Lecture 3:

Geometric and Signal 3D Processing (and some Visualization)

Chandrajit Bajaj

Algorithms \& Tools

> Structure elucidation: filtering, contrast enhancement, segmentation, skeletonization, subunit identification
> Structure Modeling: finite element meshing, spline representations(Aspline,RBF representations) for structural fitting \& complementary docking
> Visualization: multi-dimensional transfer functions, surface and volume texture rendering, wavelet compression, hierarchical representations, cluster based parallelism

TexMol

Sub-nanometer Structure Elucidation from 3D Cryo-EM

Cryo-EM \rightarrow FFT based 3D Reconstruction \rightarrow Anisotropic and Vector Diffusion Filtering \rightarrow Structure Segmentation \rightarrow Quasi-Atomic Modeling \rightarrow Visualization
**Sponsored by NSF-ITR, NIH
Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences
(Collaborators: Wah Chiu,NCMI, Baylor College of Medicine, Andrej Sali, UCSF)

A Structure Determination Pipeline for single particle cryo-EM

Lerlet ior computamorial visualizamur Institute of Computational and Engineering Sciences Department of Computer Sciences

Structure Elucidation for Icosahedral Viruses

Center for Computational Visualization Institute of Computational and Engineering Sciences

Structure Elucidation 1(A)

- Adaptive contrast enhancement
- Bilateral filtering

$$
h(x, \xi)=e^{-\frac{(x-\xi)^{2}}{2 \sigma_{d}^{2}}} \cdot e^{-\frac{(f(x)-f(\xi))^{2}}{2 \sigma_{r}^{2}}}
$$

where σ_{d} and σ_{r} are parameters and $f($.) is the image intensity value.

- Anisotropic diffusion filtering

$$
\partial_{t} \phi-\operatorname{div}\left(a\left(\mid \nabla \phi_{\sigma}\right) \nabla \phi\right)=0
$$

where a stands for the diffusion tensor determined by local curvature estimation. - Anisotropic gradient vector diffusion
C. Bajaj, G. Xu, ACM Transactions on Graphics, (2003),22(1), 4-32.

W. Jiang, M. Baker, Q. Wu, C. Bajaj, W. Chiu, Journal of Structural Biology, 144, 5,(2003),114-122
Z. Yu \& C. Bajaj, Proc. Int'I Conf. Image Processing, 2002. pp. 1001-1004.
Z. Yu \& C. Bajaj, Proc. Int'l Conf. Computer Vision and Pattern Recognition, 2004. 415-420.

Center for Computational Visualization Institute of Computational and Engineering Sciences

Compute Critical Points Using AGVD

O: minimum
(0) \qquad

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Anisotropic Gradient Vector Diffusion (AGVD)

Isotropic Diffusion (Xu et al., 1998)

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}=\mu \nabla^{2} u-\left(u-f_{x}\right)\left(f_{x}^{2}+f_{y}^{2}\right) \\
\frac{\partial v}{\partial t}=\mu \nabla^{2} v-\left(v-f_{y}\right)\left(f_{x}^{2}+f_{y}^{2}\right)
\end{array}\right.
$$

Where:
$(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$ stands for the evolving vector field; μ is a constant;
f is the original image to be diffused;
$\left(f_{x}, f_{y}\right)=(\mathrm{u}(0), \mathrm{v}(0))$.

Anisotropic Diffusion (Yu \& Bajaj
ICPR'02)
$\left\{\begin{array}{l}\frac{\partial u}{\partial t}=\mu \nabla(g(\alpha) \cdot \nabla u)-\left(u-f_{x}\right)\left(f_{x}^{2}+f_{y}^{2}\right) \\ \frac{\partial v}{\partial t}=\mu \nabla(g(\alpha) \cdot \nabla v)-\left(v-f_{y}\right)\left(f_{x}^{2}+f_{y}^{2}\right)\end{array}\right.$

Where

$(\mathrm{u}(\mathrm{t}), \mathrm{v}(\mathrm{t}))$ stands for vector field;
μ is a constant; $\left(f_{x}, f_{y}\right)=(\mathrm{u}(0), \mathrm{v}(0))$.
f is the original image to be diffused;
$g($.$) is the angle between two vectors$

GVD v.s. AGVD

Isotropic diffusion

Anisotropic diffusion

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Structure Elucidation 1(B)

- Multi-seed Fast Marching Method
- Classify map critical points as seeds based on local symmetry.
- Each seed initializes a contour, with its group's membership.
- Contours march simultaneously. Contours with same membership are merged, while contours with different membership stop each other.

玉29

Z. Yu, and C. Bajaj, IEEE Trans.on Image Process, 2005. 144(1-2), pp. 132-143.

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Global and Local Symmetry

- Automatic structure unit identification in a 3D Map

- Two-fold vertices
- Three-fold vertices
- Five-fold vertices

Example: RDV

Symmetry Detection: Correlation Search

$$
C(\theta, \varphi)=\sum_{\vec{r} \in V} f(\vec{r}) f\left(R_{(\theta, \varphi, 2 \pi / 5)} \cdot \vec{r}\right)
$$

- Algorithm: detect 5-fold rotation symmetry
- Compute the scoring function
- For every angular bin B_{j}, compute $\theta_{j}, \varphi_{j}\{$

For every critical point $C_{i}\{$

$$
\begin{aligned}
& \vec{r}_{k}\left(C_{i}, B_{j}\right)=R_{\left(\theta_{j}, \varphi_{j}, 2 k \pi / 5\right)} \cdot C_{i}, \quad k=0,1,2,3,4 \\
& \left.\operatorname{Dev}\left(C_{i}, B_{j}\right)=\frac{1}{5} \sum_{k=0}^{4}\left(f\left(\vec{r}_{k}\right)-\bar{f}\right)\right\} \\
& \left.S F\left(B_{j}\right)=\frac{1}{p} \sum_{i=0}^{p} \operatorname{Dev}\left(C_{i}, B_{j}\right)\right\}
\end{aligned}
$$

- Locate the symmetry axes
- The 12 peaks
- Refine the symmetry axes
- In order to locate a perfect icosahedron (rotate the axes by $0^{0}, 63.43^{0}, 116.57^{0}, 180^{0}$)

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Structure Elucidation Results: RDV (Bakeoff)

surface rendering (outside)
averaged trimer (side)

volume rendering (inside)

volume rendering (asymmetric unit)

averaged trimer (bottom)

segmented monomers

Structure Elucidation 1(C): Secondary Structure Identification

$G_{\sigma} *\left(\begin{array}{lll}I_{x}^{2} & I_{x} I_{y} & I_{x} I_{z} \\ I_{x} I_{y} & I_{y}^{2} & I_{y} I_{z} \\ I_{x} I_{z} & I_{y} I_{z} & I_{z}^{2}\end{array}\right)$

The eigenvectors of the local structure tensor give the principal directions of the local features:

Line structure (alpha-helix)
plane structure (beta-sheet)

$$
\lambda_{2} \approx \lambda_{3} \gg \lambda_{1} \approx 0
$$

$$
\lambda_{1} \gg \lambda_{2} \approx \lambda_{3} \approx 0
$$

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Monomeric Unit of Outer Capsid of RDV

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Monomeric Unit of Inner Capsid of RDV

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences
University of Texas at Austin
September 2007

Structure Elucidation Results: GroEL

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Data courtesy: Dr. Wah Chiu

Segmentation Results: Ribosome (Bakeoff)

70S ribosome from E. coli complex. 70S-tRNAfMet-MF-tRNAPhe. Data courtesy: EBI \& J.Frank

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences
University of Texas at Austin

Structure Elucidation for Symmetric Capsid Viruses

 Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.

Center for Computational Visualization Institute of Computational and Engineering Sciences

Subunit alignment (1): averaging

The above two pictures (left: outer; right: inner) show the averaged capsid layer, calculated from one 5 -fold subunit (orange) and one 6 -fold subunit (green). The tail structure (blue) is augmented after the averaging.

Data courtesy: Tim Baker

Structure Elucidation 1(C): Subunit Alignment

- Cross-correlation
- Symmetry score

Ф29

	$\# 0$	$\# 1$	$\# 2$	$\# 3$
$\# 0$	1	0.95	0.95	0.34
$\# 1$	0.95	1	0.96	0.31
$\# 2$	0.95	0.96	1	0.31
$\# 3$	0.35	0.31	0.32	1

	$\# 4$	$\# 5$	$\# 6$	$\# 7$	$\# 8$	$\# 9$
$\# 4$	1	0.79	0.95	0.94	0.87	0.88
$\# 5$	0.79	1	0.79	0.78	0.77	0.79
$\# 6$	0.95	0.79	1	0.96	0.88	0.88
$\# 7$	0.94	0.78	0.96	1	0.89	0.88
$\# 8$	0.87	0.77	0.88	0.89	1	0.94
$\# 9$	0.88	0.79	0.88	0.88	0.94	1

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences
University of Texas at Austin

Structure Elucidation Results: ©29

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Data courtesy: Tim Baker

Subunit alignment (2): Fitting

The PDB structure of one monomer is matched \& fit into the cryoEM map (as shaded in green in the left figure). Then all the quasisymmetric 5 -fold subunits are computationally fit with the PDB structure using the transform matrices obtained in subunit alignment. Similar procedure can be applied to all 6 -fold subunits.

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

"Interactive" Fitting

Gro-EL: X-ray structures docked in Cryo-EM

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Interactive Correlation Analysis

$$
C=0.2235 \quad C=0.269 \quad C=0.593
$$

12A GroEL map and 1OEL.pdb
$C=0.208$
$C=0.387$
$C=0.542$

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

University of Texas at Austin

Approximate Correlation Analysis

$$
\text { score }=1-\frac{\sum_{i=1}^{N}\left|f\left(c_{i}\right)-g\left(c_{i}^{\prime}\right)\right|}{\sum_{i=1}^{N} \max \left(f\left(c_{i}\right), g\left(c_{i}^{\prime}\right)\right)}
$$

Where \boldsymbol{f} is the normalized density function of the blurred crystal structure;
\boldsymbol{g} is the normalized density function of the cryo-EM map;
$\boldsymbol{c}_{/}, \mathrm{i}=1,2, \ldots \mathrm{~N}$, are the critical points of the blurred crystal structure;
$\boldsymbol{c}_{i}^{\prime}, \mathrm{i}=1,2, \ldots \mathrm{~N}$, are the transformations of the critical points.

Cryo-EM map (density function: g)

Blurred model
(density function: f)

Center for Computational Visualization Institute of Computational and Engineering Sciences

Blurring I

- For a molecule with M atoms, we can define a 3D electron density map as

$$
f_{\text {ele } _ \text {dens }}(\overrightarrow{\mathbf{x}})=\sum_{i=1}^{M} G_{i}(\overrightarrow{\mathbf{x}}) \quad \mathbf{x} \in \mathbf{R}^{\mathbf{3}}
$$

- For quadratic decay kernels, $\mathrm{A}_{\mathrm{i}}=\mathrm{e}^{\mathrm{d}}$:

$$
f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} A_{i} e^{-\frac{d}{r^{2}} \mathrm{x}^{2}} \delta\left(c_{i}\right)
$$

- For linear decay kernels, $\mathrm{A}_{\mathrm{i}}=\mathrm{e}^{\text {dri }}$:

$$
f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} A_{i} e^{-d|\mathbf{x}|} \delta\left(c_{i}\right)
$$

Atomic Shape Parameters

- Isotropic Quadratic Kernel
- Isotropic Linear Kernel
> where
> The decay d controls the shape of the Gaussian function.
$>$ The van der Waals radius is r_{i}
$>$ The center of the atom is \mathbf{x}_{c}.

$$
G_{i}(\mathbf{x})=e^{-\frac{d}{r_{i}^{2}}\left(\left(\mathbf{x}-\mathbf{x}_{\mathbf{c i}}\right)^{2}-r_{i}^{2}\right)}
$$

$$
G_{i}(\mathbf{x})=e^{-d\left(\left|\mathbf{x}-\mathbf{x}_{c i}\right|-r_{i}\right)}
$$

- Anisotropic Kernels

Blurring II

- For quadratic decay kernels, $\mathrm{A}_{\mathrm{i}}=\mathrm{e}$:

$$
f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} A_{i} e^{-\frac{d}{r^{2}} \mathbf{x}^{2}} \delta\left(c_{i}\right)
$$

- For linear decay kernels, $\mathrm{A}_{\mathrm{i}}=\mathrm{e}^{\text {dri }}$:
$f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} A_{i} e^{-d|\mathbf{x}|} \delta\left(c_{i}\right)$

- For above kernels G:

$$
f_{\text {elec_dens }}(\mathbf{x})=G \otimes \sum_{i=1}^{M} A_{i} \delta\left(c_{i}\right)
$$

Center for Computational Visualization

$$
\begin{aligned}
& +\uparrow \Uparrow \otimes \\
& \sum_{i=1}^{M} A_{i} \delta\left(\vec{x}-\overrightarrow{x_{i}}\right)
\end{aligned}
$$

