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Algorithms & Tools
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Fle Vs Geomelry Servers Aninston el

> Structure elucidation: filtering,
contrast enhancement, segmentation,
skeletonization, subunit identification

» Structure Modeling: finite element
meshing, spline representations(A-
spline,RBF representations) for
structural fitting & complementary
docking

> Visualization: multi-dimensional
transfer functions, surface and volume
texture rendering, wavelet compression,
hierarchical representations, cluster
based parallelism
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Sub-nanometer Structure Elucidation from 3D Cryo-EM

Rice Dwarf Virus

Cryo- EM éFFT based 3D
Reconstruction
> Anisotropic and Vector
Diffusion Filtering >
Structure Segmentation
> Quasi-Atomic Modeling
—~>Visualization

**Sponsored by NSF-ITR, NIH (Collaborators: wah Chiu,NCMI, Baylor

College of Medicine, Andrej Ssali, UCSF)
o Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin September 2007




A Structure Determination Pipeline for single particle cryo-EM
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Structure Elucidation for Icosahedral Viruses

Input map

Segmentation of double-layer capsids

If known

.

for double layer

v1oAe| yoes o}

For single layer

Refinement

colored map

Z. Yu and C. Bajaj, “Automatic Ultra-structure Segmentation of
Reconstructed Cryo-EM Maps of Icosahedral Viruses”,
IEEE Transactions on Image Processing, Special Issue on

Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.
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Structure Elucidation 1(A)

e Adaptive contrast enhancement
e Bilateral filtering

(x=¢) (f (x)=f (&)

h(.x, 5) —e 20‘5 e ZO'FZ

where o, and o, are parameters and A.) is
the image intensity value.
e Anisotropic diffusion filtering

0,4~ div(a(V§ V) =0

where a stands for the diffusion tensor
determined by local curvature estimation.

e Anisotropic gradient vector diffusion

C. Bajaj, G. Xu, ACM Transactions on Graphics, (2003),22(1), 4 - 32.

Z.Yu & C. Bajaj, Proc. Int’l Conf. Image Processing, 2002. pp. 1001-1004.

W. Jiang, M. Baker, Q. Wu, C. Bajaj, W. Chiu, Journal
of Structural Biology, 144, 5,(2003),114-122

Z. Yu & C. Bajaj, Proc. Int'l Conf. Computer Vision and Pattern Recognition, 2004. 415-420.
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Compute Critical Points Using AGVD
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Anisotropic Gradient Vector Diffusion
(AGVD)
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GVD v.s. AGVD

Isotropic diffusion Anisotropic diffusion
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Structure Elucidation 1(B)

e Multi-seed Fast Marching Method
— Classify map critical points as seeds based on local symmetry.
— Each seed initializes a contour, with its group’s membership.

— Contours march simultaneously. Contours with same membership are merged, while contours

with different membership stop each other.

Z.Yu, and C. Bajaj, IEEE Trans.on Image Process, 2005. 144(1-2), pp. 132-143.
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Global and Local Symmetry

e Automatic structure unit
identification in a 3D Map

O Two-fold vertices
®  Three-fold vertices Example: RDV
® Five-fold vertices

CQ Center for Computational Visualization
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Symmetry Detection: Correlation Search
C0,p)= Zf(’_;)f(R(e,(p,z;z/S) F)

FeV
* Algorithm: detect 5-fold rotation symmetry
— Compute the scoring function
* For every angular bin B;, compute 0;.¢; {
For every critical point C; {

I_/';C(CDBJ') — R(Qj,¢)j,2k7r/5) ) C'? k = 091929394

1

DQV(Ci,Bj)Zgz_:(f(;‘;c)_f) }

Inverted and normalized SF(By)
p
SF(B,)=— Dew(C,,B,) }

i=0

— Locate the symmetry axes
» The 12 peaks

— Refine the symmetry axes

* In order to locate a perfect icosahedron
(rotate the axes by 0°, 63.43%, 116.57°, 180°)

Center for Computational Visualization
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Structure Elucidation Results: RDV (Bakeoff)

volume rendering (inside) volume rendering (asymmetric unit)

averaged trimer (side) averaged trimer (bottom) segmented monomers
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Structure Elucidation 1(C): Secondary
Structure Identification

I} 11, 11,
2

11, I 1,1,

11, 11, I

The eigenvectors of the local structure tensor give the
principal directions of the local features:

A, A,

A; As
A, A,

Line structure (alpha-helix) plane structure (beta-sheet)

A=A >4 =0 A >> A=A =0
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Monomeric Unit of Outer Capsid of RDV
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Monomeric Unit of Inner Capsid of RDV

Beta-sheet
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Structure Elucidation Results: GroEL

Center for Computational Visualization ) .
Institute of Computational and Engineering Sciences Data courtesy: Dr. Wah Chiu
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Segmentation Results: Ribosome (Bakeoff)
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Structure Elucidation for Symmetric Capsid

Viruses

Input map

Segmentation of double-layer capsids

If known

.

for double layer

v1oAe| yoes o}

For single layer

Refinement

colored map

Z. Yu and C. Bajaj, “Automatic Ultra-structure Segmentation of
Reconstructed Cryo-EM Maps of Icosahedral Viruses”,
IEEE Transactions on Image Processing, Special Issue on

Cellular/Molecular Imaging, 14(9), pp. 1324-1337, 2005.
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—
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Subunit alignment (1): averaging

The above two pictures (left: outer; right: inner) show the averaged capsid layer,
calculated from one 5-fold subunit (orange) and one 6-fold subunit (green). The tail
structure (blue) i1s augmented after the averaging.

Center for Computational Visualization Data courfesy: Tim Baker

Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin September 2007
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-- df?{f;*{ﬁ Structure Elucidation 1(C): Subunit Alignment

..];

f

 (Cross-correlation

#0 #1 #2 #3
#0 | 0.95 0.95 0.34
* Symmetry score #1 | 095 | 1 | 096 | 031
{ #2 0.95 0.96 1 0.31
0.99 0.99
$29 1 096 0.96 =7 097 098 g9g 43 | 035 | 031 | 032 | 1
0.87
0.81 0.81
S 087 #4 | #5 | #6 | #T | #8 | #9
©
°t’06_ #4 1 0.79 | 095 ] 0.94 | 0.87 | 0.88
5 0.
; #5 | 0.79 1 0.79 | 0.78 | 0.77 | 0.79
® 04 -
° #6 | 0.95 | 0.79 1 0.96 | 0.88 | 0.88
#7 1094 [ 0.78 | 0.96 1 0.89 | 0.88
#8 | 0.87 | 0.77 | 0.88 | 0.89 1 0.94
#O #1 #2 #3 #4 #5 #6 #T #38 #9 #9 | 0.88 | 0.79 | 0.88 | 0.88 | 0.94 1
segmented subunit
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Structure Elucidation Results: ®29
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Subunit alignment (2): Fitting

The PDB structure of one monomer is matched & fit into the cryo-
EM map (as shaded in green in the left figure). Then all the quasi-
symmetric 5-fold subunits are computationally fit with the PDB
structure using the transform matrices obtained in subunit
alignment. Similar procedure can be applied to all 6-fold subunits.
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“Interactive” Fitting

Models

3D maps

Synthetic map

Viewing
Transformations

The GroEL map
docked with a blur

Correlation

map of 10EL.PDB

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin

September 2007



Gro-EL: X-ray structures docked in Cryo-EM
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Interactive Correlation Analysis
C =0.2235 C =0.269 C =0.593

12A GroEL map and 10EL.pdb

C =0.387

Center for Computational Visualization 6.8A RDV map and 1UF2pdb

Institute of Computational and Engineering Sciences
Department of Computer Sciences University of Texas at Austin September 2007




Approximate Correlation Analysis

N

| f(c)-g(c)]

score=1—-—E

ZmaX(f (c,) g(c,))

Where fis the normalized density function of the blurred crystal structure;
g is the normalized density function of the cryo-EM map;
c ,i=1,2,...N, are the critical points of the blurred crystal structure;
¢’ ,i=1,2,...N, are the transformations of the critical points.

(T, R)

Cryo-EM map
(density function: g) Blurred model
(density function: f)

Q Center for Computational Visualization
_ Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin September 2007




Blurring I

* For a molecule with M atoms, we can define a 3D
electron density map as

- M N
f;’lec_dens (X) — Z G,' (X) X € R3
i=1

» For quadratic decay kernels, A.=e:

_ 42
felec_dens(x) — Zi\il Aie r? 5(07,)

For linear decay kernels, A.=edr:

felec_dens(x) — sz\il Aie_d|x|5(ci)

o Center for Computational Visualization
Institute of Computational and Engineering Sciences
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Atomic Shape Parameters

~(xx) 1)

 Isotropic Quadratic Kernel G@ (X) — €

G’i (X) — 6—d(|x—xci|—m)

Different atom representations

» Isotropic Linear Kernel

—— quadratic decay
— linear decay
9 —— hard sphere

» Wwhere d =2
il r =18A
» The decay d controls the shape of the .l
Gaussian function. oL d values
. . . ‘ suggested in (Boys
> The van der Waals radius is 7' S 50), (Grant Pickup| 99)

> The center of the atom is X,

* Anisotropic Kernels

T T J
-10 -8 -6 -4 -2 0 2 4 6 8 10
angstroms
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Blurring II

» For quadratic decay kernels, A.=e:
felec_dens( ) Zz— A e 5(02)

» For linear decay kernels, A =ed":

felec_dens(x) — Zi\il Aie_d|x|5(c7j)

 For above kernels G:

felec_dens(x) =GR fo\i1 Azé(cz)
11, || ® A
ZA (7 — ;)

0 Center for Computational Visualization
Institute of Computational and Engineering Sciences
September 2007

Department of Computer Sciences University of Texas at Austin





