Lecture 2b: Geometric Modeling and Visualization

BEM/FEM Domain Models

Chandrajit Bajaj

http://www.cs.utexas.edu/~bajaj

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Linear Interpolation on a line segment

$$\alpha = \left(\frac{dist(p, p_1)}{dist(p_0, p_1)}, \frac{dist(p_0, p)}{dist(p_0, p_1)}\right)$$

which yields $p = \alpha_0 p_0 + \alpha_1 p_1$

$$\mathbf{f_p} = \mathbf{\alpha_0} \ \mathbf{f_0} + \mathbf{\alpha_1} \ \mathbf{f_1}$$

and

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Linear interpolation over a triangle

$$\alpha = \left(\frac{area(p, p_1, p_2)}{area(p_0, p_1, p_2)}, \frac{area(p_0, p, p_2)}{area(p_0, p_1, p_2)}, \frac{area(p_0, p_1, p)}{area(p_0, p_1, p_2)}\right)$$

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Non-Linear Algebraic Curve and Surface Finite Elements ?

The conic curve interpolant is the zero of the bivariate quadratic polynomial interpolant over the triangle

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

A-spline segment over BB basis

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Regular A-spline Segments

For a given discriminating family D(R, R₁, R₂), let f(x, y) be a bivariate polynomial . If the curve f(x, y) = 0 intersects with each curve in D(R, R₁, R₂) only once in the interior of R, we say the curve f = 0 is regular(or A-spline segment) with respect to D(R, R₁, R₂). If $B_0(s)$, $B_1(s)$, ... has one sign change, then the curve is

- (a) D_1 regular curve.
- (b) D_2 regular curve.
- (c) D_3 regular curve.
- (d) D_4 regular curve.

Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Examples of Discriminating Curve Families

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Constructing Scaffolds

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Spline Surfaces of Revolution

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Lofting III : Non-Linear Boundary Elements

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Linear interpolant over a tetrahedron

Linear Interpolation within a

• Tetrahedron (p_0, p_1, p_2, p_3)

 $\alpha = \alpha_i$ are the barycentric coordinates of p

Other 3D Finite Elements (contd)

Other 3D Finite elements

• Unit Pyramid $(p_0, p_1, p_2, p_3, p_4)$ $p = up_0 + (1 - u)(t(sp_1 + (1 - s)p_2) + (1 - t)(sp_3 + (1 - s)p_4))$ **p**₀ Note: nonlinear **p**₂ p_1 **p**₄ Center for Computational Visualization Institute of Computational and Engineering Sciences September 2006 **Department of Computer Sciences** University of Texas at Austin

Other 3D Finite Elements

- Unit Cube (p₁,p₂,p₃,p₄,p₅,p₆,p₇,p₈)
 - Tensor in all 3 dimensions

$$p = u(t(sp_1 + (1 - s)p_2) + (1 - t)(sp_3 + (1 - s)p_4)) + (1 - t)(sp_3 + (1 - s)p_4)) + (1 - t)(sp_3 + (1 - s)p_4))$$

Trilinear interpolant

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Topology of Zero-Sets of a Tri-linear Function

6.2

3.2

4.1.1

0

7.3

7.4.1

4.1.2

б.1.1

6.1.2

1

7.1

7.2

7.4.2

8

13.2

13.4

11

Non-linear finite elements-3d

Irregular prism

-Irregular prisms may be used to represent data.

C¹ Interpolant

Hermite interpolation

$f(t) = f_0 H_0^3(t) + f_0^0 H_1^3(t) + f_1 H_2^3(t) + f_1^0 H_3^3(t)$

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Incremental Basis Construction

- Define functions and gradients on the edges of a prism
- Define functions and gradients on the faces of a prism
- Define functions on a volume
- Blending

Hermite Interpolant on Prism Edges

Hermite Interpolation on Prism Faces

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Shell Elements (contd)

• The function F is C^1 over \sum and interpolates C^1 (Hermite) data

• The interpolant has quadratic precision

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Side Vertex Interpolation

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

C^1 Shell Elements

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

C^1 Shell Elements within a Cube

C¹ Quad Shell Surfaces can be built in a similar way, by defining functions over a cube

Shell Finite Element Models

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Also see my algebraic curve/surface spline lectures 7 and 8 from

http://www.cs.utexas.edu/~bajaj/graphics07/cs354/syllabus.html

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin