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Lecture 2b: Geometric Modeling and Visualization

BEM/FEM Domain Models
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Linear Interpolation on a line segment

    p0          p        p1

The Barycentric coordinates α  = (α0 α1) for any point p on line
segment <p0 p1>, are given by
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  which yields   p = α0 p0 + α1 p1

  and                               fp = α0 f0 + α1 f1

ff1f0 f
p



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   September  2006

Linear interpolation over a triangle

p0

p1 p        p2

For a triangle p0,p1,p2, the Barycentric coordinates
α  = (α0 α1 α2) for point p,
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Non-Linear Algebraic Curve and Surface Finite
Elements ?
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The conic curve interpolant is the zero of the bivariate quadratic
polynomial interpolant over the triangle
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A-spline segment over BB basis
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Regular A-spline Segments

If B0(s), B1(s), … has one sign
change, then the curve is

(a)   D1 - regular curve.

(b)   D2 - regular curve.

(c)   D3 - regular curve.

(d)   D4 - regular curve.

For a given discriminating family D(R, R1,
R2), let f(x, y) be a bivariate polynomial .
If the curve f(x, y) = 0 intersects with
each  curve in D(R, R1, R2) only once in
the interior of R,  we  say  the  curve f = 0
is regular(or A-spline segment) with
respect to D(R, R1, R2).
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Examples of Discriminating Curve Families
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Constructing Scaffolds



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   September  2006

Input:

G1 / D4 curves:
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Spline Surfaces of Revolution
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Lofting III : Non-Linear Boundary Elements

Input contours  G2 / D4 curves
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Linear interpolant over a tetrahedron

Linear Interpolation within a
• Tetrahedron (p0,p1,p2,p3)

 α  = αi  are the barycentric coordinates of p
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Other 3D Finite Elements (contd)

• Unit Prism (p1,p2,p3,p4,p5,p6)
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Note: nonlinear
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Other 3D Finite elements

• Unit Pyramid (p0,p1,p2,p3,p4)

     p0
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Other 3D Finite Elements

• Unit Cube (p1,p2,p3,p4,p5,p6,p7,p8)
– Tensor in all 3 dimensions
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Topology of Zero-Sets of a Tri-linear Function
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Non-linear finite elements-3d

s Non linear
Transformation
of mesh
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•Irregular prism
–Irregular prisms may be used to represent data.
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Hermite interpolation

            f0’                               f1’

            f0                                                 f1

C1 Interpolant

f(t) = f 0H
3
0(t) + f 00H

3
1(t) + f 1H

3
2(t) + f 01H

3
3(t)

0 1



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   September  2006

• Define functions and gradients on the edges
of a prism

• Define functions and gradients on the faces of
a prism

• Define functions on a volume

• Blending

 Incremental Basis Construction
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Hermite Interpolant on Prism Edges
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Hermite Interpolation on Prism Faces
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•The function F is C1 over ∑   and
interpolates  C1 (Hermite) data

•The interpolant has quadratic  precision

Shell Elements (contd)
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Side Vertex Interpolation
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C^1 Shell Elements
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C^1 Quad Shell Surfaces can be built in a similar way, by
defining functions over a cube

C^1  Shell Elements within a Cube
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Shell Finite Element Models
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Also see my algebraic 
curve/surface spline 
lectures 7 and 8 from 

http://www.cs.utexas.edu/~bajaj/graphics07/cs354/syllabus.html


