Lecture 2b: Geometric Modeling and Visualization

BEM/FEM Domain Models

Chandrajit Bajaj
http://www.cs.utexas.edu/~bajaj

Linear Interpolation on a line segment

The Barycentric coordinates $\alpha=\left(\alpha_{0} \alpha_{1}\right)$ for any point p on line segment $<p_{0} p_{1}>$, are given by

$$
\alpha=\left(\frac{\operatorname{dist}\left(p, p_{1}\right)}{\operatorname{dist}\left(p_{0}, p_{1}\right)}, \frac{\operatorname{dist}\left(p_{0}, p\right)}{\operatorname{dist}\left(p_{0}, p_{1}\right)}\right)
$$

```
which yields p= a p p + \alpha p p 
```

and

$$
f_{p}=\alpha_{0} f_{0}+\alpha_{1} f_{1}
$$

Linear interpolation over a triangle

For a triangle p_{0}, p_{1}, p_{2}, the Barycentric coordinates $\alpha=\left(\alpha_{0} \alpha_{1} \alpha_{2}\right)$ for point p,

$$
\alpha=\left(\frac{\operatorname{area}\left(p, p_{1}, p_{2}\right)}{\operatorname{area}\left(p_{0}, p_{1}, p_{2}\right)}, \frac{\operatorname{area}\left(p_{0}, p, p_{2}\right)}{\operatorname{area}\left(p_{0}, p_{1}, p_{2}\right)}, \frac{\operatorname{area}\left(p_{0}, p_{1}, p\right)}{\operatorname{area}\left(p_{0}, p_{1}, p_{2}\right)}\right)
$$

Center for Computational Visualization

Non-Linear Algebraic Curve and Surface Finite Elements?

The conic curve interpolant is the zero of the bivariate quadratic polynomial interpolant over the triangle

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

A-spline segment over $B B$ basis

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Regular A-spline Segments

(a)

(b)

(c)

(d)

For a given discriminating family $D\left(R, R_{1}\right.$, R_{2}), let $f(x, y)$ be a bivariate polynomial . If the curve $f(x, y)=0$ intersects with each curve in $D\left(R, R_{1}, R_{2}\right)$ only once in the interior of R , we say the curve $\mathrm{f}=0$ is regular(or A-spline segment) with respect to $D\left(R, R_{1}, R_{2}\right)$.

If $\mathrm{B}_{0}(\mathrm{~s}), \mathrm{B}_{1}(\mathrm{~s}), \ldots$ has one sign change, then the curve is
(a) D_{1} - regular curve.
(b) D_{2} - regular curve.
(c) D_{3}-regular curve.
(d) D_{4} - regular curve.

Examples of Discriminating Curve Families

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Constructing Scaffolds

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Spline Surfaces of Revolution

Center tor Computatıonaı Visualızatıon
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Lofting III : Non-Linear Boundary Elements

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Linear interpolant over a tetrahedron

Linear Interpolation within a

- Tetrahedron ($\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}$)
$\alpha=\alpha_{i}$ are the barycentric coordinates of p

$$
p=\sum_{0}^{3} \alpha_{i} p_{i}
$$

$f p=\sum_{0}^{3} \alpha_{i} f p_{i}$

Other 3D Finite Elements (contd)

- Unit Prism $\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}\right)$

$$
p=t\left(\sum_{1}^{3} \alpha_{i} p_{i}\right)+(1-t)\left(\sum_{4}^{6} \alpha_{i-3} p_{i}\right)
$$

```
p
```

Note: nonlinear

Institute of Computational and Engineering Sciences

Other 3D Finite elements

- Unit Pyramid ($\mathrm{p}_{0}, \mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}$)

$$
p=u p_{0}+(1-u)\left(t\left(s p_{1}+(1-s) p_{2}\right)+(1-t)\left(s p_{3}+(1-s) p_{4}\right)\right)
$$

Note:
nonlinear

Center for Computational Visualization

Other 3D Finite Elements

- Unit Cube $\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \mathrm{p}_{4}, \mathrm{p}_{5}, \mathrm{p}_{6}, \mathrm{p}_{7}, \mathrm{p}_{8}\right)$
- Tensor in all 3 dimensions

$$
\begin{aligned}
& p=u\left(t\left(s p_{1}+(1-s) p_{2}\right)+(1-t)\left(s p_{3}+(1-s) p_{4}\right)\right)+ \\
& (1-u)\left(t\left(s p_{5}+(1-s) p_{6}\right)+(1-t)\left(s p_{7}+(1-s) p_{8}\right)\right)
\end{aligned}
$$

Trilinear

Center for Computational Visualization

Topology of Zero-Sets of a Tri-linear Function

0

3.1

3.2

4.1.1

5

4.1.2

6.1 .1

8

12.2

6.1 .2

9

7.1

7.2

10.1.1

13.2

10.1 .2
13.3

10.2

13.4
.
13.1

.

7.4.1

7.4 .2

12.1.1

12.1.2

13.5 .1

13.5 .2

Non-linear finite elements-3d

-Irregular prism

-Irregular prisms may be used to represent data.

C1 Interpolant

Hermite interpolation

$$
\mathrm{f}(\mathrm{t})=\mathrm{foH}_{0}^{3}(\mathrm{t})+\mathrm{f}_{0}^{9} \mathrm{H}_{1}^{3}(\mathrm{t})+\mathrm{f}_{1} \mathrm{H}_{2}^{3}(\mathrm{t})+\mathrm{f}_{1}^{9} \mathrm{H}_{3}^{3}(\mathrm{t})
$$

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Incremental Basis Construction

- Define functions and gradients on the edges of a prism
- Define functions and gradients on the faces of a prism
- Define functions on a volume
- Blending

Center for Computational Visualization

Hermite Interpolant on Prism Edges

Hermite Interpolation on Prism Faces

on faces

Center for Computational Visualization

Shell Elements (contd)

- The function F is C^{1} over \sum and interpolates C^{1} (Hermite) data
- The interpolant has quadratic precision

Center for Computational Visualization

Side Vertex Interpolation

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

C^1 Shell Elements

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

C^1 Shell Elements within a Cube

C^1 Quad Shell Surfaces can be built in a similar way, by defining functions over a cube

Department of Computer Sciences

Shell Finite Element Models

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Also see my algebraic curve/surface spline lectures 7 and 8 from

http://www.cs.utexas.edu/~bajaj/graphics07/cs354/syllabus.html

