
Solutions to Exercise 2: Algebraic Curve, Surface Splines - II

CS384R, CAM 395T, BME 385J: Fall 2007

September 21, 2007

Question 1. Consider a simple polygon with n ≥ 3 vertices. Describe a cubic A-spline construction scheme to
smooth the polygon such that,

(a) vertices of Q are C1-interpolated (interpolatory spline)

(b) vertices of Q are approximately interpolated to a user specified ε > 0 (approximatory spline)

Sol: To define an A-spline segment one may use segments of the zero of a degree d > 0, Bernstein Bezier
bivariate polynomial defined on a triangle :
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Where the Barycentric coordinates α i are related to the Cartesian coordinate system by the vertices
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For the A-spline of cubic degree, shown in the figure below, one sets the coefficients b3,0,0 = 0 and
b0,3,0 = 0 then it is easy to see that the curve interpolates p1 and p2 of the triangle. Hence one may
consider p1 and p2 as the join points in constructing longer chains of segments and thereby achieve a
C0 continuous A-spline. To facilitate C1 continuity at the curve segment end points (join points), one
may additionally set b2,0,1 = b0,2,1 = 0 so that the A-spline curve segment inside the triangle, becomes
tangent to ~p3 − p1 at p1 and to ~p3 − p2 at p2. We shall use these below to smooth polygons.
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To achieve smooth (non-singular) and simply connected A-splines, one imposes a single sign change
condition or each segment coefficients from the apex p3 to the triangle base p1, p2. One way to do this
is to set for each triangle, its b2,1,0 and b1,2,0 coefficients to be positive and its b0,0,3, b1,0,2, and b0,1,2
to be negative.

1



Note, that the general conditions for C0 or G0 and C1 or G1 continuity between a pair of algebraic
curve segments f(x, y) = 0 and g(x, y) = 0, at say their join point p, are the linear system of equations
(in terms of the coefficients of polynomials f and g), and given by f = g and Tangent(f) = fxy−fyx =
Tangent(g) = gxy − gyx evaluated at p.

One way to construct a smoothed polygon, using the aforementioned endpoint tangent A-splines, and
to achieve C1 interpolation of the given polygon’s vertices, is as follows. Assign a single tangent to
each vertex of the polygon which is not coincident with either of the polygon’s edges at that vertex.
Extend the tangents from each vertex in both directions till they intersect with the extensions of the
tangents of its two adjacent vertices thus constructing a triangle on each edge of the polygon. Assign
b3,0,0 = 0, b0,3,0 = 0, b2,0,1 = 0, and b0,2,1 = 0 and b2,1,0, b1,2,0 equal to any positive real number,
and b0,0,3, b1,0,2, b0,1,2 to be negative. If the triangles overlap, the curve segment may overlap too, so
reposition vertices of the newly constructed triangles such that triangles overlap is eliminated. This
simple scheme, as outlined, only handles convex polygons, as shown below.
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To achieve non–convex polygon smoothing, with vertex C1 interpolation, one chooses a new auxiliary
vertex on each of the two reflex edges which are incident to a reflex vertex (inner dihedral angle between
reflex edges incident at the reflext vertex is greater than 180 degrees). Through each auxiliary vertex
take a line making a positive angle with the reflex edge, and intersecting the two extended tangents
of the two vertices defining the reflex edge. This then constructs two triangles per reflex edge, one on
either side of the line. The assignment of coefficients on these triangles proceeds as before, to yield a
C1 smooth vertex interpolatory A-spline of any simple polygon.

To generate a C1 A-spline approximation of the vertices of any simple polygon (even non-convex), one
may use the following simple scheme. Choose an auxiliary vertex (typically midway) on each polygon
edge. Next for each adjacent polygon edge pair, connect the pair of auxiliary vertices . This forms a
collection of triangles, where each triangle has 1 polygon vertex as its apex, and a pair of connected
auxiliary vertices, as its base. Then as before, assign coefficients to the A-spline segments in each
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triangle with the same rule, b3,0,0 = 0, b0,3,0 = 0, b2,0,1 = 0, and b0,2,1 = 0 and b2,1,0, b1,2,0 equal to
any positive real number, and b1,0,2, b0,1,2 to be any negative number. Finally, for any given ε > 0 set
b003 = −δ such the curve passes at the distance ε from the vertex of the polygon. δ is usually taken to
be 0.5 ∗ ε. If b003 = 0 the curve would factor into two lines.
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One may also define C1 A-splines using the barycentric coordinates on a rectangle (p0, p1, p2, p3).
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Lastly one may construct A-spline segments within skew quadrilateral domains, with the oposing sides
normal to the curve .

Question 2. Consider a spatial polygonal chain Qs ⊆ R3 with starting vertex
−→
P0 and ending vertex

−→
Pn, n ≥ 3.

Construct a cubic A-spline, D, to C1-interpolate the vertices of Qs. Quantify the degrees of freedom
of D that are still available to modify the spline without changing the topology of the polygonal chain
Qs.

Sol: Let p0, p1, . . . , pn be the sequence of vertices along the given polygonal chain (w.l.o.g. assume that
n = 3m − 1, for an integer m). Consider three successive vertices pi, pi+1, pi+2, for i = 3m′ with m′

an integer. Let R be the rectangle with smallest area such that it contains the triangle formed with
the points pi, pi+1, pi+2. Since we require a cubic A-spline, there are 4 control points (including the
vertices) equi-spaced along each side of the rectangle R. Let these control points , while traversing R in
clockwise direction, be listed as c1 = pi, c2, c3, c4 = pi+2, c5, . . . , c12. Suppose the point pi+1 incidents
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in between the control points c8 and c9. We chose weights at these control points s.t. wpi
= wpi+2 = 0;

wc2 and wc3 as −ve; the weights of the remaining control points are chosen as +ve.

Let Tj = {pi, pi+1, pi+2}, Tj+1 = {pi+2, pi+3, pi+4} be two consecutive tensor patches constrcuted as
described above. The tangent at pi+2 for the A-spline generated due to Tj be tj . We add a constraint
s.t. tj is the tangent to the A-spline generated in Tj+1. This is accomplished by choosing the weights
of the control points in Tj+1.

Since two vectors (one tangent, one binormal) constrain the plane in which an A-spline traverses
through, defining only one of them leaves three degress of freedom at point pi+2. When we consider
the composite A-spline this leaves 3(n3 ) i.e., n degrees of freedom. What about the degrees of freedom
with a given A-spline? (we are fixing only eight control points weights among the twelve that define
the cubic A-spline)

Question 3. Consider a C1-interpolatory quadratic A-spline, D, defined in the x = 0 plane (i.e., Y-Z plane) with
none of the vertices

−→
P0,
−→
P1, . . . ,

−→
Pn incident on the z-axis.

(a) Describe a square pyramidal A-patch data structure that represents the spline surface of revolution
generated when D is revolved about the Z-axis.

(b) What is the degree of the spline surface?

(c) What property of the A-spline would yield a lower degree spline surface of revolution?

(d) Convert the square-pyramidal representation to a tetrahedral A-patch representation.

Sol: The surface of revolution of an algebraic plane curve f(y, z) = 0 about the Z axis, can be described
by the implicit equation algebraic given by f(r, z) = f(

√
x2 + y2, z) = 0, since the circle of revolution

is x2 + y2 = r2, and r = y, when x = 0 and r doesn’t change. The single square root can be easily
removed by separating all terms involving the square-root on one-side of the equation, and the rest
of the terms on the other, and then powering both sides without changing the resulting zeroset of
the surface equation. If the plane curve is of degree d, and has y-terms with only even exponents
,y2i, 0 ≥ i ≤ d, then the sqare root is already eliminated, and the resulting degree of the surface of
revolution is not doubled.

The spline curve in the Y-Z plane, may be constructed, using any kind of A-spline (see question 1). for
example, let the spline be described by a rectangular quadratic A-spline (cfr question 1) the equation
of each segment will be:
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Where the α are the local coordinates in the scaffolding rectangle (p0, p1, p2, p3) of the segment, related
to the (r, z) coordinates by: r

z
1

 =

 (p1,r − p2,r) (p1,r − p3,,r) p1,r

(p1,z − p2,z) (p1,z − p3,z) p1,z

1 1 1

 α1

α2

1


Inverting said relation one has: α1
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Substituting the α = α(r, z) in f one has a form f(r, z) = 0, thus effectivelly transforming the equation
in power basis. Alternatevelly one could have set up the transformation matrix. Applying the rotation
one has the surface f(r, y, z) = f(x, y, z) = 0 in the current coordinate system.

At this point one has to define a new a-patch scaffold and transform the surface equation into the
new scaffold coordinate system. The new scaffold must have the two sides parallel to the xy plane.
Otherwise the border may not be a planar curve, furthermore, the border curve segments will be
circumpherences. (single valued and symetry)

Say, v0 and v1 be the original extreme points of the curve segment. Let a be the maximum r, and
b1and b2 the ordered z coordinates of v1 and v2. Build the cuboid at (0, b1) with height b2 − b1 and
both sides equal to a. This is a rectangular scaffold for the a-patch. To build the square pyramidal
a-patch one may split the cuboid in four pyramids at the barycentric point (r/2 , r/2., b1 +(b2−b1)/2).

At this point one has to convert back into tensorial form for the rectangular patches:
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Or to the mixed tensor barycentric form for the pyramidal patch:
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Where coordinates conversion depend on which pyramid, for example is the bottom one:


x
y
z
1

 =


r 0 r/2 0
0 r r/2 0
1 1 (b2 − b1)/2 0
0 0 0 1


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1


In any case the resulting surface will be biquadratic.

Question 4. Consider two circles in R3, of radii 1 and 2, lying on the x = 1 and y = 4 planes, and with their centers
on the x and y axis respectively.

(a) Compute A-spline representation of each circle.

(b) Compute a joining surface that interpolates the circles and contains the origin. Give your answer
as an A-patch representation.

(c) Is your solution the lowest degree algebraic surface and with the fewest number of A-patches ?
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Sol: (a) We construct a scaffold around the circle in the following way. Consider the unit circle C1 whose
centre is located at x = 1. We choose the bivariate triangle scaffold TS (supplementary lecture note
2 slide 4) around each quarter circle defined w.r.t. y and z axes s.t. the 6 a020a200a002 = π

2 and the
scaffold is coplanar with C1. As circle is quadratic, there are 3 (including the vertices) equi-spaced
control points along each side of TS.
We associate weights to points a020, a011, a002, a101, a200, a110. Since C1 need to interpolate a020 and
a002, we set w020 = w002 = 0. Since the line segments a020a110 and a002a101 are tangents to
C1, we set w110 = w101 = 0. Consider the line segment a200a011 and let the point of intersec-
tion of the circle embedded in the triangle with this line segment be p. From the basic geometry,
|pa200
pa011

| = w011
w200

⇒ |
√

2−1
1− 1√

2
| = w011

w200
⇒ | 1√

2
| = w011

w200
. We choose w011 = −1 and w200 =

√
2 to satisfy

this equality. This scaffold is guaranteed to yield the one quarter of the circle. The scaffolds for cir-
cle quarters in the other quadrants can be constructed symmetrically. For one of these scaffolds, say
a′020a

′
002a

′
200, distinct from TS, since 6 a020a200a002 = 6 a′020a

′
200a

′
002 = π

2 , a′200a
′
020 is collinear with

either a200a002 or a020a200. This helps in keeping the C1 continuity of the circle segments at the joining
points of the generated A-splines.

The A-spline representation of the circle C2 located in y = 4 is symmetric to above except that the
scffolds are constructed in the xz-plane.

(b) The circle C1 can be represented as an intersection of two implicit surface equations, f0 : y2 +
z2 − 1 = 0 and g0 : x − 1 = 0. The circle C2 can be represented as an intersection of two
implicit surface equations, f1 : x2 + z2 − 4 = 0 and g1 : y − 4 = 0. Then the lofted surface
which interpolates (i.e., with C0 continutity) the circles C1 and C2 is given by, α0f0 + β0g

0+1
0 =

α1f1 + β1g
0+1
1 ⇒ α0(y2 + z2 − 1) + β0(x − 1) = α1(x2 + z2 − 4) + β1(y − 4), where α0, β0, α1, β1

are chosen to be constants to have the lowest degree algebraic surface. This yields the surface S,
α1x

2−α0y
2 +(α1−α0)z2 +β1y−β0x+(−4α1−4β1 +α0 +β0) = 0. Take any four points on the circles

C1 and C2 to find these constants, ex. (2, 4, 0), (0, 4, 2), (1, 1, 0), (1, 0, 1). The additional constraint is
given by that the origin (0, 0, 0) need to be interior to the surface. This can be imposed by ∂S

∂y < 0 at
(2, 4, 0).

We define A-patches in tensor domain. Consider the smallest hexahedron H enclosing the surface
S. We partition H with a set R of hexahedrons s.t. any line segment joining vertices of any chosen
hexahedron in R does not intersect S more than once, and, |R| is the smallest among all possible such
sets. Since S is quadratic, each side of any hexahedron r ∈ R consists of three control points (including
the vertices). Similar to part (a), we associate weights to these control points to construct A-patch
within each such r. To maintain C2 continuity, between adjacent A-patches, we impose additional
constraints.
(c) As mentioned in lecture note 2 slide 55, the equation representing the family of surfaces which Gk

interpolate the curves C1 and C2 is α0f0 +β0g
k+1
0 = α1f1 +β1g

k+1
1 . Since we were asked to interpolate

C1 and C2, we have chosen k = 0, which in turn yielded the lowest degree algebraic surface. Since S
is of lowest degree and |R| is of smallest size, our solution is with the fewest number of A-patches.

Question 5. The topology of an A-patch is the local topology of the level set of the algebraic function within its
bounding linear finite element (simple polyhedron), and related to the critical points of the algebraic
function within the finite element. Describe the possible topologies of (a) quadratic A-patch in a
tetrahedron (b) tri-linear A-patch in a cube (c) combination [linear,quadratic] A-patch in a triangular
prism
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Sol: See class notes.

7


