Copyright Notice

The following manuscript

EWD 871: Invariance and Nondeterminacy
is held in copyright by The Royal Society and the author.
The manuscript was first published in

Philosophical Transactions of the Royal Society, Series A,
Volume 312, 1984.

and subsequently as

C.A.R. Hoare and J.C. Shepherdson, eds., Mathematical Logic and
Programming Languages, Prentice Hall International, 1985:
157-165.

Permission to reproduce the manuscript here has been granted by the
Royal Society.

EWDST1

Invariance and Nondeterminacy

by
Edsger W.Dijkstra
Burroughs
Plataanstraat 5
5671 AL NUENEN

The Netherlands

Abstract Since the earliest days of proving the correctness af programs,
predicates on the program's state space have played a central role, This role
became essential when nondeterministic systems were considered. The first
(and still best kann) source of nondeterminacy was provided by operating
systems, which had to regulate the cooperation between components that had
speed ratios that were beyond our control. Distributed systems have revived
gur interest in such configurations.

I know of only one satisfactory way of reasoning about such systems:
one praves that none of the atomic actiions falsifies a special predicate, the
so-called "global invariant". Once initialized, the global invarisnt will then
be maintained by any interleaving of the atomic actions. That soclves the
problem in principle; in each particular case, however, we have to choose
how to write down the glabal invariant. The choice of notation influences
the ease with which we can show that, indeed, none of the atomic actioné
falsifies the global invariant.

An example will be given and discussed.

20

EWD871 - O

Invariance and Nondeterminacy

An accident introduced me 32 years ago to autamatic computing, a topic
that has fascinated me ever since. As the years go by, I am beginning to
appreciate the length of my involvement more and more, since [owe to it =&
very lively picture of a sizeable part of the history of the gruwth of a
science. I have pbserved profound changes in our thinking habits, and I

have found those observations interesting and instructive.

I da remember, for instance, one of my first efforts --in the mid 50's--
to come to grips with what we would call now "repetition". It was profoundly
inadequate, and in the course af this talk I hope to explain to you why. Very
operationally, I tried to deal with it as a recurrence relation: wone instructs
the machine to start with an initial value x and to generate from there

0

gnough values from the sequence further defined by the recurrence relation

Why did I do that? 1 think because I was glad to recognize something
familiar, and in those days familiarity was more impertant than significance,
The knowledge I had at the time was already sufficient to doubt the signifi-
cance, but I don't remgmber I did. You see, a well-known caoncept was the
"order" of a recurrence relation, the Fibonacci sequence being given by the

nd .
¢ -order recurrence relation

Fn+2 = Fn+‘l + Fn

DTS

but any programmer would implement this by

(A, B)n+1 - {A+B, A)n ,

21

Invariance and Nondetermipacy EwWD871 - 1

t
i.e. a 1°'_order recurrence relation! In short, already then I should have
been suspicious, But it was the prevailing view in that decacde: not only
FORTRAN but even ALGOL 60 included only repetitive constructs of which the

so-called "controlled variable” was an essential ingredient.

My estimation is that the introduction of the so-celled "controlled
variable" has delayed the development of computing science by almost a
decade. 1 got very suspicious in the late 60's, when I discovered that the
dyed-in-the-wool FORTRAN or ALGOL programmer had been conditioned so as to
be unable to design the elegant solution to what became known as The Problem
of the Dutch National Flag. The fact that, in the 70's, Euclid's Algorithm
for the gcd of the positive integers X and Y became a paradigm, I can
anly explain by the circumstance that it is the simplest program that demon-
strates so convincingly the inappropriateness of the notion of the "controlled

variahle”,

(Euclid's Algorithm became known in the form:

|[X, yi int

i -

This is evidently a repetition in which there is ne place for a "controlled

variable" counting something of relevance and/ur cantrolling termination.)

* *

22

Invariance and Nondeterminacy EWDBT! - 2

Angther incident -=-A.W.Dek's invention of the real-time interrupt-—
introduced me 25 years ago to nondeterminacy. My first major concern was
to show that saving register contents at program interruption and restoring
them at program resumption could not be corrupted by the occurrence of a
next interrupt. The arguments required were very tricky, so tricky as a
matter of fact that I was not surprised at all when I found flaws in the
designs of the interrupt facilities of later machines such as the CDC 165
and the IBM 360 ., 1 experienced the problems caused by the unpredictable
interleaving as completely novel ones, not suspecting that, about a decade
later, they would be tackled by the same techniques that would then be used

for reasoning about repetitions.

I am, of course, referring to the technique of the so-called "invariant®
as illustrated in the following type of annotation of a repetition --asserticns

being written within braces--

{p A =B} .

In words: if assertion P , guard B , and statement S a&are such that the
additional validity of B guarantees that execution of 5 does not destroy
the validity of P , then the whole repetition do B - 5 od will not destroy

the validity of P , no matter how often the repeatable statement S is

repeated.

Now, if we have, instead of a single B - 5 , a bunch of those, none of

which destroys the validity of P , the validity of P will not be destroyed,

23

Invariance and Neondeterminacy EWD8T71 - 3

no matter how often and in what order they are repeated. In other words, the

pattern appropriate for reasoning about repetitions is straightforwardly able
to cope with the nondeterminacy that has to be absorbed by tihe operating

system for, say, a multiprogrammed installation.

The technique has been used rather constructively in the design of the
THE Multiprogramming System to derive the "synchronization conditions" {i.e.
guards) that would ensure, for instance, that no buffer would become emptier
than empty or fuller than full. At the time we did not know the Axiom of
Assignment; we only knew what it entailed for simple assignment statements,
such as n:=n + 1 , and equally simple P , such as n <N . This was in

the first half of the 6Q0's.

In the second half of the 60'%s, the method was formalized for determinige
tic sequential programs by R.W.Floyd and by C.A.R.Hoare. Floyd included
proofs of termination, but addressed himself to programs as could be expressed
by arbitrary flow charts. (This latter generality was not too atiractive.

In the control graph one had to select a set of so-called "cutting edges™,

i.e. a set of edges such that their removal would leave a graph with no cycles,
and to each cutting edge a proof ohligation corresponded. The awkward thing

is that for an arbitrary control graph the problem of determining a minimum

set of cutting edges is most unattractive.) Hoare's subsequent contribution
was twofold: on account of the structure of the Axiom of Assignment he
definitely decided in favour of so-called "backwards reasoning" --Floyd had
left this choice open-- and he tied the proof obligations in with the syntactic

constructs for the flow of control. (Iani:ally, he confined himself to partial

24

Invariance and Nondeterminacy EwWD871 - 4

correctness, though the problem of finding a minimum set of cutting edges
--which are required for termination proofs-- had been reduced to triviality
by the sequencing discipline he had admpted.) All this was synthesized in
the early 70's by Edsger W.Dijkstra, whose "guarded commands", besides
forming a basis fur a calculus for the derivation of programs, reintroduced

nondeterminacy again.

Central to this game was the formal expressian of so-called "assertions”

or "conditions", i.e., predicates that contained the coordinates of the program's

state space ags free variables, and the formal manipulations of such expressions,
e.g. in order to derive for a program fragment the precondition corresponding

to a given postcondition. (It is this direction of the functional dependence

to which the term "backwards reasoning" refers. The pragmatic advantages of
backwards reasoning are twofold. It circumvents undefined values since for

any program f{ragment the precondition is a total function of the postcondition,
whereas the postcondition is, in general, a partial function of the precondi-
tion. Furthermore, the calculus includes nondeterminacy at no extra cost at

all.)

For the formulation and manipulation of these conditions, the predicate
calculus became a vital tool, so much so, that during the last decade it
became for many a programming computing scientist an indispensable tool for
his daily reasoning., {In passing I may mention my strong impression that
those computing scientists may very well have been the first to ugg the
predicate calculus regularly. Mathematicians, and even logicians, for wham,

for instance, the facts that equivalence is associative, that disjunction

25

Invariance and Nondeterminacy EWD781 - 5

distributes over equivalence, and that conjunction distributes over nonequi-
valence, belong to their active knowledge,are extremely rare. I never met
one. Without intimate knowledge of such basic properties of the lagical
connectives one can hardly be expected to be a very effective user of the
predicate calculus. Hence my strong impression. In retrospect I found the
conclusion, so to speak, that as far as the mathematical community is con-

cerned George Boole has lived in vain, rather shocking.)

The extensive use of the predicate calculus in program derivation during
the last decade has had & profound influence, the consequences of which are
still unfathomed. It turned program development into a calculational activity
(and the idea of program correctness into a calculational nUtion). The con-
sequences are unfathomed because suddenly we find ourselves urgently invited
to apply formal techniques on a much more grandicse scale than we were used
to. It turns out that the predicate calculus only solves the problems "in
principle": without careful choice of our extra-logical primitives and their
notation, the formulae to be manipulated have a tendency of becoming unmanage-
gbly complicated. As a result, each specific prohlem may pose a new conceptual
and notational challenge. By way of illustration, I shall show an extreme
example from the field of distiributed programming; the example is extreme
in the sense that almost all the manipulations of the derivation belong to

the extra-logical calculus.

We consider & network of machines that can send messages to each other.

Each machine is in 1 of 3 states, viz.

26

‘nvariance and Nondeterminacy EWD871 - 6

n for "neutrally engaged",
d for "delayed", or

c for "critically engaged" .

\ critical engagement lasts only a finite period and is immediately followed
by a neutral engagement of the machine in guestion. Between a neutral and
the subsequent critical engagement a delay may occur in view of the require-
ment that at any moment at most 1 machine be critically engaged (so-called
"mutual exclusion"). The implied synchranization has to be implemented in

such a manner that no delay lasts forever (sa-called "fairness").

We introduce a single ‘token , either held by one of the machines or
being sent from one machine to another. Mutual exclusion is then achieved

by maintaining
a critically engaged machine holds the token .

The machines maintain this by (i) not initiating a critical gngagement unless
holding the token, and (ii) not sending the token to another machine while

being critically engaged.

Furthermare each machine maintains
the machine holding the token is naot delayed

by (i) skipping the delay upan termination of a neutral engagement while
holding the token, and (ii) initiating a critical engagement upan receipt of
the token while delayed. Fairness is therefore ensured when each delayed

machine receives the token within a finite pericd of time.

27

Invariance and Nondeterminacy EWDST1 - 7

The rest of this example deals with the control of the movement of the
token. To this end the machines are arranged in a ring, of which the two
circular directions are called "to the left” and "to the right" respectively.
The token is sent to the left, so-called sgignals are sent ta the right.
Each link ccnnecting two neighbouring machines in the ring is in 1 of 3

states, viz.

L for "unused",
t for "carrying the token to the left", or

5 for "carrying a signal to the right"

The latter two states are postulated to last only a finite period of time.

The computation will be braken up in so-called “atomic actions". (An
"atomic action" is the same type of idealization as the "paint mass" in
physics.) Each atomic action is performed by one of the machines and involves
a state change for that machine and for its link(s). There are four atomic

actions to be designed:

(n) upon campletion of a neutral engagement
(c) upan completion of a critical engagement
(s) upon arrival of a signal

(t) upon arrival of the token.

(We need not bother about "completion of a delay" since this will be subsumed
by the arrival of the token; similarly the "completion" of the state "unused"

for a link is subsumed in sending either the token or a signal over that link.)

Our invariant for the whole system is, loosely speaking, "the ring is

in a permissible state", but that is only helpful provided we have a very

Invariance and Nondeterminacy EWDs71 - 8

precise characterization of the set of permissible states. This set of
permissible states will be derived as the transitive closure of the atomic
transitions from a given initial state, say: - all machines neutrally engaged,

all the links unused, and the token residing in one of the machines.

Immediately the gquestion arises how to characterize sets of ring states.
Since a string of the appropriate length, in which machine states and 1link
states alternate, characterizes a ring state --by tying the string around-- ,
we can characterize a set of ring states by writing down a grammar for repre-
sentative strings. In this example we shall use the grammar of so-called

"regular expressions".

It will turn cut to be handy to give the machires one aof iwo colours,
either black (b) or white (w) , and a machine state will be coded by
prefixing one of the three states n, d, or ¢ , by one of the colours
b or w . The machine holding the token will be identified by writing its
colour with the corregponding capital letter. Initially all machines being

white, we can characterize the initial state by the regular expression
(O) — (wn u)* Wn u —- .

Note. If a regular expression is used tc characterize a set of ring states,
we shall surround it by a pair of dashes. This implies, fur instance, that
(O) is eguivalent with
we (U wn)* u Wn -= .
(End of Note.)
In (O} , the star * denotes "a succession of zero or more instances

af the enclosed".

29

Invariance and Nondeterminacy. EwWDE71 - 9

Gn (O), only completion of neutral engagements is possible, For the
time being we confine our attention to the more interesting case of such
completions taking place in machines not holding the token and propose the

transition
(n.O) Wwnu - wd s ,

i.e. a white machine without the token completes its neutral engagement by
becoming delayed and sending a signal over the link to its right. (Transi-

tion (n.O) only caters for the situation that a wn has a u +to its right.)

The transitive closure of (O) under (n.O) is
(1) — (wn u H wd)% Wn u --

in which ﬂ --which syntactically has been given the lowest binding power--

"

should be read as or" .

For the arrival of a signal at a white neutral machine (note that (1)

is equivalent to

—— {wnu Jwds (wn u)¥)*Wnu -)
we propose the transitiaon
(s.0) S wnu — ubns)

i.e. the machine transmits the signal and blackens itself. The transitive

closure of (O) under (n.O) and (5.0) is given by
—_ (wn u H wd (u bn)* s)* Wn u == .
Closing this further under

(n.1) u bn - u bd

Invariance and Nondeterminacy EWDBT71 - 10

(s.1) s wd - u bd
yields
- (wn u H wd {(u bn ﬂ u bd)¥* s)* Wn u —— ,

which we record as

(2) — H* Wn u -- with

(%) H= wnu H Qs with

(4) Q= wd (ubn[]ubd)* .

We note that the grammars H , H H¥ , H*¥ , and H¥ Q --note the absence of

dashes: +these grammars correspond to sets of strings-- are also closed under
the four transitions considered so far. [The reader is noi expected to see
this at a glance: the formal verification of the above claim requires a

—-be it short-- calculatiun.] Furthermore we note that under the transitions

given so far, the transitive closure of the string wn u H¥ equals H H¥ ,

Let us now look at the more interesting case that a signal arrives at
the machine holding the token. The only way in which we can make in (2)

the substring s Wn explicit is by adding the superfluous term Q s Wn u
— H* (Wn u] Q s Wnu) -- -

which we can close under

(5.2) s Wnu - twnu

by applying (s.2) now as rewrite rule:
— H* (Wn u ﬂ Q €t wnu) —- .

As a result of the emergence of a new instance of wn u , this is no longer

closed under the previous transformations, but we have seen that the closure

31

Invariance and Nondeterminacy EWDg71 - 11

yields

(5) — H* {wnu [QtH) - . (See Note of the end.)

Clasing (5) under
(n.2) Wnu = Wcu
obviously yields
(6) — H* (Wnu [weulQtH -
which is also clesed under the inverse

(c.0) Woeu - Wnu .

With the introduction of the term Wc u we have created the possibility
of a signal arriving at the ecritically engaged machine (that holds the token) .
Observing that in (6) the substring = Wc can only occur in 0 s Wec u ,

adding this as superfluous term, and applying the transition
(s.3) s Wecu - u Bcu
as rewrite rule, we derive the closure

(7) - H* (Wn u ﬂ We u ﬂ QtH ﬂ 2 u B u) - .

The introduction of the term Bec introduces a new form of critical

engagement, which may terminate, for which we suggest the transition
(c.1) uBcu — twhu .

Since the resulting @ t wn u is subsumed by the preceding O t H , {7) is

closed under (c.1} as well.

32

Invariance and Nondeterminacy EWD871 - 12

We leave to the reader the verification that (7) is also closed under

the remaining three transitions, which enumerate how the token can arrive:

(t.0) wd t - Wcu
(t.1) ubnt - fwnu
(t.2) ubdt - uBcu .

Since (7) tells us that t has a string 0 +to its left, which may end in
three different ways, the construction of the closure and of the list of

transitions that might be needed has now been completed.

The above enables us to convince ourselves that each delay will be of
finite duration. To that purpose we associate with a delayed machine the
string of (alternating) links and machines to its right, up to and including
the machine that holds or the link that carries the tokem. For that string

we define k by

k = the number of elements in the string +

the number of white machines in the string .

Ta begin with we observe that k > 0 and that none of the transitions increase

k . We now convince ourselves that k decreases within a finite period of

time because the states s, t, and c are of finite duration:

from (7) and (4) we conclude that the delayed machine occurs ina O ;
(i) for a 0 im H , the string contains an s , and within a finite time
.0, s.1, 8.2, or s.3 will decrease k ;

(ii) for the Q in Q t H y t.0, .1, or +.2 will decrease k

within a finite time

33

Invariance and Nondeterminacy EwWD871 -~ 13

(iii) for the @ in 0 u Bcu , e.1 will decrease k within a finite
time,

and fram (7) we conclude that this case analysis has been exhaustive.

And this concludes (the compact presentation DF) cur example.

* *

A number of retrospective remarks are in order.

In the above, the machines themselves have remained anonymous. We
could have numbered them from O through N-1 , but invite the reader to
try to visualize how our invariant would have looked like, had we used
quantifications over machine svhscripts! It would have been totally un-
manageable. (Nat only did we leave the individual machines anonymous, but
even their number is not mentioned in the analysis: for a ring of N wachines,
only the strings of length 2+N that belong to the grammar (1) are applicable.
A fringe benefit is that very small values of N do not require special
analysis.)

After the decisign to try to use regular expressions, it took me
several iterations before I had reached the above treatment. My first
efforts contained errors, due to my lack of experience in using the "regular-

ity calculus" for deriving a transitive closure under rewrite rules.

The lack of experience was the more severe since the same language can

be characterized by many different regular expressions: for instance,

Invariance and Nondeterminacy EWD871 - 14

(a ﬂ B)* (a D b ﬂ a b)* , and (a ﬂ b a*)*¥ are all equivalent. In the
beginning I experienced this great freedom as a nuisance, but now I think this
was naive, since precisely these language-preserving transformations enable

us to massage a regular expression in a form suitable for our next manipula-—

tion. Equivalences lie at the heart of any practical calculus.

Finally, it took me quite some time before I discovered the proper
abbreviations to introduce. (The H and the O , easy to defend in hind-
sight, could have been chosen much earlier, had we had more familiarity with

the regularity calculus.)

1 mentioned that, due to the calculational approach to program design,
each specific problem may pose a new conceptual and notational challenge.
The above example has been included to give the reader some feeling for the
forms that challenge may take. I called the consequences unfathomed, the
reason heing that the machines executing our programs are truly worthy af
the name Mgeneral purpose equipment" and that, consequently, the area that
calls for the effective application of formal techniques seems to have lost

its boundaries.

Acknowledgements. The example illustrating the use of the regularity calculus

was developed under the critical inspiration of the Tuesday Afternoon (Club,
and of F.E.J.Kruseman Aretz in particular. It was a privilege to write
half of the above with A.J.M. van Gasteren looking over my shoulder. (End of

Acknowledgements.)

35

Invariance and Nondeterminacy FWDg71 - 15

References

Floyd, R.W. 1967 Assigning meanings to programs. Proc. Amer. Math.

Soc. Symposia in Applied Mathematics, Vol. 19, pp. 19-31. Providence, R.I.

Hoare, C.A.R. 1969 An axiomatic basis for computer programming.

Comm.ACM, Vol 12, Nr. 10 {Dct 1969) pp. 576-580.

Note added in ?r_oo_g SHl \c\c\einﬁ a @“-)D\owh reau\orib
Ca\cu\us, we did not GPP\D +. T s instruchive Yo know
et , as o rQSU\“', grommars (5), (€), ond (D are
nok (ully closed. (End of Nole added in proofl)

Plataanstraat © 1 February 1984
5671 AL NUENEN prof.dr.Edsger W.Dijkstra

The Netherlands Burroughs Research Fellow

