Lecture 4: Geometric Modeling and Visualization

Molecular Structures (Models) from PDB, VIPER

Chandrajit Bajaj
http://www.cs.utexas.edu/~bajaj

Tools for 3D Molecular Structure Determination

- X-ray crystallography (diffraction)
- Atomic resolution
- Difficulties (experimental, computational)
- Nuclear magnetic resonance (NMR) (spectroscopy)
- Atomic resolution
- Limited to small structures

Institute of Computational and Engineering Sciences
Department of Computer Sciences

Proteins

- Amino acids contain an amide, a residue and a carboxyl group
- Proteins are polypeptide chains, made from amino acids combined via peptide bonds.

Center for Computational Visualization

$\boldsymbol{\alpha}$ helix

Beta sheets

Anti Parallel beta sheets

University of Texas at Austin
September 2007

Structure of Hemoglobin

- secondary, tertiary, quaternary structure

- One i chain contains eight

edelices and no -乌heets.

X-ray diffraction

Hard-Sphere Model

Atom: Electron Ball

$$
u^{h s}(\mathbf{x})= \begin{cases}1 & \text { if }\left|\mathbf{x}-\mathbf{x}_{c}\right| \leq r \\ 0 & \text { otherwise }\end{cases}
$$

where, r is the atomic van der Waals or solvation radius, and \mathbf{x}_{c} is the center of the atom.

Molecule: Union of Electron Balls

 vdW Surface

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Molecules in Solvent (Implict Model)

- Solvent molecule modeled as a sphere. Water: radius 1.4A

SAS: solvent accessible surface: locus of probe center
VDW: van der Waals surface: Union of spheres with VDW radii
SES/SCS: solvent excluded/contact surfaces

Center for Computational Visualization

Implicit Solvation Surface for the Hard Sphere Model

Lee-Richard (LR) surface is decomposed into three kinds of patches:

convex spherical, toroidal, and concave spherical patches

The LR surface can be represented as A-patches and NURBS

Center for Computational Visualization

Molecules as Union of Hard Spheres

Molecular Solvation (Nutraswet)

Laguerre Voronoi Diagram of

Union

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Molecular Surfaces for Varying Solvent Radii

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

C^1 A-Patch Complex of the LR Molecular Surface

SES Curves Complex

Laguerre Voronoi Diagram of Union

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Adaptive Grid based Molecular Surface

- Main advantage:
- Grids are commonly used in simulations
- Grids permit many other operations including computing surface area etc.
- Sign distance function definition of SDF:
- Let $\operatorname{sdf}(\mathrm{x})$ be the sign distance function of SAS surface.
- Let the sign inside the surface be positive.
- Surf=\{x:sdf(x)=probe radius\}

Center for Computational Visualization

Grid classification

N coarse cells
M atoms
Grid spacing chosen as $\sim 0.5 \mathrm{~A}$,

Classify:
Boundary SAS cell, vertices
Boundary VDW cells, vertices
Region in between SAS \& VDW
Interior to VDW
Exterior to SAS
Each cell also contains atom intersections.
Atom cover at most $h^{\wedge} 3$ cells. Atoms inserted in order into grid, updating classification.
Cost: O(Mh^3)
Gives us a patch complex defining the SES.
Intersecting atoms gives us location of

- Trimming curves
- Toroidal patches
- Spherical concave patches

Center for Computational Visualization

SES by grid classification and SDF

Octree construction:
Subdivide cells with multiple SAS spheres,
Keep max level L of subdivision
SDF computation:
For each point inside SAS,
Search neighborhood to min dist to SAS
If cell contains too many intersecting cells at highest resolution, cell center is used to compute distance.
point - spherical patch distance implemented.
Isocontour approximation:
Isosurface with isovalue $=r_{p}$ approximates SES.
Atom cover at most h^{3} cells Cost: Mh ${ }^{6}$ L
Propagation based SDF: Mh ${ }^{3}$ L

SDF classification results

- Cut off of volume rendering
- Dark blue: SAS surface
- Pink: SAS volume
- Red: SES surface
- Yellow: part of VDW surface
- Light blue: part of SES volume
- Green: VDW volume

Surface atoms

Grid points within atom approximates its distance to surface.
Cost: Once classification, SDF is complete, cost is at most linear in size of grid

Interior atoms colored by residue type. Surface atoms in uniform orange color

Center for Computational Visualization

Problem with LR: Singularities

Probe at center touching 3 atoms

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Atomic Shape Parameters

- Isotropic Quadratic Kerne1

$$
\begin{aligned}
& G_{i}(\mathrm{x})=e^{-\frac{\beta}{r_{i}^{2}}\left(\left(x-x_{i}\right)^{2}-r_{i}^{2}\right)} \\
& G_{i}(\mathrm{x})=e^{-\beta\left(x-x_{i} \mid-r_{i}\right)}
\end{aligned}
$$

- Isotropic Linear Kernel
$>$ where
$>$ The decay β controls the shape of the Gaussian function.
$>$ The van der wals radius is r_{i}.
$>$ The center of the atom is \mathbf{x}_{i}.
- Anisotropic Kerne1s

Smooth Molecular Surfaces (Implicit Solvation) Models

Linear decay model

Imblicit Solvation Analytic Molecular Surfaces as Level Sets

- For a molecule with M atoms, we can define a synthetic electron density function as

$$
f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} G_{i}(\mathbf{x}), \quad \mathbf{x} \in \mathfrak{R}^{3}
$$

- Molecular surface for quadratic decay
kernels, $A_{i}=e^{\beta}$:
$f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} A_{i} e^{-\frac{\beta}{r_{i}^{2}\left(x-x_{i}\right)^{2}}} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right)$
- Molecular surface for linear decay kernels, $A_{i}=e^{\beta r_{i}}$:
$f_{\text {elec_dens }}(\mathbf{x})=\sum_{i=1}^{M} A_{i} e^{-\beta\left|\mathbf{x}-\mathrm{x}_{i}\right|} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right)$

Hemoglobin Molecular surface

Fast Analytic Molecular Volume and Polarization Energy/Force Computations

- For smooth kernels G :

$$
f_{\text {elec_dess }}(\mathbf{x})=G \otimes \sum_{i=1}^{M} A_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right)
$$

-The convolution theorem.

$$
\begin{aligned}
& \text { Convolution in spatial = multiplication in frequency } \\
& \boldsymbol{F}_{\text {elec_dens }}=\boldsymbol{F F T}^{-1}(\boldsymbol{F F T}(\boldsymbol{\text { kernel }}) \times \boldsymbol{F F T}(\boldsymbol{\text { atom centers })})
\end{aligned}
$$

For N cubature samples of M atom molecules

$$
O(N M) \rightarrow \text { naiive }
$$

$$
O(M \log M+N \log N) \rightarrow \text { irregular FFT }
$$

[^0]

FCC Cluster Hierarchy

- Clustering of atoms based on biochemical units as well preserve molecular shape features

Center for Computational Visualization

Institute of Computational and Engineering Sciences
Department of Computer Sciences

FCC Multi-Resolution Models

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Molecular Surface Segmentation

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Within Subunit A
\square F helix

Histidine Ligand(HIS87)

- Oxy process : O2 binds to the Fe2+ ion on the opposite side of the histidine ligand. F helix shifts position through the oxy-deoxy cycle.

Molecular Surfaces Properties

- Curvatures

Let $f(x, y, z)=0$ represent an implicit function in \mathbf{R}^{3}. The Mean curvature H and Gaussian curvature K

$$
\underset{\text { nd }}{1.5})\left(C\left(f_{x}^{2}\left(f_{y y}+f_{z z}\right)\right)-2 * C\left(f_{x} f_{y} f_{x y}\right)\right) /\left(2 * \left(C\left(f_{x}^{2}\right)\right.\right.
$$

and
$\mathrm{K}=\left(2{ }^{*} \mathrm{C}\left(\mathrm{f}_{\mathrm{x}} \mathrm{f}_{\mathrm{y}}\left(\mathrm{f}_{\mathrm{xz}} \mathrm{f}_{\mathrm{yz}}-\mathrm{f}_{\mathrm{xy}} \mathrm{f}_{\mathrm{zz}}\right)\right)\right) /\left(\left(\mathrm{C}\left(\mathrm{f}_{\mathrm{x}}^{2}\right)\right)^{2}\right)$
Where C represents a cyclic summation over x, y and z, and the subscripts denote partial differentiation with respect to those variables.

Meshing

-Y. Zhang, C. Bajaj, B. Sohn, Special issue of Computer Methods in Applied Mechanics and
Engineering (CMAME) on Unstructured Mesh
Generation, 2004.
-Y. Zhang, C. Bajaj,
Proc. of Meshing
Roundtable 2005.

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Open channel

Top view
Closed channel

Color map:

<-1 - red
$(-1,1)-$ white
>1 - blue

Center for Computatio
Institute of Computatic
Top yietbartment of Computer Sciences

.. 3nしモo

the interior mesh
the interior mesh University of thexas at Austin

The exterior mesh

The extexieqteraber 2007

Open channel

Top view
Closed channel

Color map:
>0 - blue
<0-gree

Center for Computatio Institute of Computational and Engineering Sciences Top yieyebartment of Computer Sciences view

the interior mesh The exterior mesh

The extexiepterpfer 2007

Human Rhinovirus

The Human Rhinovirus 14 (1RVF.pdb) complexed (docked) with Immunoglobulins

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Icosahedra

Enveloped

Helical (tobacco mosaic virus)

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Human Rhinovirus Serotype 2

- Subunit PDB id: 1FPN
- Number of subunits: 60
- Number of atoms per subunit: 6316

- Resolution (Å): 2.6
- Dimension (Å): $308.68 \times 352.98 \times 380.48$
- Symmetry: icosahedral, $\mathrm{T}=1$

The Capsid: Human Rhinovirus (1FPN)

A: Coat Protein VP1
B: Coat Protein VP3
C: Coat Protein VP2
D: Coat Protein VP4

Center for Computational Visualization

Capsomeres: (1FPN)

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

5-Fold Symmetry

1) $\begin{array}{rrr}1.00000 & 0.00000 & 0.00000 \\ 0.00000 & 1.00000 & 0.00000 \\ 0.00000 & 0.00000 & 1.00000\end{array}$
2) $0.30902-0.80902 \quad 0.50000$
$0.80902 \quad 0.50000 \quad 0.30902$
$-0.50000 \quad 0.309020 .80902$
3) $-0.80902-0.50000 \quad 0.30902$
$0.50000-0.30902 \quad 0.80902$
$-0.30902 \quad 0.80902 \quad 0.50000$
4) $-0.80902 \quad 0.50000-0.30902$
$-0.50000-0.30902 \quad 0.80902$
0.309020 .809020 .50000
5) $0.309020 .80902-0.50000$
$-0.80902 \quad 0.50000 \quad 0.30902$
$\begin{array}{lll}0.50000 & 0.30902 & 0.80902\end{array}$

Center for Computational Visualization

3-Fold Symmetry

1) | 1.00000 | 0.00000 | 0.00000 |
| ---: | ---: | ---: |
| 0.00000 | 1.00000 | 0.00000 |
| 0.00000 | 0.00000 | 1.00000 |
2) -0.30902 -0.80902 0.50000
$0.80902-0.50000-0.30902$
$0.50000 \quad 0.309020 .80902$
3) -0.30902 $0.80902 \quad 0.50000$
$-0.80902-0.50000 \quad 0.30902$
$0.50000-0.30902 \quad 0.80902$

2-Fold Symmetry

1) $\begin{array}{rrr}1.00000 & 0.00000 & 0.00000 \\ 0.00000 & 1.00000 & 0.00000 \\ 0.00000 & 0.00000 & 1.00000\end{array}$
2) $0.30902 \quad 0.80902-0.50000$
$-0.809020 .50000 \quad 0.30902$
$\begin{array}{llll}0.50000 & 0.30902 & 0.80902\end{array}$
3) $-1.00000 \quad 0.00000 \quad 0.00000$
$0.00000-1.00000 \quad 0.00000$
$0.00000 \quad 0.00000 \quad 1.00000$

$$
\begin{array}{rrr}
\text { 10) }-0.30902 & -0.80902 & 0.50000 \\
0.80902 & -0.50000 & -0.30902 \\
0.50000 & 0.30902 & 0.80902
\end{array}
$$

Icosahedral Symmetry: Triangulation Numbers

- Icosahedral symmetry overview (Caspar \& Klug 1962; Baker et al. 1999)

h	k	T	Example
1	0	1	bacteriophage $\phi \times 174$
1	1	3	tomato bushy stunt virus
2	0	4	Sindbis virus
1	2	$7 d$	polyoma virus
3	1	13ℓ	reovirus
1	3	$13 d$	infectious bursal disease virus
4	0	16	herpesvirus
5	0	25	adenovirus
Notations: $d=$ dectra (right handed)			
	$\ell=$ lacua (left handed)		

Center for Computation

Rice Dwarf Virus (High Resolution)

3.6M atoms

Texture Sphere Rendering

TexMol
(GPU
accel)
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Rice Dwarf Virus (medium resolution)

Fast Isocontour rendering from

UT TexMol

 Blurred Maps
Tiling Theory - Filling some Gaps (Twarock'04)

- Casper-Klug theory is incomplete; e.g., it cannot account for the structures of:
- Papovaviridae family, which contain cancer-causing viruses
- icosahedral viruses with pentamers, such as polyomavirus
- Sericestis and Tipula iridescent viruses (follow Goldberg polyhedral structure)
- Viral Tiling theory closes the gap. It describes locations of protein subunits and inter-subunit bonds based on mathematical theory of quasicrystals.

(a) root polytope, (b) some reflection planes encoded by root vectors

(b)

(a) cube inscribed in dodecahedron, (b) tetrahedron in a cube

(b)

tilings of the virus capsids of polyomavirus and simian virus 40

Molecular Skins (or Shells)

For atom i , define the volume density as

$$
\rho_{i}(x)= \begin{cases}1 & x \leq a_{i}-w \\ \frac{1}{4 w^{3}}\left(x-\left(a_{i}-w\right)\right)^{3}-\frac{3}{4 w^{2}}\left(x-\left(a_{i}-w\right)\right)^{2}+1 & a_{i}-w<x<a_{i}+w \\ 0 & x \geq a_{i}+w\end{cases}
$$

where $\quad x=\left\|\mathbf{r}-\mathbf{x}_{i}\right\|$

$$
\rho(\mathbf{r})=\sum_{i} \rho_{i}-\sum_{i<j} \rho_{i} \rho_{j}+\sum_{i<j<k} \rho_{i} \rho_{j} \rho_{k}-\sum_{i<j<k<l} \rho_{i} \rho_{j} \rho_{k} \rho_{l} \quad \text { inclusion-exclusion }
$$

Center for Computational Visualization

C^1 A-Shell Molecular Skin Models

Bajaj, Geometric Mod. Computing, (2001)

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Geometric properties: Flexibility in RNA

Small subunit of ribosome

 backbone

Beginning of RNA chain

RNA backbone

A 30S ribosome molecule (1J5E.pdb) 21 chains including a single RNA chain
Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Large subunit of ribosome

Entire backbone

5S RRNA

2 RNA chains

23S RRNA

A 50S ribosome molecule (1JJ2.pdb) with 2 RNA chains

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Ribosome Active Sites

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

[^0]: Bajaj, Siddahanavalli, (2005)

