Algebraic Splines and Analysis - I : Lecture 2

Chandrajit Bajaj

Department of Computer Sciences,
Institute of Computational Engineering and Sciences
University of Texas at Austin, Austin, Texas 78712, USA
http://www.cs.utexas.edu/ bajaj

Algebraic Curve, Surface Splines

We shall consider the modeling of domains and function fields using algebraic splines

Algebraic Splines are a complex of piecewise :
algebraic plane \& space curves
algebraic surfaces

Algebraic Plane curves

- An algebraic plane curve in implicit form is a hyperelement of dimension 1 in R^{2} :

$$
\begin{equation*}
f(x, y)=0 \tag{1}
\end{equation*}
$$

- An algebraic plane curve in parametric form is an algebraic variety of dimension 1 in R^{3}. It is also a rational mapping from R^{1} into R^{2}.

$$
\begin{align*}
& x=f_{1}(s) / f_{3}(s) \tag{2}\\
& y=f_{2}(s) / f_{3}(s) \tag{3}
\end{align*}
$$

Algebraic Space curves

- An algebraic space curve can be implicitly defined as the intersection of two surfaces given in implicit form:

$$
\begin{equation*}
f_{1}(x, y, z)=0 f_{2}(x, y, z)=0 \tag{4}
\end{equation*}
$$

- or alternatively as the intersection of two surfaces given in parameteric form:

$$
\begin{align*}
& \left(x=f_{1,1}\left(s_{1}, t_{1}\right), y=f_{2,1}\left(s_{1}, t_{1}\right), z=f_{3,1}\left(s_{1}, t_{1}\right)\right) \tag{5}\\
& \left(x=f_{1,2}\left(s_{2}, t_{2}\right), y=f_{2,2}\left(s_{2}, t_{2}\right), z=f_{3,2}\left(s_{2}, t_{2}\right)\right) \tag{6}
\end{align*}
$$

where all the $f_{i, j}$ are rational functions in s_{i}, t_{j}

- Rational algebraic space curves can also be represented as:

$$
x=f_{1}(s), y=f_{2}(s), z=f_{3}(s)
$$

where the f_{i} are rational functions in s.

Parameterization of algebraic curves

Theorem An algebraic curve P is rational iff the Genus $(P)=0$.

The proof is classical, though non-trivial. See also, Abhyankar's Algebraic Geometry for Scientists \& Engineers AMS Publications, (1990)

Constructive proof, genus computation, and parameterization algorithm is available from:

Automatic Parameterization of Rational Curves and Surfaces III : Algebraic Plane Curves Computer Aided Geometric Design, (1988)

Parameterization of algebraic space curves

For algebraic space curves C given as intersection of two algebraic surfaces there exists a birational correspondence between points of C and points of a plane curve P.

The genus of C is same as the genus of P.
Hence C is rational iff $\operatorname{Genus}(P)=0$.

Algorithm

- Construct a birationally equivalent plane curve P from C
- Generate a rational parametrization for P
- Construct a rational surface S containing C.

Automatic Parameterization of Rational Curves and Surfaces IV Algebraic Space Curves ACM Transactions on Graphics, (1989)

Parameterization of algebraic space curves

For algebraic space curves C given as intersection of two algebraic surfaces there exists a birational correspondence between points of C and points of a plane curve P.

The genus of C is same as the genus of P.
Hence C is rational iff $\operatorname{Genus}(P)=0$.
Algorithm

- Construct a birationally equivalent plane curve P from C
- Generate a rational parametrization for P
- Construct a rational surface S containing C.

Automatic Parameterization of Rational Curves and Surfaces IV Algebraic Space Curves ACM Transactions on Graphics, (1989)

Parameterization of algebraic space curves

For algebraic space curves C given as intersection of two algebraic surfaces there exists a birational correspondence between points of C and points of a plane curve P.

The genus of C is same as the genus of P.
Hence C is rational iff $\operatorname{Genus}(P)=0$.
Algorithm

- Construct a birationally equivalent plane curve P from C
- Generate a rational parametrization for P
- Construct a rational surface S containing C.

Automatic Parameterization of Rational Curves and Surfaces IV Algebraic Space Curves ACM Transactions on Graphics, (1989)

Parameterization of algebraic space curves

For algebraic space curves C given as intersection of two algebraic surfaces there exists a birational correspondence between points of C and points of a plane curve P.
The genus of C is same as the genus of P.
Hence C is rational iff $\operatorname{Genus}(P)=0$.
Algorithm :

- Construct a birationally equivalent plane curve P from C
- Generate a rational parametrization for P
- Construct a rational surface S containing C.

Automatic Parameterization of Rational Curves and Surfaces IV : Algebraic Space Curves ACM Transactions on Graphics, (1989)

Parameterization of algebraic space curves

Given: Irreducible space curve $C=(f=0 \cap g=0)$, and f, g not tangent along C.
Compute: Project C to an irreducible plane curve P, properly, to yield a birational map from P to C.

(1) Space curve C as intersection of two axis aligned cylinders

$$
\begin{equation*}
C:\left(f=z^{2}+x^{2}-1 \cap g=z^{2}+y^{2}-1\right) \tag{8}
\end{equation*}
$$

(2) Badly chosen projection direction results in P not birationally related to C

$$
P:\left(x^{2}+z^{2}-1\right)^{2}=0
$$

(3) Birationally equivalent plane curve P with properly chosen projection direction

$$
P:\left(8 y_{1}^{2}-4 x_{1} y_{1}+5 x_{1}^{2}-9\right)\left(8 y_{1}^{2}+12 x_{1} y_{1}+5 x_{1}^{2}-1\right)=0
$$

Parameterization of algebraic space curves

Projection can be computed using Elimination Theory. One way to eliminate a variable from two polynomials, is via Sylvester's polynomial resultant:

Given two polynomials

$$
\begin{array}{r}
f(x)=a_{m} x^{m}+a_{m-1} x^{m-1} \ldots a_{0} \\
g(x)=b_{n} x^{n}+b_{n-1} x^{n-1} \ldots b_{0} \tag{12}
\end{array}
$$

The Sylvester resultant matrix is constructed by rows of coefficients of f, shifted, followed by rows of coefficients of g, shifted.
To project along the z axis, write both equation as just polynomials in z, construct the matrix of coefficients in x, y, and the Sylvester resultant (projection) is the determinant.

Of course, the z axis may not be a proper projection direction. Hence first choose a valid transformation, to enable the projection to yield a rational (inverse) map.

Parameterization of algebraic space curves

Projection can be computed using Elimination Theory. One way to eliminate a variable from two polynomials, is via Sylvester's polynomial resultant:

Given two polynomials

$$
\begin{array}{r}
f(x)=a_{m} x^{m}+a_{m-1} x^{m-1} \ldots a_{0} \\
g(x)=b_{n} x^{n}+b_{n-1} x^{n-1} \ldots b_{0} \tag{12}
\end{array}
$$

The Sylvester resultant matrix is constructed by rows of coefficients of f, shifted, followed by rows of coefficients of g, shifted.
To project along the z axis, write both equation as just polynomials in z, construct the matrix of coefficients in x, y, and the Sylvester resultant (projection) is the determinant.

Of course, the z axis may not be a proper projection direction. Hence first
choose a valid transformation, to enable the projection to yield a rational

Parameterization of algebraic space curves

Projection can be computed using Elimination Theory. One way to eliminate a variable from two polynomials, is via Sylvester's polynomial resultant:

Given two polynomials

$$
\begin{array}{r}
f(x)=a_{m} x^{m}+a_{m-1} x^{m-1} \ldots a_{0} \\
g(x)=b_{n} x^{n}+b_{n-1} x^{n-1} \ldots b_{0} \tag{12}
\end{array}
$$

The Sylvester resultant matrix is constructed by rows of coefficients of f, shifted, followed by rows of coefficients of g, shifted.
To project along the z axis, write both equation as just polynomials in z, construct the matrix of coefficients in x, y, and the Sylvester resultant (projection) is the determinant.
Of course, the z axis may not be a proper projection direction. Hence first choose a valid transformation, to enable the projection to yield a rational (inverse) map.

Parameterization of algebraic space curves

Choosing a valid projection direction:
Consider a general linear transformation to apply to f, g :

$$
\begin{equation*}
x=a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}, y=a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}, z=a_{3} x_{1}+b_{3} y_{1}+c_{3} z_{1} \tag{13}
\end{equation*}
$$

On substituting, we obtain the transformed equations

$$
f_{1}\left(x_{1}, y_{1}, z_{1}\right)=0, g_{1}\left(x_{1}, y_{1}, z_{1}\right)=0
$$

Compute Resultant $h\left(x_{1}, y_{1}\right)$ eliminating z_{1} to yield the projected plane curve $P: h=0$.
To obtain a birational inverse map $z_{1}=H\left(x_{1}, y_{1}\right)$, which exists when the projection degree is 1 , we need to satisfy:

- Determinant of linear transformation to be nonzero
- Equation h of projected plane curve P is not a power of an irreducible polynomial.

A random choice of coefficients for the linear transformation, works with high probability.

Parameterization of algebraic space curves

Choosing a valid projection direction:
Consider a general linear transformation to apply to f, g :

$$
\begin{equation*}
x=a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}, y=a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}, z=a_{3} x_{1}+b_{3} y_{1}+c_{3} z_{1} \tag{13}
\end{equation*}
$$

On substituting, we obtain the transformed equations

$$
f_{1}\left(x_{1}, y_{1}, z_{1}\right)=0, g_{1}\left(x_{1}, y_{1}, z_{1}\right)=0
$$

Compute Resultant $h\left(x_{1}, y_{1}\right)$ eliminating z_{1} to yield the projected plane curve $P: h=0$.
To obtain a birational inverse map $z_{1}=H\left(x_{1}, y_{1}\right)$, which exists when the projection degree is 1 , we need to satisfy:

- Determinant of linear transformation to be nonzero
- Equation h of projected plane curve P is not a power of an irreducible polynomial.

A random choice of coefficients for the linear transformation, works with high probability.

Parameterization of algebraic space curves

Choosing a valid projection direction:
Consider a general linear transformation to apply to f, g :

$$
\begin{equation*}
x=a_{1} x_{1}+b_{1} y_{1}+c_{1} z_{1}, y=a_{2} x_{1}+b_{2} y_{1}+c_{2} z_{1}, z=a_{3} x_{1}+b_{3} y_{1}+c_{3} z_{1} \tag{13}
\end{equation*}
$$

On substituting, we obtain the transformed equations

$$
f_{1}\left(x_{1}, y_{1}, z_{1}\right)=0, g_{1}\left(x_{1}, y_{1}, z_{1}\right)=0
$$

Compute Resultant $h\left(x_{1}, y_{1}\right)$ eliminating z_{1} to yield the projected plane curve $P: h=0$.
To obtain a birational inverse map $z_{1}=H\left(x_{1}, y_{1}\right)$, which exists when the projection degree is 1 , we need to satisfy:

- Determinant of linear transformation to be nonzero
- Equation h of projected plane curve P is not a power of an irreducible polynomial.

A random choice of coefficients for the linear transformation, works with high probability.

Concluding remarks

We require surfaces f, g are not tangent along C.
Birational map construction can be used for reducible space curves as well.

Irreducible space curves defined by more than two surfaces are difficult to handle outside of ideal-theoretic methods.

Concluding remarks

We require surfaces f, g are not tangent along C.
Birational map construction can be used for reducible space curves as well.

Irreducible space curves defined by more than two surfaces are difficult to handle outside of ideal-theoretic methods.

Concluding remarks

We require surfaces f, g are not tangent along C.
Birational map construction can be used for reducible space curves as well.

Irreducible space curves defined by more than two surfaces are difficult to handle outside of ideal-theoretic methods.

Algebraic surfaces

- An algebraic surface in implicit form is a hyperelement of dimension 2 in R^{3} :

$$
\begin{equation*}
f(x, y, z)=0 \tag{14}
\end{equation*}
$$

- An algebraic surface in parametric form is an algebraic variety of dimension 2 in R^{5}. It is also a rational mapping from R^{2} into R^{3}.

$$
\begin{align*}
& x=f_{1}(s, t) / f_{4}(s, t) \tag{15}\\
& y=f_{2}(s, t) / f_{4}(s, t) \tag{16}\\
& z=f_{3}(s, t) / f_{4}(s, t) \tag{17}
\end{align*}
$$

Example Algebraic Surfaces

Cubic Algebraic Surfaces: Historical Gossip Column!

[1849 Cayley, Salmon] Exactly 27 straight lines on a general cubic surface
[1856 Steiner] The nine straight lines in which the surfaces of two arbitrarily given trihedra intersect each other determine together with one given point, a cubic surface.
[1858,1863 Schlafli] classifies cubic surfaces into 23 species with respect to the number of real straight lines and tri-tangent planes on them
[1866 Cremona] establishes connections between the 27 lines on a cubic surface and Pascals Mystic hexagram:- If a hexagon is inscribed in any conic section, then the points where opposite sides meet are collinear.

三

45 Tri-Tangents on Smooth Cubic Surfaces

Why are the 27 lines useful to geometric modeling ?

Given two skew lines on the cubic surface $f(x, y, z)=0$

$$
I_{1}(u)=\left[\begin{array}{l}
x_{1}(u) \\
y_{1}(u) \\
z_{1}(u)
\end{array}\right] \text { and } I_{2}(u)=\left[\begin{array}{l}
x_{2}(u) \\
y_{2}(u) \\
z_{2}(u)
\end{array}\right]
$$

One can derive the following surface parameterization :

$$
P(u, v)=\left[\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right]=\frac{a l_{1}+b l_{2}}{a+b}=\frac{a(u, v) l_{1}(u)+b(u, v) l_{2}(v)}{a(u, v)+b(u, v)}
$$

where

$$
\begin{aligned}
& a=a(u, v)=\nabla f\left(I_{2}(v)\right) \cdot\left[I_{1}(u)-I_{2}(v)\right] \\
& b=b(u, v)=\nabla f\left(I_{1}(v)\right) \cdot\left[I_{1}(u)-I_{2}(v)\right]
\end{aligned}
$$

Algorithm for Computing the 27 Lines

$$
f(x, y, z)=\begin{gathered}
A x^{3}+B y^{3}+C z 63+D x 62 y+E x^{2} z+ \\
F x y^{2}+G y^{2} z+H x z^{2}+l y z^{2}+J x y z+k x^{2}+ \\
L y^{2}+M z^{2}+N x y+O x z+P y z+Q x+R y+S z+T=0
\end{gathered}
$$

Through intersection with tangent planes, one can reduce this to

$$
\hat{f}_{2}(\hat{x}, \hat{y})+\hat{g}_{3}(\hat{x}, \hat{y})=0
$$

With a generic parameterization of the singular tangent cubics, one derives a polynomial $P_{81}(t)$ of degree 81.

Properties of the polynomial $P_{81}(t)$

Theorem The polynomial $P_{81}(t)$ obtained by taking the resultant of \hat{f}_{2} and \hat{g}_{3} factors as $P_{81}(t)=P_{27}(t)\left[P_{3}(t)\right]^{6}\left[P_{6}(t)\right]^{6}$, where $P_{3}(t)$, and $P_{6}(t)$ are degree 3 and 6 respectively.

Theorem Simple real roots of $P_{27}(t)=0$ correspond to real lines on the surface.

Proof and algorithm details available from
Rational parameterizations of non singular cubic surfaces ACM Transactions on Graphics, (1998)

Some Examples

\square
三

Parameterization of algebraic surfaces

Theorem An algebraic surface S is rational iff the Arithmetic Genus $(S)=$ Second Pluri-Genus $(S)=0$.

The proof is attributed to Castelnuovo. See, Zariski's Algebraic Surfaces Ergeb. Math. , Springer, (1935)

Several examples of well known rational algebraic surfaces include: Cubic, Del Pezzo, Hirzebruch, Veronese, Steiner, etc.

What if the Algebraic Curve and/or Surface is Not Rational?

Answer: Construct Rational Spline Approximations for a piecewise parameterization!

Rational Spline Approximation of Algebraic Plane Curves

Input: Given a real algebraic curve \mathbf{C} of degree d, a bounding box B, a finite precision real number ϵ and integers m, n with $m+n \leq d$. The curve \mathbf{C} within the bounding box B is denoted as \mathbf{C}_{B}.

Output: A C^{-1}, C^{0} or C^{1} continuous piecewise rational ϵ-approximation of all portions of \mathbf{C} within the given bounding box B, with each rational function $\frac{P_{i}}{Q_{i}}$ of degree $P_{i} \leq m$ and degree $Q_{i} \leq n$ and $m+n \leq d$.

Piecewise Rational Approximation of Real Algebraic Curves Journal of Computational Mathematics, (1997)

Rational Spline Approximation of $\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0$ in Ganith

2. Algorithm

- Compute the intersections, the singular points S and the x-extreme points T of \mathbf{C}_{B}.
- Compute Newton factorization (via Hensel lifting) for each $\left(x_{i}, y_{i}\right)$ in S and obtain a power series representation for each analytic branch of \mathbf{C} at $\left(x_{i}, y_{i}\right)$ given by

2. Algorithm

- Compute the intersections, the singular points S and the x-extreme points T of \mathbf{C}_{B}.
- Compute Newton factorization (via Hensel lifting) for each $\left(x_{i}, y_{i}\right)$ in S and obtain a power series representation for each analytic branch of \mathbf{C} at $\left(x_{i}, y_{i}\right)$ given by

$$
\left\{\begin{array}{l}
X(s)=x_{i}+s^{k_{i}} \tag{18}\\
Y(s)=\sum_{j=0}^{\infty} c_{j}^{(i)} s^{j}, \quad c_{0}^{(i)}=y_{i}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
Y(s)=y_{i}+s^{k_{i}} \tag{19}\\
X(s)=\sum_{j=0}^{\infty} \tilde{c}_{j}^{(i)} s^{j}, \quad \tilde{c}_{0}^{(i)}=x_{i}
\end{array}\right.
$$

3. Algorithm Contd.

- Compute $\frac{P_{m n}(s)}{Q_{m}(s)}$ the (m, n) rational Padé approximation of $Y(s)$.
- Compute $\beta>0$ a real number, corresponding to points $\left(\tilde{x}_{i}=X(\beta), \tilde{y}_{i}=Y(\beta)\right)$ and $\left(\hat{x}_{i}=X(-\beta), \hat{y}_{i}=Y(-\beta)\right)$ on the analytic branch of the original curve \mathbf{C}, such that $\frac{P_{m n}(s)}{Q_{m n}(s)}$ is convergent for $s \in[-\beta, \beta]$.

3. Algorithm Contd.

- Compute $\frac{P_{m}(s)}{Q_{m n}(s)}$ the (m, n) rational Padé approximation of $Y(s)$.
- Compute $\beta>0$ a real number, corresponding to points $\left(\tilde{x}_{i}=X(\beta), \tilde{y}_{i}=Y(\beta)\right)$ and $\left(\hat{x}_{i}=X(-\beta), \hat{y}_{i}=Y(-\beta)\right)$ on the analytic branch of the original curve \mathbf{C}, such that $\frac{P_{m m}(s)}{Q_{m n}(s)}$ is convergent for $\boldsymbol{s} \in[-\beta, \beta]$.

4. Algorithm Contd.

- Modify $P_{\tilde{\tilde{P}}}(s) / Q_{m n}(s)$ to $\tilde{P}_{m n}(s) / \tilde{Q}_{m n}(s)$ such that $\tilde{P}_{m n}(s) / \tilde{Q}_{m n}(s)$ is C^{1} continuous approximation of $Y(s)$ on $[0, \beta]$,
- Denote the set of all the points $\left(\tilde{x}_{i}, \tilde{y}_{i}\right),\left(\hat{x}_{i}, \hat{y}_{i}\right)$, the set T and the boundary points of \mathbf{C}_{B} by V. Starting from each (simple) point $\left(x_{i}, y_{i}\right)$ in V, C_{B} is traced out by the Taylor approximation

三

4. Algorithm Contd.

- Modify $P_{\tilde{\tilde{P}}}(s) / Q_{m n}(s)$ to $\tilde{P}_{m n}(s) / \tilde{Q}_{m n}(s)$ such that $\tilde{P}_{m n}(s) / \tilde{Q}_{m n}(s)$ is C^{1} continuous approximation of $Y(s)$ on $[0, \beta]$,
- Denote the set of all the points $\left(\tilde{x}_{i}, \tilde{y}_{i}\right),\left(\hat{x}_{i}, \hat{y}_{i}\right)$, the set T and the boundary points of \mathbf{C}_{B} by V. Starting from each (simple) point $\left(x_{i}, y_{i}\right)$ in V, \mathbf{C}_{B} is traced out by the Taylor approximation

$$
\begin{aligned}
& X(s)=x_{i}+s \\
& Y(s)=\sum_{j=0}^{\infty} c_{j}^{(i)} s^{j}, \quad c_{0}^{(i)}=y_{i}
\end{aligned}
$$

5. Results

Figure: $\left(x^{2}+y^{2}\right)^{3}-4 x^{2} y^{2}=0$

Rational Spline Approximation of Space Curves

Given a real intersection space curve SC which is either the intersection of two implicitly defined surfaces
$f_{1}(x, y, z)=0, f_{2}(x, y, z)=0$, or, the intersection of two parametric surfaces defined by

$$
\begin{aligned}
& X_{1}\left(u_{1}, v_{1}\right)=\left[G_{11}\left(u_{1}, v_{1}\right) G_{21}\left(u_{1}, v_{1}\right), G_{31}\left(u, v_{1}\right)\right]^{T} \\
& X_{2}\left(u_{2}, v_{2}\right)=\left[G_{12}\left(u_{2}, v_{2}\right) G_{22}\left(u_{2}, v_{2}\right), G_{32}\left(u_{2}, v_{2}\right)\right]^{T}
\end{aligned}
$$

within a bounding box B and an error bound $\epsilon>0$, a continuity index k, construct a C^{k} (or G^{k}) continuous piecewise parametric rational ϵ-approximation of all portions of $S C$ within B.

NURBS Approximation of Surface/Surface Intersection Curves Advances in Computational Mathematics, (1994)

Results from Ganith - Intersection of Two implicit surfaces

Surfaces: $x^{4}+y^{4}+z=0$ and $y^{2}+z=0$

Results from Ganith - Intersection of Implicit and Parametric Surfaces

Surfaces: $x^{2}+z^{2}+2 z=0$ and $x=\frac{s+s t^{2}}{1+t^{2}}, y=\frac{2-2 t^{2}}{1+t^{2}}, z=\frac{4 t-2-2 t^{2}}{1+t^{2}}$

三

Rational Spline Approximation of Algebraic Surfaces

Given an implicit surface defined by a function $f(x, y, z)=0$ and bounding box, create a piecewise rational spline approximation of the surface within the bounding box.

Spline Approximations of Real Algebraic Surfaces Journal of Symbolic Computation, Special Isssue on Parametric Algebraic Curves and Applications, (1997)

Results from Ganith

Cartan Surface: $f=x^{2}-y * z^{2}=0$ has a singular point at ($0,0,0$) and a singular line ($x=0, z=0$).

Results from Ganith

Patch of a Steiner Surface:

$f=x^{2} * y^{2}+y^{2} * z^{2}+z^{2} * x^{2}-4 * x * y * z=0$ has a singular curve along x-axis, y-axis, z-axis and a triple point at the origin.

Lower Degree Spline Approximation of Rational Parametric Surfaces

For a rational parametric surface :

$$
x(s, t)=\frac{X(s, t)}{W(s, t)}, y(s, t)=\frac{Y(s, t)}{W(s, t)}, z(s, t)=\frac{Z(s, t)}{W(s, t)}
$$

Constructing lower degree rational spline approximations require solutions to sub-problems:
(1) Domain poles
(2) Domain base points
(3) Surface singularities

4 Complex parameter values
(5) Infinite parameter values

Triangulation and Display of Arbitrary Rational Parametric Surfaces, Proceedings: IEEE Visualization '94 Conference Finite Representations of Real Parametric Curves and Surfaces, Intt Journal of Computational Geometry and Applications, (1995)

Infinite parameter range

Consider the unit sphere:
implicit form: $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
parametric form:

$$
\begin{array}{r}
x=2 s /\left(1+s^{2}+t^{2}\right) \\
y=2^{t} /\left(1+s^{2}+t^{2}\right) \\
z=1-s^{2}-t^{2} /\left(1+s^{2}+t^{2}\right) \tag{22}
\end{array}
$$

The point $(0,0,-1)$ can only be reached when both s and t tend to infinity.

三

Complex parameter values

We may need complex values to get real points

Consider the rational cubic curve:
implicit form: $f(x, y)=x^{3}+x^{2}+y^{2}=0$
parametric form: $x(s)=-s^{2}+1, y(s)=-s\left(s^{2}+1\right)$
The origin can only be reached with $s=\sqrt{-1}$.

Poles

The denominator polynomial $f_{4}(s, t)$ may be 0 , yielding a polynomial pole curve

Consider a hyperboloid of 2 sheets: implicit form:
$f(x, y, z)=z^{2}+y z+x z-y^{2}-x y-x^{2}-1=0$
parametric form:

$$
\begin{align*}
& x(s, t)=4 s /\left(5 t^{2}+6 s t+5 s^{2}-1\right) \tag{23}\\
& y(s, t)=4 t /\left(5 t^{2}+6 s t+5 s^{2}-1\right) \tag{24}\\
& z(s, t)=\left(5 t^{2}+6 s t-2 t+5 s^{2}-2 s+1\right) /\left(5 t^{2}+6 s t+5 s^{2}-1\right) \tag{25}
\end{align*}
$$

The problem arises from the polynomial pole curve $5 t^{2}+6 s t-2 t+5 s^{2}-2 s+1=0$ in the parameter domain.

Base points

All the polynomials may equal 0 for some values of s and t, thus causing curves (seam curves) to be missing from the parametric surface
Hyperboloid of 1 sheet with seam curve gaps caused by two base points :

Handling Base points

THEOREM : Let (a, b) be a base point of multiplicity q. Then for any $m \in R$, the image of a domain point approaching (a, b) along a line of slope m is given by $(X(m), Y(m), Z(m) W(m)=$

$$
\sum_{i=0}^{q}\left(\frac{\partial^{q} X}{\partial s^{q-i} \partial t^{i}}(a, b)\right) m^{i} \ldots \sum_{i=0}^{q}\left(\frac{\partial^{q} X}{\partial s^{q-i} \partial t^{i}}(a, b)\right) m^{i}
$$

COROLLARY: If the curves $X(s, t)=0, \ldots, W(s, t)=0$ share t tangent lines at (a, b), then the seam curve $(X(m), Y(m), Z(m), W(m))$ has degree $q-t$. In particular, if $X(s, t)=0$ have identical tangents at (a, b), then for all $m \in R$ the coordinates $(X(m), \ldots, W(m))$ represent a single point.

Parametric surfaces with a point, curve singularities

A Cubic Rational Surface:

The Steiner Rational Surface:

Algebraic Surface Blending, Joining, Least Squares Spline Approximations

Input: A collection of points, curves, derivative jets (scattered data) in 3D.

Output: A low degree, algebraic surface fit through the scattered set of points, curves, derivative jets, with prescribed higher order interpolation and least-squares approximation.

The mathematical model for this problem is a constrained minimization problem of the form
minimize $\quad \mathbf{x}^{\top} \mathbf{M}_{\mathrm{A}}{ }^{\top} \mathrm{M}_{\mathrm{A}} \mathbf{X} \quad$ subject to $\mathrm{M}_{\mathrm{I}} \mathbf{x}=\mathbf{0}, \mathrm{x}^{\top} \mathbf{x}=1$,
M_{I} and M_{A} are interpolation and least-square approximation matrices, and \mathbf{x} is a vector containing coefficients of an algebraic surface.

三

Algebraic Surface Blending, Joining, Least Squares Spline Approximations

Input: A collection of points, curves, derivative jets (scattered data) in 3D.

Output: A low degree, algebraic surface fit through the scattered set of points, curves, derivative jets, with prescribed higher order interpolation and least-squares approximation.

The mathematical model for this problem is a constrained minimization problem of the form :
minimize $\quad \mathbf{x}^{\top} \mathbf{M}_{\mathbf{A}}{ }^{\top} \mathbf{M}_{\mathbf{A}} \mathbf{x} \quad$ subject to $\mathbf{M}_{\mathbf{I}} \mathbf{x}=\mathbf{0}, \mathbf{x}^{\top} \mathbf{x}=1$,
$\mathbf{M}_{\mathbf{I}}$ and $\mathbf{M}_{\mathbf{A}}$ are interpolation and least-square approximation matrices, and \mathbf{x} is a vector containing coefficients of an algebraic surface.

Theoretical Basis - I

Definition

Two algebraic surfaces $f(x, y, z)=0$ and $g(x, y, z)=0$ meet with C^{k} rescaling continuity at a point p or along an irreducible algebraic curve C if and only if there exists two polynomials $a(x, y, z)$ and $b(x, y, z)$, not identically zero at p or along C, such that all derivatives of $a f-b g$ up to order k vanish at p or along C.

Theoretical Basis - II

Theorem

Let $g(x, y, z)$ and $h(x, y, z)$ be distinct, irreducible polynomials. If the surfaces $g(x, y, z)=0$ and $h(x, y, z)=0$ intersect transversally in a single irreducible curve C, then any algebraic surface $f(x, y, z)=0$ that meets $g(x, y, z)=0$ with C^{k} rescaling continuity along C must be of the form $f(x, y, z)=\alpha(x, y, z) g(x, y, z)+\beta(x, y, z) h^{k+1}(x, y, z)$. If $g(x, y, z)=0$ and $h(x, y, z)=0$ share no common components at infinity. Furthermore, the degree of $\alpha(x, y, z) g(x, y, z) \leq$ degree of $f(x, y, z)$ and the degree of $\beta(x, y, z) h^{k+1}(x, y, z) \leq$ degree of $f(x, y, z)$.

Quartic Joining Surfaces

Figure: C^{1} Interpolation at the Joins and Least-Squares Approximation in the Middle

Piecewise C^{1} Cubic Fit

Figure: C^{1} Cubic Rational Algebraic Spline

So what are Algebraic Splines, again?

(1) The splines are variously called Simplex, Box, Polyhedral depending on the support of the polynomial pieces.
(2) The splines also can variously use the B-basis (B stands for Basis) or the BB-basis (BB stands for Bernstein-Bezier), or the C-basis (C for Chebyshev), etc. depending on the choice of polynomial basis
(3) B-Splines (E.g. UBs or NUBs) or B-patches or Rational B-splines (e.g. NURBs) or T-Splines or X-splines etc. are just several examples of polynomial splines which are rational.

Brief History of Algebraic Splines

(1) A-Splines:

- T-PACs, Cubics [Sederberg('98),Patterson-Paluzny('99)]
- C^{k} A-splines within triangles [Bajaj,Xu('99)]
- Regular A-splines over rectangular domains [Xu,Bajaj ('01)]
- A-splines in Data Fitting [Bajaj,Xu('03)]
(2) A-Patches:
- C^{1} piecewise quadric patches [Dahmen ('89)]
- Clough-Tocher split for C^{1} cubic patches [Guo ('91]
- Single valued cubic C ${ }^{1}$ A-patches [Bajaj, Chen, Xu ('95)]
- Quintic C^{2} A-patches [Bajaj, Xu ('97)]
- Rational C^{1} A-patches [Xu, Bajaj ('01)]
- C ${ }^{1}$ Prism A-patches and shell A-patches [Bajaj, Xu ('02,'03)]

C^{k} Triangular A-Splines

An A-spline element of degree d over the triangle $\left[p^{1} p^{2} p^{3}\right]$ is defined

4 \square 4 鸟

C^{1} Cubic Triangular A-Spline

Rational Parametric Form of A-Splines

- A-Splines: Local Interpolation and Approximation Using G^{k} Continuous Piecewise Real Algebraic Curves Computer Aided Geometric Design, (1999)

C^{k} A-Patches

A-Patches are surface finite elements.

 A-Patch element of degree d over the tetrahedron $p_{1}, p_{2}, p_{3}, p_{4}$ is defined by

CS384R-Fall2007

Cubic A-patches on Tetrahedral Domains

- C^{1} Modeling with Cubic A-patches ACM Transactions on Graphics, 1995
- C^{1} Modeling with A-patches from Rational Trivariate Functions Computer Aided Geometric Design, (2001)

Prism C^{1} A-patches

- Low degree algebraic surface finite element with dual implicit and rational parametric representations.
- The A-patch element is defined within a prism scaffold. For each triangle $v_{i} v_{j} v_{k}$ of a triangulation of the molecular surface, let

$$
v_{l}(\lambda)=v_{l}+\lambda n_{l}, \quad l=i, j, k
$$

Define the prism

$$
D_{i j k}:=\left\{p: p=b_{1} v_{i}(\lambda)+b_{2} v_{j}(\lambda)+b_{3} v_{k}(\lambda), \lambda \in l_{i j k}\right\}
$$

where $\left(b_{1}, b_{2}, b_{3}\right)$ are the barycentric coordinates of points in $v_{i} v_{j} v_{k}$.

Can we convert between Algebraic Splines and Parametric Splines?

Figure: C^{1} Rational Algebraic Splines

Answer: Since the algebraic plane/space curve and/or algebraic suirface in neneral are not rational we need to constriset ratinnal parametric spline aporoximations. NURBs Approximation of A-splines and A-patches International

三

