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Abstract

A large body of past work has focused on the
first-order tree-based LP relaxation for the
MAP problem in Markov random fields. This
paper develops a family of super-linearly con-
vergent LP solvers based on proximal mini-
mization schemes using Bregman divergences
that exploit the underlying graphical struc-
ture, and so scale well to large problems. All
of our algorithms have a double-loop char-
acter, with the outer loop corresponding to
the proximal sequence, and an inner loop of
cyclic Bregman divergences used to compute
each proximal update. The inner loop up-
dates are distributed and respect the graph
structure, and thus can be cast as message-
passing algorithms. We establish various con-
vergence guarantees for our algorithms, il-
lustrate their performance, and also present
rounding schemes with provable optimality
guarantees.

1. Introduction

A key computational challenge associated with dis-
crete Markov random fields (MRFs) is the problem
of maximum a posteriori (MAP) estimation: comput-
ing the most probable configuration(s). For general
graphs, this MAP problem includes a large number of
classical NP-complete problems, including MAX-CUT
independent set, and satisfiability problems, among
various others.
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This intractability motivates the development and
analysis of methods for obtaining approximate solu-
tions. The ordinary max-product algorithm is a form
of non-serial dynamic-programming, exact for trees,
and also widely used as a heuristic for obtaining ap-
proximate solutions to the MAP problem, but it suf-
fers from convergence failures, and despite some local
optimality results (Freeman & Weiss, 2001), it has no
general correctness guarantees. For certain MRFs aris-
ing in computer vision, Boykov et al. (2001) studied
graph-cut based search algorithms that compute a lo-
cal maximum over two classes of moves. A related class
of methods are those based on various types of convex
relaxations, in which the discrete MAP problem is re-
laxed some type of convex optimization problem over
continuous variables. Examples include linear pro-
gramming (LP) relaxations (Wainwright et al., 2005;
Chekuri et al., 2005), as well as quadratic, semidefinite
and other conic programming relaxations (Ravikumar
& Lafferty, 2006; Kumar et al., 2006; Wainwright &
Jordan, 2003).

Among convex relaxations, LP relaxation is the least
computationally expensive and best understood. The
primary focus of this paper is a well-known tree-based
LP relaxation (Chekuri et al., 2005; Wainwright et al.,
2005) of the MAP estimation problem for pairwise
Markov random fields, based on optimizing over a set
of locally consistent pseudomarginals on edges and ver-
tices of the graph. In principle, this LP relaxation
can be solved by any standard solver, including sim-
plex or interior-point methods (Bertsimas & Tsitsik-
ilis, 1997). However, such generic methods fail to ex-
ploit the graph-structured nature of the LP, and hence
do not scale favorably to large-scale problems.

Wainwright et al. (2005) established a connection be-
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tween this tree-based LP relaxation and the class of
tree-reweighted max-product (TRW-MP) algorithms,
showing that suitable TRW-MP fixed points specify
optimal solutions to the LP relaxation. Subsequent
work has extended this basic connection in various in-
teresting ways. For instance, Kolmogorov (2005) de-
veloped a serial form of TRW-MP with some conver-
gence properties but as with the ordinary TRW-MP
updates, no guarantees of LP optimality. Weiss et
al. (2007) connected convex forms of sum-product
and exactness of reweighted max-product algorithms.
Globerson and Jaakkola (2007) developed a conver-
gent dual-ascent algorithm, but its fixed points are
guaranteed to be LP-optimal only for binary problems,
as is also the case for the TRW-MP algorithm (Kol-
mogorov & Wainwright, 2005), and the rate of con-
vergence is not analyzed. Other authors (Komodakis
et al., 2007; Feldman et al., 2002) have proposed sub-
gradient methods, but such methods typically have
sub-linear convergence rates.

The goal of this paper is to develop and analyze vari-
ous classes of message-passing algorithms that always
solve the LP, and are provably convergent with at least
a geometric rate. The methods that we develop are
flexible, in that new constraints can be incorporated
in a relatively seamless manner, with new messages
introduced to enforce them. All of the algorithms in
this paper are based on the notion of proximal mini-

mization: instead of directly solving the original linear
program itself, we solve a sequence of so-called prox-
imal problems, with the property that the sequence
of associated solutions is guaranteed to converge to
the LP solution. We describe different classes of al-
gorithms, based on different choices of the proximal
function: quadratic, entropic, and reweighted Bethe
entropies. For all choices, we show how the interme-
diate proximal problems can be solved by message-
passing updates on the graph, guaranteed to converge
but with a distributed nature that scales favorably.
An additional desirable feature, given the wide variety
of lifting methods for further constraining LP relax-
ations (Wainwright & Jordan, 2003), is that additional
constraints are easily incorporated within the frame-
work.

2. Background

We begin by introducing some background on Markov
random fields, and the LP relaxations that are the
focus of this paper. Given a discrete space X =
{0, 1, 2, . . . , m}, let X = {X1, . . . , Xp} ∈ X p de-
note a p−dimensional discrete random vector. We
assume that its distribution P is a Markov random

field, meaning that it factors according to the struc-
ture of an undirected graph G = (V, E), with each
variable Xs associated with one node s ∈ V , in the
following way. Letting θs : X → and θst : X × X →
be singleton and edgewise potential functions respec-
tively, we assume that the distribution takes the form
P(x; θ) ∝ exp

{ ∑
s∈V θs(xs) +

∑
(s,t)∈E θst(xs, xt)

}
.

The problem of maximum a posteriori (MAP) esti-
mation is to compute a configuration with maximum
probability—i.e., an element

x∗ ∈ arg max
x∈X p

{ ∑

s∈V

θs(xs) +
∑

(s,t)∈E

θst(xs, xt)
}

(1)

This problem is an integer program, since it involves
optimizing over the discrete space X p. The functions
θs(·) and θst(·) can always be represented in the form

θs(xs) =
∑

j∈X

θs;jI[xs = j] (2a)

θst(xs, xt) =
∑

j,k∈X

θst;jkI[xs = j; xt = k], (2b)

where the m-vectors {θs;j , j ∈ X} and m×m matrices
{θst;jk, (j, k) ∈ X × X} parameterize the problem.

The basic linear programming (LP) relaxation of this
problem is based on a set of pseudomarginals µs and
µst, associated with the nodes and vertices of the
graph. These pseudomarginals are constrained to be
non-negative, as well to normalize and be locally con-
sistent in the following sense:

∑

xs

µs(xs) = 1, for all s ∈ V (3a)

∑

xt

µst(xs, xt) = µs(xs) for all (s, t) ∈ E.

The polytope defined in this way is denoted
LOCAL(G), or L(G) for short. The LP relaxation
is based on solving maximizing the linear function
∑

s

∑

xs

θs(xs)µs(xs)+
∑

(s,t)∈E

∑

xs,xt

θst(xs, xt)µst(xs, xt),

subject to the constraint µ ∈ L(G). In the se-
quel, we write this LP more compactly in the form
maxµ∈L(G) θT µ. By construction, this relaxation is
guaranteed to be exact for any problem on a tree-
structured graph (Wainwright et al., 2005), so that
it can be viewed as a tree-based relaxation. The
main goal of this paper is to develop efficient and dis-
tributed algorithms for solving this LP relaxation, as
well as strengthenings based on additional constraints.
For instance, one natural strengthening is by “lift-
ing”: view the pairwise MRF as a particular case of
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a more general MRF with higher order cliques, define
higher-order pseudomarginals on these cliques, and use
them to impose higher-order consistency constraints.
This particular progression of tighter relaxations un-
derlies the Bethe to Kikuchi (sum-product to general-
ized sum-product) hierarchy.

3. Proximal minimization schemes

We begin by defining the notion of a proximal min-
imization scheme, and the Bregman divergences that
we use to define our proximal sequences. Instead of re-
ferring to the maximization problem maxµ∈L(G) θT µ,
it is convenient to consider the equivalent minimiza-
tion problems minµ∈L(G) −θT µ.

3.1. Proximal minimization

The class of methods that we develop are based on the
notion of proximal minimization (Bertsekas & Tsitsik-
lis, 1997). Instead of attempting to solve the LP di-
rectly, we solve a sequence of problems of the form

µn+1 = arg min
µ∈L(G)

{
−θT µ +

1

ωn
Df(µ ‖µn)

}
, (4)

where for each n = 0, 1, 2, . . ., µn denotes current iter-
ate, {ωn} denotes a sequence of positive weights, and
Df is a certain type of generalized distance, known
as the proximal function. The purpose of introducing
the proximal function is to convert the original LP—a
convex optimization problem but non-differentiable in
dual space —into a strictly convex optimization prob-
lem that can be solved relatively easily. This scheme
appears similar to an annealing scheme, in that it in-
volves a choice of weights {ωn}. However, although
the weights {ωn} can be adjusted for faster conver-
gence, they can also be set to a constant, unlike for
annealing procedures, which would typically require
that 1/ωn → 0. The reason is that Df (µ ‖µ(n)), as
a generalized distance, itself converges to zero when
the method gets closer to the optimum, thus provid-
ing an “adaptive” annealing. For appropriate choice of
weights and proximal functions, these proximal min-
imization schemes converge to the LP optimum with
at least geometric and possibly superlinear rates (Bert-
sekas & Tsitsiklis, 1997; Iusem & Teboulle, 1995).

In this paper, we focus exclusively on proximal func-
tions that are Bregman divergences (Censor & Zenios,
1997), a class that includes various well-known diver-
gences (e.g., quadratic norm, Kullback-Leibler diver-
gence etc.). More specifically, we say that a function
f is a Bregman function if it is continuously differen-
tiable, strictly convex, and has bounded level sets. It

then induces a Bregman divergence

Df (µ ‖ ν) : = f(µ) − f(ν) − 〈∇f(ν), µ − ν〉 (5)

This function satisfies Df(µ ‖ ν) ≥ 0 with equality iff
µ = ν, but need not be symmetric or satisfy the trian-
gle inequality, so it is known as a generalized distance.

We study the sequence {µn} of proximal iterates (4)
for the following choices of Bregman divergences.

Quadratic distances: This choice is the simplest,
corresponding to the quadratic norm across nodes and
edges

Q(µ ‖ ν) : =
∑

s∈V

‖µs − νs‖
2 +

∑

(s,t)∈E

‖µst − νst‖
2,

where we have used the shorthand

‖µs − νs‖
2 =

∑

xs

|µs(xs) − νs(xs)|
2,

and similarly for the edges. The Bregman function
this corresponds to is the quadratic function,

f(µ) =
1

2

{
∑

s,xs

µ2
s(xs) +

∑

s,t,xs,xt

µ2
st(xs, xt)

}
(6)

Weighted entropic distances: Here we consider a
(possibly weighted) sum of Kullback-Leibler (KL) di-
vergences across the nodes and edges:

D(µ ‖ ν) =
∑

s∈V

ρsD(µs ‖ νs) +
∑

s,t

ρstD(µst ‖ νst) (7)

where D(p ‖ q) : =
∑

x

(
p(x) log p(x)

q(x) −
[
p(x)− q(x)

])
is

the KL divergence, and {ρs, ρst} are positive node and
edge weights, respectively. An advantage of the KL
distance, in contrast to the quadratic norm, is that
it automatically acts to enforce non-negativity con-
straints on the pseudomarginals. The Bregman func-
tion this corresponds to is the entropy function,

f(µ) =
∑

s

Hs(µs) +
∑

s,t

Hst(µst) (8)

where Hs and Hst are singleton and edge-based en-
tropies, respectively.

An extension of define a Bregman function based on
a convex combination of tree-structured entropy func-
tions (Wainwright & Jordan, 2003), and using expres-
sions such as the reweighted Bethe entropy which are
equivalent to the convex combination of tree entropies
within the local polytope, we can derive an iterative
procedure involving tree-reweighted message passing
to solve the outer proximal steps. We defer further
details to a full-length version.
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3.2. Proximal sequences via Bregman

projection

The key in designing an efficient proximal minimiza-
tion scheme is ensuring that the proximal sequence
{µn} can be computed efficiently. In this section, we
first describe how the sequence of each proximal mini-
mization can be reformulated as a particular Bregman
projection. We then describe how this Bregman pro-
jection can itself be computed iteratively, in terms of a
sequence of cyclic Bregman projections based on a de-
composition of the constraint set LOCAL(G). In the
sequel, we then show how this cyclic Bregman projec-
tions reduce to very simple message-passing updates.

Given a Bregman divergence D, the Bregman projec-

tion of the vector ν onto a convex set C is given by

µ̂ : = arg min
µ∈C

Df (µ ‖ ν) (9)

By taking derivatives and using standard conditions
for optima over convex sets (Bertsekas & Tsitsiklis,
1997), the defining optimality condition for µ̂ is

(
∇f(µ̂) −∇f(ν)

)T (
µ − µ̂

)
≥ 0 (10)

for all µ ∈ C. Now consider the proximal minimization
problem to be solved at step n, namely the strictly
convex problem

min
µ∈L(G)

{
−θT µ +

1

ωn
Df (µ ‖µn)

}
. (11)

By taking derivatives and using the same convex op-
timality, we see that the optimum µn+1 is defined by
the conditions

(
∇f(µn+1) −∇f(µn) − ωnθ

)T
(µ − µn+1) ≥ 0

for all µ ∈ C. Note that these optimality conditions
are of the same form as the Bregman projection con-
ditions (10), with the vector ∇f(µn)+ ωnθ taking the
role of ∇f(ν); in other words, with (∇f)−1(∇f(µ) +
ωnθ) being substituted for ν. Consequently, efficient
algorithms for computing the Bregman projection (10)
can be leveraged to compute the proximal update (11).
In particular, our algorithms leverage the fact that
Bregman projections can be computed efficiently in a
cyclic manner—that is, by decomposing the constraint
set C = ∩iCi into an intersection of simpler constraint
sets, and then performing a sequence of projections
onto these simple constraint sets (Censor & Zenios,
1997).

To simplify notation, for any Bregman function f , let
us define the operator

Jf (µ, ν) = (∇f)−1(∇f(µ) + ν)

and for any Bregman divergence D with Bregman
function f and any convex set C, define the projec-
tion operator

ΠDf
(γ; C) : = arg min

µ∈C
Df (µ ‖ γ)

With this notation, we can write the proximal update
in a compact manner as a type of projection

µn+1 = ΠDf
(Jf (µn, ωnθ); L(G)) .

Now consider a decomposition of the constraint set
as an intersection—say L(G) = ∩T

k=1Lk(G). By
the method of cyclic Bregman projections (Censor &
Zenios, 1997), we can compute µn+1 in an iterative
manner, by performing the sequence of projections
onto the simpler constraint sets, initializing µn,0 = µn

and updating from µn,τ 7→ µn,τ+1 by projecting µn,τ

onto constraint set Li(τ)(G), where i(τ) = τ mod T ,
for instance. This procedure is summarized in Algo-
rithm 1.

Algorithm 1 Basic proximal-Bregman LP solver

Given a Bregman distance D, weight sequence {ωn}
and problem parameters θ:

• Initialize µ
(0)
s (xs) = 1

m
, µ

(0)
st (xs, xt) = 1

m2 .

• Outer loop: For iterations n = 0, 1, 2, . . .,
update µn+1 = ΠD (Jf (µn, ωnθ); L(G)).

– Solve outer loop via Inner loop:

(a) Initialize µn,0 = Jf (µn, ωnθ).

(b) For t = 0, 1, 2, . . ., set i(t) = t mod T .

(c) Set µn,t+1 = ΠD

(
µn,t; Li(t)(G)

)
.

As shown in the following sections, by using a de-
composition of L(G) over the edges of the graph,
the inner loop steps correspond to local message-
passing updates, slightly different in nature depend-
ing on the choice of Bregman distance. Iterating the
inner and outer loops yields a provably convergent
message-passing algorithm for the LP. Convergence
follows from the convergence properties of proximal
minimization (Bertsekas & Tsitsiklis, 1997), combined
with convergence guarantees for cyclic Bregman pro-
jections (Censor & Zenios, 1997). In the following
section, we derive the message-passing updates corre-
sponding to various Bregman functions of interest. We
also give rates of convergence for the cyclic projection
updates in the inner loop.

3.3. Quadratic Projections

Consider the proximal sequence with the quadratic
distance Q from equation (??); the Bregman function
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inducing this distance is the quadratic function
f(y) = 1

2y2, whose gradient is given by ∇f(y) = y.

The map ν = Jf (µ, ωθ): In this case, it can
be derived as,

∇f(ν) = ∇f(µ) + ωθ (12)

⇒ ν = µ + ωθ (13)

whence we get the initialization in Equation 17.

The projections µn,τ+1 = ΠQ(µn,τ , Li(G)):
onto the individual constraints Li(G); the associated
local update takes the form

µn,τ+1 = min
α∈Li(G)

{f(α) − α⊤∇f(µn,τ )} (14)

Consider the edge marginalization constraint for edge
(s, t), Li(G) ≡

∑
xt

µst(xs, xt) = µs(xs). Denoting
the dual (Lagrange) parameter corresponding to the
constraint by λst(xs), the KKT conditions for (14) are
given by

∇f(µn,τ+1
st (xs, xt)) = ∇f(µn,τ

st (xs, xt)) + λst(xs)

∇f(µn,τ+1
s (xs)) = ∇f(µn,τ

s (xs)) − λst(xs)

µn,τ+1
st (xs, xt) = µn,τ

st (xs, xt) + λst(xs)

µn,τ+1
s (xs) = µn,τ

s (xs) − λst(xs),

while the constraint itself gives

∑

xt

µn,τ+1
st (xs, xt) = µn,τ

s (xs) (16)

Solving for λst(xs) yields equation (19). The node
marginalization follows similarly, so that overall, we
obtain message-passing algorithm (2) for the inner
loop.

3.4. Entropic projections

Consider the proximal sequence with the Kullback-
Leibler distance D(µ ‖ ν) defined in equation (7); the
Bregman function inducing the distance is a sum of
negative entropy functions f(µ) = µ log µ, and its
gradient is given by ∇f(µ) = log(µ) + 1.

The derivation of the updates mirrors the previ-
ous section, and defering the details to a full-length
version, we get the message passing algorithm (3) for
the inner loop.

There are also interesting similarities between our cor-
responding dual updates and sum-product updates—
which are updates to the dual parameters—details of
which we defer to a full-length version of this paper
due to lack of space.

Algorithm 2 Quadratic Messages for µn+1

Initialization:

µ
(n,0)
st (xs, xt) = µ

(n)
st (xs, xt) + wnθst(xs, xt) (17)

µ(n,0)
s (xs) = µ(n)

s (xs) + wnθs(xs) (18)

repeat

for each edge (s, t) ∈ E do

µ
(n,τ+1)
st (xs, xt) = µ

(n,τ)
st (xs, xt)+ (19)

(1/L + 1)

 

µ(n,τ)
s (xs) −

X

xt

µ
(n,τ)
st (xs, xt)

!

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)+ (20)

(1/L + 1)

 

−µ(n,τ)
s (xs) +

X

xt

µ
(n,τ)
st (xs, xt)

!

end for

for each node s ∈ V do

µ(k+1)
s (xs) = µ(k)

s (xs) +
1

L
(1 −

X

xs

µ(k)
s (xs))

µ(k+1)
s (xs) = max(0, µ(k+1)

s (xs))

end for

until convergence

3.5. Reweighted Entropy Projections

The message passing updates here are “reweighted”
versions of those in the previous section for the un-
weighted entropy induced Kullback-Leibler divergence
proximal iterates.

Initialization of proximal steps:

µ
(n,0)
st (xs, xt) = µ

(n)
st (xs, xt) exp(ωn/ρstθst(xs, xt))

µ(n,0)
s (xs) = µ(n)

s (xs) exp(ωn/ρsθs(xs)).

Projections: The node normalization update re-
mains the same as in the previous section, while the
marginalization update changes as,

µ
(n,τ+1)
st (xs, xt) = µ

(n,τ)
st (xs, xt)

 

µ
(n,τ)
s (xs)

P

xt
µ

(n,τ)
st (xs, xt)

!
ρs

ρs+ρst

µ(n,τ+1)
s (xs) = µ(n,τ)

s (xs)
ρs

ρs+ρst

 

X

xt

µ
(n,τ)
st (xs, xt)

!

ρst
ρs+ρst
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Algorithm 3 Entropic Messages for µn+1

Initialization:

µ
(n,0)
st (xs, xt) = µ

(n)
st (xs, xt) exp(ωnθst(xs, xt))

µ(n,0)
s (xs) = µ(n)

s (xs) exp(ωnθs(xs))

repeat

for each edge (s, t) ∈ E do

µ
(n,τ+1)
st (xs, xt) = µ

(n,τ)
st (xs, xt)

v

u

u

t

µ
(n,τ)
s (xs)

P

xt
µ

(n,τ)
st (xs, xt)

µ(n,τ+1)
s (xs) =

s

µ
(n,τ)
s (xs)

X

xt

µ
(n,τ)
st (xs, xt)

end for

for each node s ∈ V do

µ(n,τ+1)
s (xs) =

µ
(n,τ)
s (xs)

∑
xs

µ
(n,τ)
s (xs)

end for

until convergence

4. Rounding with optimality certificates

A key practical issue in applying LP relaxation is how
round the fractional solution; a standard approach is
to round the node marginals to the nearest integer so-
lution. However, in general, such rounding procedures
need not always output the optimal integer configura-
tion. An attractive feature of our proximal Bregman
procedures is the existence of rounding schemes which,
assuming that the LP relaxation is tight, can produce
the LP integral optimum and certify that it is correct,
even before the pseudomarginals converge to the LP
solution. Here we describe two rounding schemes, and
state the optimality certificate associated with each.

Node-based rounding: This method applies to
any of our proximal schemes. Given the vector µn

of pseudomarginals at iteration n, define an integer
configuration xn by choosing, for each vertex s ∈ V , a
value xn

s ∈ arg maxxs
µn

s (xs). Say that such a round-
ing is edgewise-consistent if for all edges (s, t) ∈ E,
we have (xn

s , xn
t ) ∈ arg max

(xs,xt)
µn

st(xs, xt).

Tree-based rounding: We describe this method in
application to the unweighted entropic proximal up-
dates. Let T1, . . . , TM be a set of spanning trees that
cover the graph (meaning that each edge appears in

at least one tree); for each edge (s, t), define the edge

weight αst = 1
M

∑M
i=1 I[(s, t) ∈ Ti]. Then for each tree

i = 1, . . . , M :

(a) Define the tree-structured energy function Ei(x) :
=

∑
s µn(xs) +

∑
(s,t)∈E(Ti)

1
αst

µn
st(xs, xt).

(b) Run the ordinary max-product problem on en-
ergy Ei(x) to find a MAP-optimal configuration
xn(Ti).

Say that such a rounding is tree-consistent if the tree
MAP solutions {xn(Ti), i = 1, . . . , M} are all equal.

The following result characterizes the optimality guar-
antees associated with these rounding schemes:

Theorem 1 (Rounding with optimality certificates).
At any iteration n = 1, 2, . . ., any edge-consistent con-

figuration obtained from node-rounding, or any tree-

consistent configuration obtained from tree-rounding is

guaranteed to be MAP optimal for the original prob-

lem.

The proof is based on a certain energy-invariance prop-
erty of the proximal updates; in particular, at any it-
eration n, the pseudomarginals µn have an associated
function F (x; µn) which is proportional to the energy
E(θ; x) =

∑
s θs(xs) +

∑
st θst(xs, xt) of the graph-

ical model. For instance, for the entropic proximal
scheme, at any iteration n, the function F (x; µn) :
=

∏
s∈V µn

s (xs)
∏

(s,t)∈E µn
st(xs, xt) is proportional

to the exponential of E(θ; x). (See the technical re-
port (Ravikumar et al., 2008) for full details.)

Both rounding schemes require relatively little compu-
tation. Of course, the node-rounding scheme is purely
local, and so trivial to implement. With reference to
the tree-rounding scheme, many graphs can be cov-
ered with a small number M of trees (e.g. M = 2
for grid graphs). Consequently, the tree-rounding
scheme requires running the ordinary max-product al-
gorithm twice, certainly more expensive than node-
rounding but doable. In practice, we find that tree-
rounding tends to find LP optima more quickly than
node rounding.

5. Convergence Rates

The convergence of our message passing updates fol-
lows from two sets of results: (a) convergence of prox-
imal algorithms (Bertsekas & Tsitsiklis, 1997) and (b)
convergence of cyclic Bregman projections (Censor &
Zenios, 1997). Our outer loop is a proximal algorithm;
which has been well-studied in the optimization liter-
ature. A sequence µ(t) is said to have superlinear con-
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vergence to the optimum µ∗ if limk→∞
‖µ(t+1)−µ∗‖
‖µ(t)−µ∗‖

= 0.

Note that such convergence is faster than a multi-

plicative contraction (limk→∞
‖µ(t+1)−µ∗‖

‖µ(t)−µ∗‖
≤ α < 1).

Bertsekas and Tsistiklis (1997) show that a proximal
algorithm with a quadratic proximity has a superlin-
ear convergence under mild conditions, whereas Iusem
and Teboulle (1995) show the same for the entropy
proximity. Under the assumption that inner loops are
solved exactly, these convergence results then show
that our outer iterates converge superlinearly. Our in-
ner loop message updates use cyclic Bregman projec-
tions; Censor and Zenios (1997) show that with dual
feasibility correction, projections onto general convex
sets are convergent. For Euclidean (quadratic) projec-
tions onto linear constraints (half-spaces), Deutsch et
al. (2006) establish a geometric rate of convergence,
dependent on angles between the half-spaces. The in-
tuition is that the more orthogonal the half-spaces are,
the faster the convergence; for instance, a single it-
eration suffices for completely orthogonal constraints.
Our inner updates thus converge geometrically to an
ǫ−suboptimal solution for any outer proximal step.
As noted earlier, the proximal convergence results as-
sume that the inner loop has been solved exactly, while
the Bregman projection results yield geometric conver-
gence to but an ǫ−suboptimal solution. While with ǫ
small enough, e.g. 10−6 as in our experiments, this
issue might not be practically relevant, there has been
some recent work, e.g. (Solodov & Svaiter, 2001),
showing that under mild conditions, superlinear rates
still hold for ǫ−suboptimal proximal iterates.

6. Experiments

We performed experiments on a 4-nearest neighbor
grid graphs with sizes varying from p = 100 to p = 900,
in all cases using models with 5 labels. The edge
potentials were set to Potts functions, θst(xs, xt) =
βst I[xs = xt], which penalize disagreement of labels
by βst. The Potts weights on edges βst were chosen
randomly as Uniform(−1, +1), while the node poten-
tials θs(xs) were set as Uniform(− SNR, SNR), where
the parameter SNR ≥ 0 controls the ratio of node
to edge strengths, and thus corresponds roughly to a
signal-to-noise ratio.

Figure 1 shows plots of the logarithmic distance be-
tween the current iterate µn and the LP optimum µn

for grids of different sizes. In all cases, note how the
curves have an inverted quadratic shape, correspond-
ing to superlinear convergence.

Figure 2 shows the fraction of edges for which the
node-based rounding is edgewise inconsistent for grids
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Figure 1. Plot of distance log10 ‖µ
n − µ∗‖2 be-

tween the current iterate µn and the LP opti-
mum µ∗ versus iteration number for Potts mod-
els on grids with p ∈ {100, 400, 900} vertices, and
SNR = 1. Note the superlinear rate of convergence.

of different sizes. Note how the fraction converges to
zero in a small number of iterations.

Figure 3 shows the fraction of the energy of the
rounded solution to the energy of the MAP optimum,
or the suboptimality factor. Note again, the small
number of iterations for convergence.

7. Discussion

In this paper, we have developed distributed algo-
rithms, based on the notion of proximal sequences, for
solving graph-structured linear programming (LP) re-
laxations. Our methods respect the graph structure,
and so can be scaled to large problems, and they ex-
hibit a superlinear rate of convergence. We also devel-
oped rounding schemes that can be used to generate
integral solutions along with a certificate of optimality.
These optimality certificates allow the algorithm to be
terminated in a finite number of iterations.

The structure of our algorithms naturally lends it-
self to incorporating additional constraints, both linear
and other types of conic constraints. It would be inter-
esting to develop an adaptive version of our algorithm,
which selectively incorporated new constraints as nec-
essary, and then used the same proximal schemes to
minimize the new conic program.
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Figure 2. Plots of the fraction of edges for which
the node-based rounding is edgewise inconsistent
for grids of different sizes. Recall that when the
fraction is zero, we recover the MAP optimum.
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Figure 3. Plots of the fraction of the energy of
the rounded solution to the energy of the MAP op-
timum. Note the small number of iterations for
convergence.
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