svl ¥ sv2 .

(The sets sv2 and sv! are, to start with, combined: one of the possible

forms of compaction is a skip!)

If nvc equals the "number of vertices in the chain" --i.e. the number.

of vertices in sv2 -- then

1< rank(v) < nvc means: vertex v is in sv2

‘rank(v) >NV + 1 means: vertex v .is in svl .

All vertices in sv2 will have diffsrent rank—values, and as far as rank
and nvc‘,aré‘conce:néar’transferring vertex v “frqm__sv3.'to .sv2 will be
coded by

"nvei= nve + 1; rank:(v)= nve"
Lo . S

“i.e. the vertices in the chain are "ranked" in the order of increasing "age

‘in the chain®. The latter convention allows’us to represent, how the .vertices
of sv2 are bart;tionedbin strong compOnénts quite efficiently: vertices
k belonging to the same element of the chain have consecutive values of rank

-

. and for the elements themselves, the rank of their oldest vertex is an in-

creasing function of the element age. Using cc(i) to denote the rank of the
oldest Vertex of the i-th oldest element of the chain --we have then:
cc.dom = the number of elements in the chain-- , as far as rank s, Nve and

cc are concerned, we can code the alternative construct (combining the first

two alternatives) as follows::

EWD453 - 9 X

if rank(v) >0 - do cc.high > r‘ank(v) - ccthirem od
ﬂ rank(v)4= Q =~ nvei= nve + 1; :ank:(v): nvc; cc:hiext(nvc)

fi .

In the mean time we have somewhat lost trace of the identity of the
vertices in the chain: if, for instance, we would like to transfer the
vertices of the youngest element of the chain from sv2 to syl

y OUr current

tabulations would force us to scan the function rank for all values of v ,
such as to find those satisfying ecc.high < rank(v) < nvc . We would not
like to do that, but thanks to the fact that at least for the vertices in

sv2 , all values o? rank(v). are different,‘we can also storg the inverse

functiony

for 1 :; < nvec: , | rank(y) = i v<£>.k knar(r).: .
So much for keeping track of the vertlces, let us now turn ﬁur attention

to the edges. The most cg$c1al questicon with :egafd to the edges is, of éourse,

the guard of the innermost repetitive construct;‘"seZ contains an edge starting

in a vertex of the youngest element of the chain", That quéstion‘is éngwered

”easily.witu the aid of a lisf of edges %rom sel ,;oﬁtgoing from the vertices

of the youngest element of the chain. ﬁne of thé ways in which the y0ungest

in tﬁe chain maykchange, however, is compactzbn' in order éo malntaln that

115t we,ktherefare; also need the correépondlng llsts for the older elemeﬁts

of the chain. Because for thosevedges we are only interested in the identiiy

of their "target vertex", we introduce as the next part of our chainbadminis-

tration two further array variables ~~with domain = Q when the chaln is empty——

¢alled "tv" (for "target vertlces) and "tvb" (for "tv-bounds")

e At bt 1 e S <2

%

EWD453 - 10 X

The domain of tvb will have one point for each element of the chain:
its value equals the number of outgoing edges of se2 from vertices of older

elements in the chain (the domain of +tvb is all the time% equal to that one

7 of cc , which also stores one value for each chaiﬁ element). tach time

a new vertex v is transferred from sv3 to sv2 , the array tvb

is extended at the high end with the value of tv.dom , whereafter
.tv is extended at the high end with the target vertices of the outgoing edges
of v . Denoting that latter operation with "exfend tv with targets of v "

the whole inner repetition now becomes --taking knar , tv and tvb into

account as well--

"inner loop":
do tv.dom > tvb high =
Yr‘tvshibop;
v;:i_._‘f"_vrank(v’) >o -
¥ cc.high > rank(v) = cc:hiren; th:hi?em od
o fank(ﬂ:o;y |
| f{nvc:= nve ; ts ra”k=(v)=mnvc;‘knér:h§5xi(vj§1
tt:c.:‘hiext(‘”vt:); .tvb:hie‘*.t(‘tv-ap"')?’

Mextend tv. with targets of v "

We had introduced for vertices v in svi™ the convention:
rank(v) ; VY. We can ‘make a sf,ronger convention by numbering the maximal
strong component from 1 onwatds (in the order in which they are detected)

and»introducing‘the cqnventibn that for a vertex v in svl we will have

EWD453 - 11 vl

rank(v) = NV + v's maximal strongbcomponent number .
With the variable "strno" (initially = O), we can now code the

"middle loop":
do cc.dom > L0 J.
"inner loop";
strno:= strno + 1;
do nvc > cc.high -
nvec:= nve - 1;‘rank:(knar.high)= NV -+ strno;
knar:hirem; svicount:= svicount + 1
od;
ccthirem; tvb:hirem

s

od .

(The variable svlcount --initially = 0-- counts the number of vertices in

svl : then svlcount = NV will be the criterion for completion of the task.

We assume tﬁevveftices‘numbered from 1 through NV , and the edges
to be giveﬁ‘by 6eans éf two ar?éy constants ﬁeage" and "edgeb", such that
for 1 <iXK NV the .valui:és.of‘ edge(j‘) for v_edgeb(i) <ji< edgeb(i -"1-71)> |
_Agiveﬁ the numbers of thé verticesxidiﬁhicg the édgesibutgc§n§1fr§m verte§,

‘nr. i lead,'we can then code

"extend tv with targets of v ":

begin glocon edge, edgeb, v; glovaf‘tv; privar-j;
j vir int := edgeb(v + 1);
ggvjk>'edgeb(v)i~ je= 3 - 13 tv;hiext(edge(j)) ‘od

end o T L L ; : .

- EWD4t3 - 12

. The laét problem'to‘Be solved is tﬁéhselecfion ofvan arbitrary vertex
v from sv3 for the initialization»of‘the chain. If each time the search
would start at vertex nr.f1 , computation time could be proportional to NV2 ,
but again this can be avoided by taking a relation outside the repetition and

introducing at the outer level a variable "cand" (initially = 1) with the

property:

sv3 contains no vertex v with v < cand .

begin glocon edge, edgeb, NV; virvar rank; privar svicount, cand, strno;

rank vir int array := (1); do rank.dom # NV - rank:hiext{0) od;
svlicount vir int, cand vir int, strno vir int := 0, 1, 0;

do svicount # NV — ’ -

begin glocon edge, edgeb, NV; glovar rank, svlcount, cand, strno;
- privar v, cc, tv, tvb, knar, nvc;

gg_rank(éﬁnd) # O - cand:= cand + 1 gd; v vir int := cand;

“nve vir int := 1; rank:(v): 13 knar vir int array = (1, v);

cc vir int array := (1, 1); tvb vir int array := (1, 0);

“tv vir int‘array s (1);
"extend tv with targets'of" v ";

‘"middle loop"

end -
“ed
end i .

Note 1.°A very similar algorithm has been aeveloped independently by Robert

k:Tarjén. (End of note 1.) o

L S EWDAS3 - 13

Note 2. In retrospect we see that the variable "nvc" is superfluous, because

nve = knar.dom . (End of note 2.)

Note 3. The operation "extend tv with the targets of v " is used twice.

(End of note 3.)

Remark 1. The reader will have noticed that in this example the actual code
development took place in a different order than in the development of the
program for the convex hull in three dimensions. The reason is --I think--

the following. In the case of the convex hull, the representation had already
been investigated very carefuliy as part of the logical anélySis of the problem,
In this example the logical analysis had been largely completed when we faced
the task of selecting a representation fhat would admit an efficient execution
of the algorithm we had in mind. It is then natural to focus one's attention

on .the most crucial paff“first,Ji.e. the innermost loop. (End of remark 1.)

- Remark 2.1t is Qofth noticing the various steps in which we ar;ived‘at’our
solution. In the‘first étage our maih cohcern has been to process each edge
only once, forgetting for the time beiﬁg about the dependanceyof the Eomputation
time oﬁ the nuhber of verticgs..This is fully correct, because, in general, the
ndmbe: of édges qén‘be expécfed toibe an orderfof maénitude,larger than the
numbgf-of ve;;ices; (As a matte:‘of fact, my firét solutiﬁn for thié problem
 f;no£ recorded in»thisthapfef+- was linear in the number ofiedges but quadratic.

_in the number of vértices;) It was only in the second stage that we started to.

J”‘worry about linear dependance ©6n the number of vertices as well. How effective

£
this»"sebaration of concerns" has been is strikingly illustrated by the fact that -
-in that second stage, graph theory did no longer enter our considerations at alll

‘(End of remark 2.)

