Lecture 5: Geometric Modeling and Visualization

Cellular Structure Models from Thin Section EM

Chandrajit Bajaj
http://www.cs.utexas.edu/~bajaj

Center for Computational Visualization

Cell Machinery of Life

Transmission Electron Microscopy, Thin Sections:

Data Courtesy: Kristen Harris, University of Texas at Austin

Addtl. Collab: Tom Bartol, Justin Kinney, Terry Sejnowski, Salk

Cardiovascular Anatomy

Center for Computational Visualization Institute of Computational and Engineering Sciences
Department of Computer Sciences

Imaging2Models

1. X-ray Crystallography \rightarrow 2D Image Processing \rightarrow Atomic Centers/Bonds (PDB) \rightarrow FCC \rightarrow Surface, Volume Processing \rightarrow BEM/FEM/Shells
2. Single Particle Cryo-EM \rightarrow 2D Image Processing \rightarrow 3D Reconstruction \rightarrow 3D Image Processing \rightarrow Symmetry, Surfaces, Volume Processing \rightarrow BEM/FEM/Shells
3. Single-section EM/Anisotropic CT/MRI \rightarrow 2D Image Processing \rightarrow Planar X-section Contour Stack \rightarrow BEM/FEM/Shells
4. Tomographic EM/MicroCT/CT/MRI \rightarrow 3D Image Processing \rightarrow Higher Order 3D Reconstructions, Surfaces, Skeletons \rightarrow BEM/FEM/Shells
5. Time Dependent Mesh Maintenance

Step \#1: Automatic Image Alignment

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Step \#2: Semi-Automatic Image Restoration

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Step \#3: Automatic Filtered Segmentation

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Step \#4: Hippocampal Neuron Model Reconstruction

C.Bajaj, K. Lin, E. Coyle: Arbitrary Topology Shape Reconstruction from

Planar Cross-Sections, Graphical Models and Image Processing, 58:6, 1996,
Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Heart Model via X-section Contour Lofting

First segment the heart into four independent planar contour stacks from MRI data: background (0), heart muscle (81), left ventricle (162), right ventricle (243) and then loft (skin) the planar contour stacks
simulation of the electronic activity of the heart.

Raw MRI data

Manually digitized slices

Continuous model

Volume rendering

Stmooth shading
Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Abdominal Aorta

(Analysis Suitable Models)

Center for Computational Visualization
 Department of Computer Sciences

Triangular Meshing

(a]

(c)

- To generate a boundary element triangular mesh from a stack of crosssectional polygonal data.

(b)

Sub-problems

- Correspondence

(a)

(b)

(c)

(d)

(e)
- Tiling

- Branching

Center 1
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Incremental Construction

Algorithm Steps

Step a: Segment closed contours from 2D images
Step b: Create any required augmented contours
Step c: Find correspondences between contours
Step d: Form the tiling region of each vertex
Step e: Construct the tiling
Step f: Collect the boundaries of untiled regions
Step g: Form triangles to cover untiled regions based on their edge
Voronoi diagram (EVD)

Algorithmic Subtleties

- A multi-pass tiling approach followed by the postprocessing of untiled regions

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

Algorithm Steps on actual data

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Using the Edge Voronoi Diagram as Ridges

(c)

(b)

(d)

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Boundary Element Triangular Mesh

Center for Computational Visualization Institute of Computational and Engineering Sciences
Department of Computer Sciences

Tetrahedral Meshing

- To generate a 3D finite element tetrahedral mesh of the simplicial polyhedron obtained via the BEM construction of cross-section polygonal slice data.
- Subproblems
- The shelling of tetrahedra to reduce polyhedron to prismatoids
- The tetrahedralization of prismatoids

What is prismatoid?

A prismatoid is a polyhedron having for bases two simple polygons (possibly degenerate) in parallel planes, and for lateral faces triangles or trapezoids having one vertex or side lying in one base (or plane), and the opposite vertex or side lying in the other base (or plane).

Center for Computational Visualization

The Shelling Step

- Shell tetrahedra from the polyhedron, so the remaining part is a prismatoid or can be divided into prismatoids.

Prismatoid \rightarrow Tetrahedra

- To tetrahedralize a non-nested prismatoid without Steiner points.

1. For each boundary triangle on both slices, calculate its metric.
2. Pick up the boundary triangle with the best metric and form one set of tetrahedra.
3. Update the advancing front and go to Step 1.
4. If the remaining part is non-tetrahedralizable, postprocess it.

Metric, Weight Factor, Grouping

- Metric = volume/(edge) $)^{3}$
- Weight factor
$w= \begin{cases}2\left(1-\frac{d}{h}\right) & \text { if } d \leq 0.5 h \\ 1 & \text { if } 0.5 h<d<h \\ \frac{4}{d} & \text { if } d \geq h\end{cases}$

(b)

- Grouping can avoid irregular remaining part

(a)

(b)

(c)

Protection Rule

Lemma 1: Suppose a top boundary triangle $\Delta u_{1} u_{2} u_{3}$ is under the constraint that no more than one type 1 triangle is between the two type 0 triangles containing the contour segments $u_{1} u_{2}$ and $u_{2} u_{3}$. Furthermore, let the bottom vertices of the two type 0 triangles be v_{1} and v_{2}. Our grouping operation cannot apply to $\Delta u_{1} u_{2} u_{3}$ to form a set of tetrahedra, if and only if all the following conditions are satisfied.

1. $v_{1} v_{2}$ is exactly one contour segment.
2. One of the slice chords $u_{2} v_{1}$ and $u_{2} v_{2}$ is reflex and the other is convex.
3. Both $u_{1} v_{2}$ and $u_{3} v_{1}$ are not inside the prismatoid.

(a)

(b)

(a)

(b)

(c)

Center for Computational Visualization

Classification of Untetrahedralizable Prismatoids

1. Has two boundary triangles on the top face and one line segment on the bottom face.

(a)

(b)

(c)
2. Has one bottom triangle which is treated as three boundary triangles.

(a)

(b)

(c)

Center for Computational Visualization

Multiple Tetrahedralizable Cases

One-to-many branching

Dissimilar region (the right bottom portion of the bottom

center for com
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Multiple Tetrahedralizable Cases

${ }^{(a)}$
${ }^{(\text {() }}$ Appearing/disappearing vertical feature of a solid interior

(a)

(c)

A branching, a dissimilar portion (the inner portion of the top right contour), and an appearing/disappearing vertical feature (the inner contour at the left of the top slice)

Appearing/disappearing vertical feature (the top inner contour) of a void interior

Multiple Tetrahedralizable Cases

Multiply-nested prismatoid

Solid region between two slices
of a human tibia

Center for Computational Visualization

Examples

Knee joint (the lower femur, the pper tibia and fibula and the patella)
(a) Gouraud shaded
(b) The tetrahedralization

(a)

(b)

Hip joint (the upper femur and the pelvic joint)
(a) Gouraud shaded
(b) The tetrahedralization

Center for Computational Visualization

Mini-summary

- The characterization, avoidance of nontetrahedralizable polyhedra is one of the main challenges
- The mix of numerical precision and topological decision making needs precise rules so errors don't propagate.

Center for Computational Visualization

Coronary Arteries

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Sweep based Hexahedral Mesh

- To project a templated quad mesh of a circle onto each cross-section of the tube, then connect corresponding vertices in adjacent cross-sections to form a hex mesh.

Level-1-template

Level-2-template

Level-3-template

Control meshes satisfy the following four requirements:

1. Any two cross-sections can not intersect with each other.
2. Each cross-section should be perpendicular to the path line.
3. In the n -furcation region of several branches, each crosssection should remain perpendicular to the vessel surface.

Vasculature Branchings

One-to-one sweeping requires the source and the target surfaces have similar topology.
Various templates are designed to decompose arteries into mapped meshable regions
for different branching configurations.

- $\quad n$-Branching: A n-branching is a situation when n branches join together, where $n \geq 3$.
- Bifurcation: A bifurcation is a situation when three branches join together. A bifurcation is also a 3-branching.
- Trifurcation: A trifurcation is a situation when four branches join together. A trifurcation is also a 4-branching.

Bifurcation

Trifurcation

7-branching

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Bifurcation Templates

The bifurcation geometry is decomposed into three patches: the master branches contain two branches and the slave branch has one branch.

Path

The master and slave branch axes are non-orthogonal.

Solid NURBS

The master and slave branch axes are not coplanar.

Center for Computational Visualization

Trifurcation Templates

- Trifurcation has one master branch and two slave branches ($4 / 5$ patches).
- All possible trifurcations are classified into five cases according to the position of slave branches relative to the master branch (peripheral/axial).

1. Level-1-template for the master branch, at most two slave branches.
2. Level-2-template for the master branch and Level-1-template for the slaves.
3. Axial direction, two slave branches intersect with each other.
4. Axial direction, two slave branches do not intersect. One trifurcation degenerates into two bifurcations.
5. Two bifurcations merge into one trifurcation.

Center for Computational Visualizati Institute of Computational and Engin Department of Computer Sciences

Trifurcation Case 2

(a)

(a)

(b)

(c)

(d)

Trifurcation Case 3

(b)

(c)

(d)

Trifurcation Case 4

n-branching Templates ($n>4$)

Case 1:
Peripheral direction

Case 2
Axial direction

Case 3
Axial direction n-braching degenerates into several m-branchings.

Case 1\&2

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Depaptatlent of Computer Scienfer mesh

Thoracic Aorta

Human Heart Anatomy

Heart in Systole
(Superior view, atria removed)

Heart (Left interior view)

(anterior)
Pulmonary valve

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

Swept Volume Model of the Heart

Fluid Volume Mesh

Center for Computational Visualization
Institute of Computational and Engmesh
Department of Computer Sciences
solid NURBS
University of Texas at Austin

Muscle Wall

©

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences
solid NURBS

Further Reading

[1] C. Bajaj, E. Coyle, K. Lin. Arbitrary topology shape reconstruction from planar cross sections. Graphical Models and Image Processing, 58(6):524-543, Nov. 1996.
[2] C. Bajaj, T. Dey, Convex Decompositions of Polyhedra and Robustness. Siam Journal on Computing, 21, 2, (1992), 339-364.
[3] MEYERS, D., Multiresolution Tiling. Computer Graphics Forum 13, 5 (December 1994), 325--340.
[4] C. Bajaj, E. Coyle, K. Lin. Tetrahedral meshes from planar cross sections. Computer Methods in Applied Mechanics and Engineering, Vol. 179 (1999) 3152
[5] S. Goswami, T. Dey, C. Bajaj Identifying Flat and Tubular Regions of a Shape by Unstable Manifolds Proc. 11th ACM Sympos. Solid and Physical Modeling, pp. 27-37, 2006
[6] Y. Zhang, Y. Bazilevs, S. Goswami, C. Bajaj, T. J.R. Hughes Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow Proceedings of 15th International Meshing Roundtable, 2006.

