Lecture 7: Geometric Modeling and Visualization

Boundary \& Finite Element Meshed Models III: Topologically Accurate Non-Linear Elements

Chandrajit Bajaj
http://www.cs.utexas.edu/~bajaj

Contouring: Capturing the Topology and Geometry of Zero Sets

Isosurface of Trilinear Function

- Trilinear Function

$$
\begin{aligned}
F(x, y, z) & =F_{000}(1-x)(1-y)(1-z) \\
& +F_{001}(1-x)(1-y) z \\
& +F_{010}(1-x) y(1-z) \\
& +F_{011}(1-x) y z \\
& +F_{100} x(1-y)(1-z) \\
& +F_{101} x(1-y) z \\
& +F_{110} x y(1-z) \\
& +F_{111} x y z
\end{aligned}
$$

- Bilinear Function

$$
\begin{aligned}
F^{f}(x, y) & =F_{00}(1-x)(1-y)+F_{01}(1-x) y \\
& +F_{10} x(1-y)+F_{11} x y
\end{aligned}
$$

Marching Cubes (MC) : Triangular Approximation

- 2D rectangle

Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences

- 3D cube:

15 Cases for Triangulation

Saddle Points Computation

- Face Saddle Point
$F(x, y)=a x+b y+c x y+d \quad$ (bilinear interpolant)
First derivatives : $F x=a+c y=0, F y=b+c x=0$
Saddle point $S=(-b / c,-a / c)$
- Body Saddle Point

$$
F(x, y, z)=a+e x+c y+b z+g x y+f x z+d y z+h x y z
$$

First derivatives $=0$:

$$
\begin{aligned}
& F_{x}=e+g y+f z+h y z=0 \\
& F_{y}=c+g x+d z+h x z=0 \\
& F_{z}=b+f x+d y+h x y=0
\end{aligned}
$$

Face and Body Saddle Points

- We obtain saddle points :

$$
\begin{array}{lc}
x= & -\frac{c+d z}{g+h z} \\
y= & \frac{k_{0}+k_{1} z}{k_{2}} \\
z= & -\frac{g}{h} \pm \frac{\sqrt{g^{2} k_{1}^{2}-h k_{1}^{1 / 2}\left(e k_{2}+g k_{0}\right)}}{h} \\
k_{0}=c f-b g, k_{1}=d f-b h, k_{2}=d g-c h
\end{array}
$$

- saddle point outside the cube \rightarrow discard
(only case 13.5 has more than one valid body saddle point.)

Trilinear Isosurface Topology 31 cases

13.1

Center for Computational Visualization Institute of Computational and Engineering Sciences

Decision on Contour Topology (Nielson 92 : Asymptotic Decider)

- Resolving Face Ambiguity
- Ambiguity (face saddle)

- Decision based on the value s of saddle point

Center for Computational Visualization

Decision on Contour Topology (Natarajan 94)

- Resolving Internal Ambiguity
- Ambiguity (body saddle)

-Decision based on the value s of saddle point
(i) s is positive \rightarrow tunnel
(ii) s is negative \rightarrow two pieces

Contour Topology Decision

- Trilinear isosurface connectivity is determined by sign configuration of saddle points and 8 corner vertices of a cube
- Marching Cubes : Consider only 8 corner vertices. Additional Ambiguity problems exist

Center for Computational Visualization

31 Cases

- In the table,

- MC : 15(further reduced to 14) cases based on vertex coloring (symm).
- 31 cases \longleftarrow (vertex coloring, face ambiguity , internal ambiguity)

Symmetry of different configurations are used to reduce the cases.
Center for Computational Visualization

Trilinear Implicit Surface Boundary Elements: 31 Cases

0

6.1 .1

8

12.2
.

1

6.1 .2

9
13.1

.

2

6.2

10.1 .1

13.2

3.1

7.1

10.1 .2
13.3

13.4

3.2

7.2

4.1.1

7.3

10.2

11

4.1.2

5

7.4.1

7.4.2

12.1 .1

12.1.2

13.5 .1

13.5 .2

Triangulation Ambiguity

<wrong surface>

- Saddle points play important roles in determining contour connectivity

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Topology Preserving Tetrahedral Decompostion

- 2D case
- If there is a saddle point

- If there is no saddle point

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Cell Decomposition Method

- Decompose a cell when a saddle point affects the contour connectivity

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Main Decomposition Rule for Trilinear Cell with Topological Ambiguity

- If isosurface has a tunnel
- With a body saddle point generate six pyramids with the cube faces
- Further decompose pyramids that have face ambiguity into four tetrahedra
- If isosurface has no tunnel
- Choose a face saddle and generate five pyramids with remaining faces
- Further decompose pyramids that have face ambiguity into four tetrahedra
- Case 13 is an exception

< pyramid triangulation >

Complicated Topology

- Case 15 of MC and \# 13
- the most complicated case in geometry and topology
- involve

Face saddles for each face and two body saddles

Center for Computational Visualization

Topology Preserving Tetrahedral Decompostion

- 3D case (Sb and $\mathrm{Sf}=$ \# of body and face saddles)
- (i) $\mathrm{Sb}=0 ; \mathrm{Sf}=0$
- Standard decomposition (6 tet)
- (ii) $\mathrm{Sb}=0$ \& 1 <= $\mathrm{Sf}<=4$
- Decompose a face with a face saddle into 4 tris
- Decompose a face without a face saddle into 2 tris

- Choose one face saddle and connect it to each face to form 5 pyramids. Each pyramid decomposed into four or two tets (Choice of 2nd largest face saddle poin when 3 or 4 face saddles present)
- (iii) $\mathrm{Sb}=1 \& 1<=\mathrm{Sf}<=4$
- Connect a body saddle to each face to form 6 pyramids
- Each pyramid decomposed into four or two tets, depending on presence or absence of face saddles

Topology Preserving Tetrahedral Decompostion (\#13)

- (iv) $\mathrm{Sb}=0$ \& $\mathrm{Sf}=6$

24 tetrahedral split

-(v) $1<=\mathrm{Sb}<=2 \& \mathrm{Sf}=6$

Decompose into pyramids \& prisms and then further split into tetrahedra

Center for Computational Visualization

\#13 Case 4: $\mathrm{Sb}=0$ \& $\mathrm{Sf}=6$

- Connect the 6 face saddles forming an 8 triangular-facet diamond, which is split into 4 tetrahedra
- 12 tetrahedra are created by joining 2 vertices of an edge with 2 face saddles of the faces incident at the edge
- 8 additional tetrahedra are created by connecting each facet of the diamond to the 8 vertices of the cube

Overall 24 tetrahedral split

Case 4:1<=Sb<=2 \& Sf=6

Order the saddle points in increasing order of saddle values and into 3 small face saddles, small body saddle, big body saddle, and 3 big face saddles
Small/Big corner vertex is a vertex adjacent to the three faces containing small/big face saddles

- $\mathrm{Sb}=2$

Decompose into 2 Pyramids and 4 Truncprisms.

- $\mathrm{Sb}=1$

Decompose into 1 Pyramid and 4-Trunc prsims

Cell Decomposition Method

- Disambiguate internal topology

Body saddle can be ignored when no tunnel exists

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Geometric Improvement

- Compute true intersection between an edge and isosurface

<linear interpolation
Along edge >

<intersection between edge and true isosurface >

<trilinear isosurface>

Results

Geometric Approximations

- Better appoximation of trilinear interpolant
- Adding a shoulder and inflection points

Mesh Displacement

- Remove small triangles + good aspect ratio

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Mesh Displacement

Feature Sensitive Surface Extraction

- Extended Marching Cubes

Center for Computational Visualization

Dual Contouring

- Primal Contouring vs Dual Contouring

Dual Contour

Center for Computational Visualization

Dual Contouring

- Polygons with better aspect ratio

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Algebraic Patches: Smooth Boundary Elements

- Implicit form of Isocontour : $f(x, y, z)=w$

A-Patches

- Given tetrahedron vertices $p_{i}=(x i, y i, z i), i=1,2,3,4$, α is barycentric coordinates of $p=(x, y, z)$:

$$
\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{cccc}
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4} \\
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3} \\
\alpha_{4}
\end{array}\right]
$$

- function $f(p)$ of degree n can be expressed in Bernstein-Bezier form :

$$
f(p)=\sum_{|\lambda|=n} b_{\lambda} B_{\lambda}^{n}(\alpha), \lambda \in \mathcal{Z}_{+}^{4} \quad B_{\lambda}^{n}(\alpha)=\frac{n!}{\lambda_{1}!\lambda_{2}!\lambda_{3}!\lambda_{4}!} \alpha_{1}^{\lambda_{1}} \alpha_{2}^{\lambda_{2}} \alpha_{3}^{\lambda_{3}} \alpha_{4}^{\lambda_{4}}
$$

- Algebraic surface patch(A-patch) within the tet is defined as $f(p)=0$.

A-patch Surface ($C^{\wedge} 1$) Interpolant

- An implicit single-sheeted interpolant over a tetrahedron

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

A-patch Contouring

verimi iu vomputational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Finite Elements from Images

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Examples with Shell Finite Elements

Adaptive feature of the reconstruction: The flat parts use less patches than the curved parts

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Adaptive feature of the reconstruction: The flat parts use less patches than the curved parts

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Capturing detail structures.

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Interactive Isocontour Queries

- Input:
- Scalar Field F defined on a mesh
- Multiple Isovalues w in unpredictable order
- Output (for each isovalue w):

Contour $C(w)=\{x \mid F(x)=w\}$

Center for Computational Visualization

Related Work

		Search Space	
		Geometric	Value
$$		Lorenson/Cline (Marching Cubes) Wilhelms/Van Gelder (octree)	Giles/Haimes (min-sorted ranges) Shen/Livnat/Johnson/Hansen (LxL lattice) Gallagher(span decomposed into backets) Shen/Johnson (hierachical min-max ranges) Cignoni/Montani/Puppo/Scopigno Livnat/Shen/Johnson (kd-tree)
		Howie/Blake(propagation) Itoh/Koyamada (extrema graph) Itoh/Yamaguchi/Koyamada (volume thinnig)	van Kreveld Bajaj/Pascucci/Schikore van Kreveld /van Oostrum/Bajaj/ Pascucci/Schikore
Center for Computational Visualization Institute of Computational and Engineering Sciences Department of Computer Sciences University of Texas at Austin October 2007			

Isocontour Query Problem

Lower Bound
Input size n

Optimal Single-Resolution Isocontouring

The basic scheme

Center for Computational Visualization

Optimal Single-Resolution Isocontouring

The basic scheme

Optimal Single-Resolution Isocontouring

The basic scheme

Optimal Single-Resolution Isocontouring

Seed Set Optimization

Center for Computational Visualization

Optimal Single-Resolution Isocontouring

The basic scheme

Center for Computational Visualization

Optimal Single-Resolution Isocontouring

Seed Set Generation (k seeds from n cells)

Optimal Single-Resolution Isocontouring

Contour tree

Optimal Single-Resolution Isocontouring

Optimal Single-Resolution Isocontouring

- The number of seeds selected is the minimum plus the number of local minima.

Center for Computation Institute of Computation Department of Comput

Structural Analysis

Contour Spectrum and Contour Tree on Hemoglobin Dynamics

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Within Subunit A
\square F helix
\square Histidine Ligand(HIS87)
$\square \mathrm{O}_{2}$

- Oxy process : O2 binds to the Fe2+ ion on the opposite side of the histidine ligand. F helix shifts position through the oxy-deoxy cycle.

Topological Analysis \& Visualization

Functional groups

Atoms belonging to the same contour have stronger linkage

Each chain consists of heme, iron, and globin
-M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore, Chap5, pg 71-86, 2004 ed. by S. Rana, John Wiley \& Sons, Ltd, 2004
C. Bajaj, V.Pascucci, and D.Schikore, Proceedings of the 1997 IEEE Visualization Conference, 167-173, October 1997 Phoeniz, Arizona

Center for Computational Visualization Institute of Computational and Engineering Sciences
Department of Computer Sciences

Topological Analysis using the CONTOUR TREE

- Oxygenated Hemoglobin (T=1)

<isovalue = 31>

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Spectral Analysis

- Consider a terrain of which you want to compute the length of each isocontour and the area contained inside each isocontour.

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Spectral Analysis

Graphical User Interface for Static Data

- The horizontal axis spans the scalar values α.
- Plot of a set of signatures (length, area, gradient ...) as functions of the scalar value α.
- Vertical axis spans normalized ranges of each

Center for Computational Visualization

Spectral Analysis

Graphical User Interface for time varying data

The horizontal axis spans the scalar value dimension α
The vertical axis spans the time dimension t
high
$(\alpha, t) ~-->c$
The color c is mapped to the magnitude of a signature function of time t and isovalue α
low

Contouring based Selection

Spectral Analysis (signature computation)

- The length of each contour is a C^{0} spline function.

The area inside/outside each isocontour is a C^{l} spline function.

Spectral Analysis (signature computation)

- In general the size of each isocontour of a scalar field of dimension d is a spline function of d-2 continuity.
- The size of the region inside/outside is given by a spline function of d 1 continuity

Applications [Contour Tree Based Visualization]

- Perfrom Tetrahedral Decomposition of Rectilinear Data (Trilinear Isosurface Topology is preserved)
- Apply Contour Tree and Seed Set computation, and Contour Propagation for Isosurface Component Segmentation

(a) Trilinear

(b) Cell Decomposition

(c) Marching Cubes

(d) Marching Tetra

Applications [Trilinear Interval Volume Tetrahedrization]

- Perform topology preserving tetrahedral decomposition method
- Apply interval volume tetrahedrization to each tetrahedra generated from our method

(a) boundary isosurfaces

(b) tetrahedral decomposition

(c) interval volume

(d) wireframe

Center for Computational Visualization

Further Reading

- C. Bajaj (ed) "DataVisualization Techniques", John Wiley \& Sons 1998
- C. Bajaj, V. Pascucci, D. Schikore, "Contour Spectrum" IEEE Viz, 1997
- M. van Kreveld, van Oostrum, C. Bajaj,V. Pascucci, D. Schikore "Contour Trees \& Small Seed Sets" ACM SoCG 1997, also book chap in 2004
- B. Sohn, C. Bajaj. "Topology Preserving Tetrahedral Decomposition of Trilinear Cell", CS/ICES Tech. Rep. TR2004.
- S.Goswami, A. Gillette, C. Bajaj "Efficient Delaunay Mesh Generation from Sampled Scalar Functions", 16h IMR, 2007
- J. Bloomenthal, C. Bajaj, J. Blinn, M. Gascuel, A. Rockwood, B. Wyvill, G. Wyvill Introduction to Implicit Surfaces Morgan Kaufman Publishers Inc., (1997).

