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Contouring: Capturing the Topology and Geometry of Zero Sets
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Isosurface of Trilinear Function

• Trilinear Function

• Bilinear Function
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Marching Cubes (MC) :
Triangular Approximation

• 2D rectangle • 3D cube :
   15 Cases for Triangulation
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• Face Saddle Point

• Body Saddle Point

Saddle Points Computation

F(x,y) = ax + by + cxy + d         (bilinear interpolant) 
First derivatives : Fx = a + cy = 0 , Fy = b + cx = 0
Saddle point  S = ( -b/c , -a/c )

First derivatives = 0 :
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Face and Body Saddle Points

• We obtain saddle points  :

• saddle point outside the cube     discard
  ( only case 13.5 has more than one valid body saddle point. )
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Trilinear Isosurface Topology 31 cases

1 2 3.1 3.2 4.1.1 4.1.2

6.1.2 6.2 7.1 7.2 7.3 7.4.1 7.4.2 8

9 10.1.1 10.1.2 10.2 11 12.1.1 12.1.2 12.2

13.1 13.2 13.3 13.4 13.5.1 13.5.2

5 6.1.1
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Decision on Contour Topology
( Nielson 92 : Asymptotic Decider )

• Resolving Face Ambiguity
– Ambiguity ( face saddle )

– Decision based on the value s of saddle point

s is positive s is negative
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Decision on Contour Topology
( Natarajan 94 )

–Decision based on the value s of saddle point

• Resolving Internal Ambiguity
– Ambiguity ( body saddle )

(i)  s is positive     tunnel
(ii)  s is negative     two pieces

4.1.1 4.1.2
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Contour Topology Decision

• Trilinear isosurface connectivity is determined by sign
configuration of saddle points and 8 corner vertices of a
cube

• Marching Cubes : Consider only 8 corner vertices.
Additional Ambiguity problems exist
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31 Cases

• In the table,

13.5.1

MC case number
Face ambiguity

Interior ambiguity

• MC : 15(further reduced to 14) cases based on vertex coloring (symm).

• 31 cases            (vertex coloring , face ambiguity , internal ambiguity)

 Symmetry of different configurations are used to reduce the cases.
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Trilinear Implicit Surface Boundary
Elements: 31 Cases
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Triangulation Ambiguity

• Saddle points play important roles in determining contour connectivity

<wrong surface>
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Topology Preserving Tetrahedral
Decompostion

• 2D case
– If there is a saddle point

– If there is no saddle point
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Cell Decomposition Method

• Decompose a cell when a saddle point affects
the contour connectivity
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 Main Decomposition Rule for Trilinear
Cell with Topological Ambiguity

• If isosurface has a tunnel
– With a body saddle point generate six

pyramids with the cube faces
– Further decompose pyramids that have

face ambiguity into four tetrahedra
• If isosurface has no tunnel

– Choose a face saddle and generate five
pyramids with remaining faces

– Further decompose pyramids that have
face ambiguity into four tetrahedra

• Case 13 is an exception

< pyramid triangulation >
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Complicated Topology

• Case 15 of MC and # 13
– the most complicated case
   in geometry and topology
– involve
   Face saddles for each face and two body saddles

13 (a)          13.1           13.2          13.3             13.4         13.5.1            13(b)          13.5.2
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Topology Preserving Tetrahedral
Decompostion

• 3D case (  Sb    and   Sf   = # of body and face saddles )
– (i) Sb = 0 ; Sf = 0

• Standard decomposition ( 6 tet )
– (ii) Sb = 0  &  1 <= Sf <= 4

• Decompose a face with a face saddle into 4 tris
• Decompose a face without a face saddle into 2 tris
• Choose one face saddle and connect it to each face
   to form 5 pyramids. Each pyramid decomposed into
   four or two tets (Choice of 2nd largest face saddle point
   when 3 or 4 face saddles present)

– (iii) Sb = 1 &  1 <= Sf <= 4
• Connect a body saddle to each face
    to form 6 pyramids
• Each pyramid decomposed into four or two tets,
  depending on presence or absence of face saddles
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Topology Preserving Tetrahedral
Decompostion (#13)

• (iv)

• (v)

Sb = 0 & Sf = 6

1 <=Sb <=2 & Sf = 6

Decompose into
pyramids & prisms

and then further split
into tetrahedra

24 tetrahedral split
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 #13 Case 4: Sb = 0 & Sf = 6

– Connect the 6 face saddles forming an 8
triangular-facet diamond, which is split
into 4 tetrahedra

– 12 tetrahedra are created by joining 2
vertices of an edge with 2 face saddles of
the faces incident at the edge

– 8 additional tetrahedra are created by
connecting each facet of the diamond to
the 8 vertices of the cube

Overall 24 tetrahedral split
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 Case 4:1 <=Sb<=2 & Sf = 6
Order the saddle points in increasing order

of saddle values and into 3 small face
saddles, small body saddle, big body
saddle, and 3 big face saddles

Small/Big corner vertex is a vertex adjacent
to the three faces containing small/big
face saddles

– Sb = 2
Decompose into 2 Pyramids and 4 Trunc-

prisms.

– Sb = 1
Decompose into 1 Pyramid and 4-Trunc

prsims
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Cell Decomposition Method

• Disambiguate internal topology

Body saddle can be ignored 
when no tunnel exists
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Geometric Improvement

• Compute true intersection between an edge
and isosurface

<linear interpolation
Along edge >

<intersection between
edge and true isosurface >

<trilinear isosurface >
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Results

3 4

7

6

10 12

13 (a)

3.1 3.2 4.1.1 4.1.2

6.1.1 6.1.2 6.2

7.1 7.2 7.3 7.4.1 7.4.2

10.1.1 10.1.2 10.2 12.1.1 12.1.2 12.2

13.1 13.2 13.3 13.4 13.5.113.5.2 13 (b)
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Geometric  Approximations

• Better appoximation of trilinear interpolant
– Adding a shoulder and inflection points
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Mesh Displacement

– Remove small triangles + good aspect ratio
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Mesh Displacement

Marching Cubes Mesh Displacement

```
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Feature Sensitive Surface Extraction

• Extended Marching Cubes

Adding a (edge, corner) feature point

compare the angle with threshold
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Dual Contouring

• Primal Contouring vs Dual Contouring

Primal contour Dual Contour
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Dual Contouring

• Polygons with better aspect ratio
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Algebraic Patches: Smooth Boundary Elements

<cube> <tetrahedron>

<triangular prism> <square pyramid>

• Implicit form of Isocontour : f(x,y,z) = w
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A-Patches

•  Given tetrahedron vertices pi=(xi,yi,zi), i=1,2,3,4,
 α is barycentric coordinates of p=(x,y,z) :

• function f(p) of degree n can be expressed in Bernstein-Bezier form :

• Algebraic surface patch(A-patch) within the tet is defined as f(p)=0.
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A-patch Surface  (C^1) Interpolant

• An implicit single-sheeted interpolant over a
tetrahedron
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A-patch Contouring
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A-patch Contouring
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Finite Elements from Images
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Examples with Shell Finite Elements
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Adaptive feature of the reconstruction: The flat parts
use less patches than the curved parts
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Adaptive feature of the reconstruction: The flat parts
use less patches than the curved parts
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Capturing detail structures.
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Interactive Isocontour Queries

– Input:
• Scalar Field F defined on a mesh
• Multiple Isovalues w in unpredictable
order

– Output (for each isovalue w):
Contour C(w) = {x | F(x) = w}
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Related Work
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Lorenson/Cline (Marching Cubes)
Wilhelms/Van Gelder (octree)

Howie/Blake(propagation)
Itoh/Koyamada (extrema graph)

Gallagher(span decomposed into backets)
Shen/Johnson (hierachical min-max ranges)

Livnat/Shen/Johnson (kd-tree)
Cignoni/Montani/Puppo/Scopigno

van Kreveld

van Kreveld /van Oostrum/Bajaj/
Pascucci/Schikore

Shen/Livnat/Johnson/Hansen (LxL lattice)

Giles/Haimes (min-sorted ranges)

Bajaj/Pascucci/SchikoreItoh/Yamaguchi/Koyamada
(volume thinnig)
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Lower Bound
Input size n

              m+log(n)
Output size m}

Mesh

a1, a2, a3, a4, … , an 

Isosurface
of isovalue ah

a1

a1 a1

a2
a2 a2

a3
a3 a3

The search for ah
takes at least log(n)

an

an an

an

Isocontour Query  Problem
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Optimal Single-Resolution Isocontouring

The basic scheme

Preprocessing:

For each cell c in M
Enter its range of function 
values into an interval-tree

(fmin,fmax)
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The basic scheme

Isocontour query W

(fmin,fmax)

For each interval 
containing W

Compute the portion of 
isocontour in the 
corresponding cell

Optimal Single-Resolution Isocontouring
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The basic scheme

Isocontour query W

(fmin,fmax)

Complexity: m + log(n)
Optimal but impractical
because of the size of the
interval-tree

Optimal Single-Resolution Isocontouring
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Seed Set Optimization

For each connected component
we need only one cell 
(and then propagate by 
adjacency in the mesh)

(fmin,fmax)

Seed Set:
a set of cells intersecting
every connected component
of every isocontour

Optimal Single-Resolution Isocontouring
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The basic scheme

Preprocessing
(revised):

For each cell c in a Seed Set
Enter its range of function 
values into an interval-tree

(fmin,fmax)

Optimal Single-Resolution Isocontouring
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Seed Set Generation (k seeds from n cells)

• 238 seed cells
• 0.01 seconds

Domain Sweep

177 seed cells
0.05 seconds

Responsibility   Propagation

59 seed cells
1.02 seconds

O(n) O(n) O(n log n)
O(k) O(k) O(n)

Time
Space

? ? 2 kmink =
Test

Range Sweep

Optimal Single-Resolution
Isocontouring
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Contour tree
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Optimal Single-Resolution Isocontouring
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Minimal Seed Set Contour Tree

f

Optimal Single-Resolution Isocontouring
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Minimal Seed Set
Contour Tree
(local minima)

f

Optimal Single-Resolution Isocontouring
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Minimal Seed Set
Contour Tree
(local maxima)

f

Optimal Single-Resolution Isocontouring
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Minimal Seed Set Contour Tree

f
Each seed cell corresponds to a

monotonic path on the contour tree

Optimal Single-Resolution Isocontouring
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Minimal Seed Set Contour Tree

f

For a minimal seed set each seed cell
corresponds to a path that is not

covered by any over seed cell

Optimal Single-Resolution Isocontouring
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Minimal Seed Set Contour Tree

f

Current
 isovalue

Each connected component of any
isocontour corresponds exactly to

one point of the contour tree

Optimal Single-Resolution Isocontouring
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Range sweep

Optimal Single-Resolution Isocontouring



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin October 2007

• The number of seeds selected is the
minimum plus the number of local minima.

Optimal Single-Resolution Isocontouring
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Structural Analysis 
Contour Spectrum and Contour Tree 

on Hemoglobin Dynamics

Subunit A
Subunit B
Subunit C
Subunit D

F helix 

Histidine Ligand(HIS87)

O2

• Oxy process : O2 binds to the Fe2+
ion on the opposite side of the histidine
ligand. F helix shifts position through
the oxy-deoxy cycle.

Within Subunit A
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Topological Analysis & Visualization
Contour Tree 

of 
Electron Density Map

Four Polypeptide chains

Each chain consists of
heme, iron, and globin

Functional groups
Atoms belonging to the same
contour have stronger linkage

3D chemical bonding 
structures

with different levels

•M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci,
and D. Schikore, Chap5, pg 71 - 86, 2004 ed. by S. Rana,
John Wiley & Sons, Ltd, 2004
•C. Bajaj, V.Pascucci, and D.Schikore, Proceedings of the
1997 IEEE Visualization Conference,167-173, October
1997 Phoeniz, Arizona
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Topological Analysis using the
CONTOUR  TREE

• Oxygenated Hemoglobin ( T=1 )

<isovalue = 31>
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Spectral Analysis

• Consider a terrain of
which you want to
compute the length of
each isocontour and the
area contained inside
each isocontour.
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Spectral Analysis

Graphical User Interface for Static Data

– The horizontal
axis spans the
scalar values α.

– Plot of a set of
signatures (length,
area, gradient ...)
as functions of
the scalar value
α.

• Vertical axis spans  normalized ranges of each
signature.

• White vertical bars mark current selected isovalues.
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The horizontal axis spans the scalar value dimension α
 The vertical axis  spans the time dimension t

Spectral Analysis
Graphical User Interface for time varying data

(α,t ) --> c

The color c
is  mapped
to the
magnitude
of a
signature
function of
time t and
isovalue α

α
t

c

low

high

m
agnitude
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Contouring based Selection

• The contour spectrum
allows the
development of an
adaptive ability to
separate interesting
isovalues from the
others.
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– The length of each contour
is a c0 spline function.

The area inside/outside each
isocontour is a C1 spline
function.

Spectral Analysis
(signature computation)
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•  In general the size of
each isocontour of a
scalar field of dimension
d  is a spline function of
d-2  continuity.

• The size of the region
inside/outside is given
by a spline function of d-
1 continuity

Spectral Analysis
(signature computation)
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Applications
[ Contour Tree Based Visualization ]

• Perfrom Tetrahedral Decomposition of Rectilinear Data
(Trilinear Isosurface Topology is preserved)

• Apply Contour Tree and Seed Set computation, and Contour
Propagation for Isosurface Component Segmentation
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Applications
[ Trilinear Interval Volume

Tetrahedrization ]

• Perform topology preserving tetrahedral
decomposition method

• Apply interval volume tetrahedrization to each
tetrahedra generated from our method
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Further Reading

• C. Bajaj  (ed) “DataVisualization Techniques”, John Wiley & Sons 1998
• C. Bajaj, V. Pascucci, D. Schikore, “Contour Spectrum” IEEE Viz,1997
• M. van Kreveld, van Oostrum, C. Bajaj,V. Pascucci, D. Schikore “Contour

Trees & Small Seed Sets” ACM SoCG 1997, also book chap in 2004
• B. Sohn, C. Bajaj. “Topology Preserving Tetrahedral Decomposition of

Trilinear Cell”, CS/ICES Tech. Rep. TR2004.
• S.Goswami, A. Gillette, C. Bajaj “Efficient Delaunay Mesh Generation from

Sampled Scalar Functions”, 16h IMR, 2007
• J. Bloomenthal, C. Bajaj, J. Blinn, M. Gascuel, A. Rockwood, B.

Wyvill, G. Wyvill Introduction to Implicit Surfaces Morgan
Kaufman Publishers Inc., (1997).


