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Molecular Mechanics and Modeling

Experimental Theoretical
T Lques Methods

Development of
methods to
explore models
olecular Mechanics

Light/X-ray/neutron
scattering
(dynamics and structure)

Development of new
theories and models
to rationalize and
predict experimental
observations

Calorimetry, pKas,
thermodynamics,
physical measurement:

Understanding biomolecular
tructure, dynamics and function

Courtesy Charlie
Brooks, TSRI
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Biological Time scale

Bond vibrations 10 = (10'15 S)
Sugar repuckering 1 ps (10‘12 S)

Domain movement 1 ms (10‘6 S)

Base pairopening 1ms (10‘3 S)

Transcription 2.5 ms / nucleotide
Protein synthesis 6.5 ms/amino acid
Protein folding ~ 108

RNA lifetime ~300 s

Courtesy David Case, TSR
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Biological energy scale

Chemical bonds C-H 10 kcal.mol-
C=C 172
lonic hydration ~ Na®™  -93
Cal* -373
Hydrogen bonds O...H -5 (in vacuum)
Protein folding ~ 2-10 (in solution)

Protein-DNA binding ~ 5-20
(~200 A2 contact)

Courtesy David Case, TSRI
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Free Energy of a Macromolecule in Solvent

Total free energy : (7 = E, . +G

sol
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Free Energy of a Single Molecule in Solvent

Total free energy . (7 — _
EMM = Eb T E9 T E‘P T EVdW T Eelec Gsol — Gcav + Gvdw + Gpol
| | | |
bonded non-bonded @
air (€ =1) G,
) ¢
0
Center for C utational Visualizati
» CQ Inz?itﬁtre%rf C?)nr;?)u’;ti?;zl ar?daEnginc()ar;ring Sciences

Department of Computer Sciences

University of Texas at Austin November 2007



Free Energy of a Single Molecule in Solvent

e bonded

* non-
bonded

* Gca

( _ 02
Eb — Zkb (rb — 7 ) r, 1, : covalent bond and minima
b
E(9 = Z ka (Qa — 95)2 0, 90: valence angle and minima
a

E, = Zkt (I+cosn(p, — thO )) @, @y: torsion and minima

C. D.
(E, = Z 11; — g C, D : Lennard-Jones parameters
i<j Ty Tij ¥;; . distance between atoms
E = Z 94, qd : atomic charge
elec

LG =S Y,S :surface tension and surface area
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Binding Energy of Macromolecules

In structure based drug design, binding of a drug (ligand)
to a receptor (protein/nucleic acid), usually causes the ligand
to either enhance or the activity of the receptor.

Binding energy:

AGua =G

protein+ligand

o (G + Gligand)

protein

Variation of binding energy:

_ wildtype mutant
AA(;bind T A(;bind AGbind
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How to Compute G, ?

G =5 [ en(1) =0, (YD) 0V

dielectric constant
electrostatic potential
solute charge density

ion accessibility parameter
ion bulk concentration

ion charge

Boltzmann’s constant
temperature

= Poisson-Boltzmann (PB) Theory

~V-[e(nV ()] = 41p() + 472() 3 ¢ ¢, exp(=q,9(r) / k, T)

N SR 5 S e m

finite difference, finite element

= Generalized Born (GB) Theory
- Born formula (Born 1920)
generalized Born formula (Still 1990)
- methods to compute the Born radii:
* pairwise summation : fast but not easy for force calculation
« analytic, nFFT, and higher order quadrature [Bajaj, Zhao 2006]

= — 11
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GB Theory

Born formula: (single ion) ——
&€ dielectric constant
1 q2 a atomic radius
G 1:—(]——)— 9 atomic charge
po
£ 2a
Generalized Born formula: (molecule)
T 9.4
Gpol T _EZ 7"2 1
y 2 ij
r; + RR. exp(———)]°
[ + R,R; exp( 4RZ-RJ-)]
T= 1—8— Vi - distance between atom i and j
solv
g, : charge of atom i R, : effective Born radius of atom i

W. C. Still et al., JACS (1990), 112, 6127-6129
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Calculation of Born Radius

A single charge {; located at the center of atom i in the molecule.

2 R;
On the other hand, by approximating the electric
field as the Columbic field,

Gpol = — (by GB)

2
q.
G =—2L7T L dV
1
po 8 ex | r— Xl- |4
_ 1 1
Therefore R, ' = — - dV _ .
’ AT Jor |t — %] ex: exterior of the molecule
via Gauss’
Divergence Thm
s Rl — 1 (r —x;) -n(r) 1S
i i Jo T r—x I : molecular surface
Q Center for Computational Visualization
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Fast Computation of Born Radii

4 1 ¢ (r—=x;)-n(r) 1 & (r,—x.)-n(r,)
R,lz 1 dSz_ w k l k ,
! 47er r—x, | 47:,25 o —x, [ reel

Algorithm:
1. Generate a model for the molecular surface I .

2. Cubature: choose Wi andry properly so that higher
order accuracy can be obtained for small .

3. Fast summation to evaluate r ,i=1,....M .
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Convex/Concave Spherical

Patches
The rationalmap g :(u,v) — (x,y,z2)

2y lower
X = ru dimension
u? +v2 + 1
B 2rv
TR
r(u2 +? — 1)
7 =
u? +v2 41

(r =1, for unit sphere)
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% Toroidal Patches |

e — ]
g:(u,v) =>(x,y,2) W
> >y
for X20,720,220 T
(X = %[(1 — )2+ V(1 =W)][a[(1 —u)? + V2u(l —u) 4+ 1?) + 1] o
y= %[vz +V2v(1 =v)][a[(1 —u)* + V2u(1 —u) +1?] + ru?] )
< B [ +2u(1 —u)]
(L= +V2u(l —u) + 12

Z= [ =0 +v2u(1 =) +22][(1 =)+ V20(1 = v) +V7]

where UE€ [091]9 Ve [091]

\j

0 U, 1 u
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Cubature over LR Molecular Surface

Vi :gi(Ti(ék)) r/::Ti(gk)
we =l J(@)J(T) [ Wil W, = J(T) | W,

8 /\ T,
<« v, <«
/

Q
,
L

1

\4

Sk

J, 7 (0ds = X1 J(g)I(T) 0,/ (8,(T. )
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Nodes ék Weights ﬁ/k
1 (0.1127,0.1127) 0.3087
2 (0.5,0.1127) 0.4939 - -
[ ] [ ] 1 ]
3 (0.8873,0.1127) 0.3087
4 (0.1127, 0.5) 0.4939
5 (0.5,0.5) 0.7901
6 (0.8873, 0.5) 0.4939
7 (0.1127, 0.8873) 0.3087
8 (0.5, 0.8873) 0.4939 :T . . .
9 (0.8873, 0.8873) 0.3087 . T
November 2007




Cubature Sampling

1AJd, 514 atoms
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Fast Fourier Summation

After we find the weights w;. and the nodes I';. by sampling over
the LR surface or the analytic surface, we apply error-bounded

fast Fourier summation methods to evaluate

4, 1 ¥ (r,—x)-n(r)
R.IZ— w k i k _
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Force Calculation

The electrostatic force acting on atom & which is part of the forces driving

Molecular dynamics is
oG _

elec __ po
F = =

ox

o

aGpol Z Z aGpol arij aGpol aRz
RN +

axoz T 871J axoz - aR’i ax(_}:
N E 1) 7
_ 1 1 1
Rt =— - dV or R = —
AT Jor | — X4 ’ 47 Jr

The integration domain depends on X, .

Q Center for Computational Visualization
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Volumetric Analytic Density Function

Introduce a differentiable molecular volumetric density function p(r)
such that
: y=] 1=p®) 4y

x|r—x, [ Ir-x, [’
1 xX<a,—w
For atom i, define p.(x)=5(—(q,-w))’ =2 (x—(a,~w))* +1 a,—w<x<a,+w
0 xza, +w

where x=|r—x|

Then define  p(r)= Zpl DPPF DL P D PP,

i<j i<j<k i<j<k<l

Molecular Ski
Let p=1-p, then Pl a(r. {XJ}) olecular Skin

Center for Computational Visualization
Institute of Computational and Engineering Sciences
i November 2007
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How to define the analytic volume function?
Im, Lee and Brooks (2003): :

V(r)=1-H(r) “\
\

where H(r)=]]H,(Ir-x,|)

0,
_j1 3 1 3
Hj.(x)_<E+E(x—aj)—4w3 (x—a;), a,—w<x<a;+w
1, x2a;+w

x : distance between the spatial point and center of atom j
2w : smoothing length (less than 1 A)
d; : the van der Waals radius of atom J

In such a model, V' (r) € C'

Center for Computational Visualization
Institute of Computational and Engineering Sciences
November 2007
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Force Calculation
1 OR; 1/ 0 o(r,{x;}) TV

R? 0x, 47 Jps Ox4 |r — x|*

R, R? " Ix X 0 1
( 1y / )H o(r, {x;}) dVJr/ ‘_( v

Ox. A e T
[

—4x;3 / r—x) - n{r) g
I

h,__xim

0 d - 004 _ ‘
0=——0=—(1-— 0:+ 0:0k — 0:01 0 Molecular surface
Ix,, 0%, OX ( Z J Z =7 Z J )
g<k g<k<l
: d : _
Since ﬁ #0 onlyifa, —w< ‘1' — Xa‘ <a,tw Molecular skin

/ 7P (r.{x;}) o /'”a“a”’ 0po 1 = 2P+ 3k PPk — X j<ket PiPKPI
; |

|I‘—X[|4 l‘—Xa‘:(la—W aXOC |r_Xi|4
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Force Calculation - Integration over A-shells

* Triangulate the molecular surface with attached normal at each
vertex.

» For each triangle, along the normal direction at the vertices,
construct prism A-shells:

P,(D)={p= b1vi(/’L)+b2Vj(/l)+b3Vk(;L)a b +b,+b,=1,A€ I}

where 1 is a specified interval

* Fora A sampling, we obtain {4}
For each 4,
{vi()‘l)avj()‘[)avk(/ll)} iS a /
parametric A-patch

Bajaj and Xu, CAGD (2002), 89-112
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Continuum Approximation via A-Spline

atomic/quasi-atomic molecular surface coarse mesh
structure triangulation

atomic structure of P3 A-Spline atomic structure  A-gpline
asymmetric subunit
Q Center for Computational Visualization PS8
Institute of Computational and Engineering Sciences
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A-Spline

A-Spline model:
S = {p(b,,b,,b;, 1) :F(b,b,,b;,A)=0,pe D, } where

D, ={p(b,,b,,b;,A) . p=bv,(A)+b,v (A)+byv (A),Ae [}

I.

s s aninterval containing O

F(blabZab:’Mﬂ“): 2 blj/(()t)B?]k(blﬁb2~b3)
i+ j+k=n

! o
bbb

Bijk(b1abzab3) = i1 k!

» n>2so that S is smooth. We consider the case n=3. b, (4) are determined
so that C' continuity is obtained across the patch boundaries.

Center for Computational Visualization
Institute of Computational and Engineering Sciences
University of Texas at Austin November 2007
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Parametrization for FEM/BEM

To evaluate [ f(X) dS =3, [ f(X) dS ,wherel; is the jth surface
element J

/ f(X) dS = f(X(b1,bz),y(b1,b2),2(b1,b2))\/EG— F2 db1db2
JI

where

X o ,dy » 0Z 5
@) +(w) +(&—b1)

dx dx dy dy dz Jdz

E =

F = 3b,9b, " 9b, b, " 9bs 9by
00X 5 dYy o, 0Z

Apply the quadrature over the planar triangle,

n
f(b1,b2)VEG —F2 dbydby ~ Y W, f(bX b5)VEG —F2| e b
J Gj k=1

Center for Computational Visualization
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Force Calculation

* The method to compute the surface integral is as same as
the electrostatic solvation energy calculation.

 For volume integral in the force calculation, cubature over
a spherical shell needs to be generated and fast summation
method can be applied to evaluate the numerical cubature.

* For symmetric structures, both the surface integral and the
volume integral can be sped up by doing the sampling
over a single subunit and applying transformations for other
subunits.

Center for Computational Visualization
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Error Estimation ()

10x) - T (x)|<[1(x) =1, (x,)

+‘[1(Xi)_12(xi)

+1,(x) =T (x)

N J N J
T T Y \ N J Y
exact computed quadrature Fourier series NFFT
value value error truncation error error

Center for Computational Visualization
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Error Estimation (ll)

A) NFFT error

L) -T(x)| S E,(x)+E,(x,)

| E/ 1Sl max @@ +nr)/pG@)]

" reZ\{0}

1, 1<l 1l n7 (max |6 ™) Y 9(x=) -y (x =) |

lel;,

where | fl,=Y|f |

uel/,

Steidl, ACM (1998), 337-352
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Institute of Computational and Engineering Sciences
University of Texas at Austin November 2007

Department of Computer Sciences



Error Estimation (ll)

B) Cubature error

By Peano’s theorem, the Gaussian Cubature error for f€ C*" s

(b _ a)2m+1 (m')4

(2m)
Cm+D[C2m)'T /E)]

E, ()= f)ds= Y w /(x|

For 2D quad patches:

my

B, (N[ [ F e vy - S'S 4B, £y, < by~ )E,, +(b —a))E,

i=1 j=1

Letm =m,=m, N, be the number of patches, M =max{|| 224 ||_,|| 24|}

hu,v)= f(gu,v))|J(g)]

_ (uy —u, )(v, _V1)(m!)4 2m 2m
[1(x;)=1,(X;) £ N 2+ D[ T M +h>")

Bajaj, Zhao (2006)
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Error Estimation (I1V)

C) Fourier series truncation error

R,=1,(x)~L,(x)= Y be"™™"

uel/ \/,

In one dimension,

R |< 2(| |+|b_,|) , where b, —leK(x)e_z”iwxdx

w=n+1

If ke c*, m=1 |, Dby successive integration by parts,

b, [< ()" [ | KO (x) | dx = (5—)"" i,
27T 2 27T

e A et T et 0 @) 2m -1

Bajaj, Siddahanavalli (2005)
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GB versus PB

L) ¥ ) LILIL! l i 1 H 1 1 T FF ! ] L | | 3 1 /j’ 1
<GRSTILL,
10}~ e
- , 41 GB
b= ’ ; /,/// ™
=2 | | 1| PB
~ 1GBSTILL
= T . °
— L A [ GBHCT 4
5'; 27 1}” - 1“ ! L ,’//
g e GBRSWMS i
2 GROBLYD RLGBEL PREL 15D
e » * /’/ [ ]
2 L GBMY AW —_
T C . PRI .40 ]
= L GRAMV €142 - TOclPln 10 ® -
T L //, ™ ) W ~
g (L APBS 050 i
i |
.ci) /////
"'; - /// -4
- v I)ell'?:i 0.5 " PREO 11,25
. REL) 1123
. more - APHS D 40 s I
accurate faster
<
Ul'/’/ L L TS I 1 i Lt s i i i 3 P A |
10 HX
Time in s for Single Solvation Energy Calculation (1DVI_A)
Center for Computational Visualization Feig et al, JCC(2004), 25, 265-284
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Generalized Born Energetics

Name | Year | Authors Program Calculation of CFA Dielectric
Born radii Corr. | Boundary
GB 1990 | Still, Tempczyk, Macromodel | FDPB Yes Molecular surface
GB/SA Hawley, Hendrickson
GB 1995 | Hawkins, Cramer, Amber, Pairwise descreening | No Overlapping spheres
Truhlar Tinker
ACE 1996/ | Schaefer, Karplus CHARMM Pairwise sum of No Overlapping
2001 atomic volumes Gaussians
GB 1997 | Qiu, Shenkin, Macromodel, | Pairwise sum of No Overlapping spheres
Hollinger, Still Tinker atomic volumes
S-GB 1998 | Ghosh, Rapp, Impact Surface integral Yes Overlapping spheres
Friesner formulation
GB1 1999 | Dominy, Brooks CHARMM Pairwise sum of No Overlapping spheres
atomic volumes
GBMYV | 2002/ | Lee, Salsbury, Feig, CHARMM Numerical Yes Molecular surface
2003 | Brooks integration
GBSW | 2003 | Im, Lee, Brooks CHARMM Numerical Yes Overlapping spheres
integration + smooth boundary
AGB 2004 | Gallicchio, Levy Impact Pairwise descreening | No Overlapping spheres
GB 2004 | Onufriev, Case Amber Pairwise descreening, | No Molecular surface

radius rescaling

(&)

Center for Computational Visualization
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The solvation energy consists of three components:

« solute-solvent cavity formation
* solute-solvent hydrophobicity (van der Waals interaction)

* solute-solvent electrostatic polarization

Air
Gsol — Gcav + Gvdw + Gpol

Q Center for Computational Visualization
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Gsol — Gcav + Gvdw + Gpol

wan der Waals Solvent-accessible

»

I¥iolecular

® =
Gcav + Gvdw Z GkSAk
.. k Probe Radius
O, empirical parameter
(7.2 cal/(mol A2), still et al, 1990)

S4,: solvent-accessible surface area

o (&

o - Poisson theory

or generalized Born (GB) theory

Given an accurate calculation of the Born radii, GB energy can reproduce
Poisson energy within 1% error. (Lee et al, 2002)

Q Center for Computational Visualization
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Poisson theory

Model:
Solvent: high-dielectric continuum, e.g. water € =81.5 (14°C)
Solute: a macromolecule of lower dielectric embedding charges

The electrostatic potential ¢ in such a system is
-V - [e(r)qu(r)] = 477,0(1‘) (Poisson equation)

p(r): charge density at the position »

E if r is in the exterior

ex

g, if r1s in the molecule interior
e(r) =

Q Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences
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For gas phase (air), ., =1 = = Ovae(r) finite diff
| inite difference or

boundary element method
For solvent phase, Sex = Esolvent = & = dyu(r) (expensive calculation!)

The electrostatic energy is equivalent to the work required to assemble a charge
distribution, so

The electrostatic component of the solvation energy is

ot = 3 / (boot (1) = bruae(r))plr) dV

Q Center for Computational Visualization
Institute of Computational and Engineering Sciences
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Generalized Born theory

Simple case: one ion of radius @ and charge ¢ ﬁ

e=1 Gpol
. . . L= gsolvem
The electrostatic solvation energy is

2 1 °

q
Gool = —1 (Born formula)
e 2a ( €solvent )

General case: A molecule consists of atoms of radii a1 ... an with charges

q1---gnN ,and 75 is the distance between atom i and j, the electrostatic
solvation energy is

1 1 qiq;
Gpol:_(—_l)z ’

2

E T 1
solvent i [rfj + R Rj exp(— 15 R@-]Rj )]z
R;: Born radius of atom 1 (Still et al, 1990)

Center for Computational Visualization
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Born radius

The Born radius is chosen in this way: we assume that there is a single charge ¢,
located at the center of atom 1 in the molecule. We solve the Poisson equation for
this system. If we let it be equivalent to another system where there 1s a sphere of
radius R with charge ¢, atits center, then g is the effective Born radius of
atom 1. So

1 ,, ‘, q2 1

S ((psol - @'Ua.c) = — ( — 1)
2 QRZ € solvent

Not practical !

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences November 2007




A practical approach to compute R, : (Donald Bashford et al, 2000)

In classical electrostatics the work required to assemble a continuous charge

distribution is ]

W =5 [ olw)ote) av

From Poisson equation, we know that

3
= —V - E
p A
So
1
W—/eqﬁV-EdV
&7

Because of the factthat V - (E¢) = ¢V -E+E-V¢ and V¢ = —E
therefore

1

87

W [/eV-(Egb)dV+/sE~EdV]

Center for Computational Visualization
Institute of Computational and Engineering Sciences
November 2007
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W—S%[/gv-(m) dV+/sE-EdV]
Apply Gauss’ theorem: / (V-F)dV = / F-dS
V oV
1
Wz—[%éEdeS#—/ ceE-E dV]
81 S 14

Assume the solute is embedded in an infinite water dielectric. The electric field
at far distance from the charge distribution looks like the field of a point
charge, so

1 | 1
E~— ¢ ~— S ~ 72 ]{EEqde ~—
v A S r
Asr — o

W:i/e:E-EdV
7

The electric field due to charge ¢, (lying on the origin) is

E = Ll; (Coulombic electric field)
Er

Q Center for Computational Visualization
Institute of Computational and Engineering Sciences
November 2007
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The electrostatic energy of the system :

1 1 2 1 2
qu:—/eE-EdV%— L _gve— | F-av

The electrostatic solvation energy of this system is

pol — Gi,solvent — Gi,air — ( - 1)/ = dV
e

4
8T € solvent x T

The electrostatic solvation energy of the system:

ol —
P 2R7) € solvent

Center for Computational Visualization
Institute of Computational and Engineering Sciences
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L —1)/ﬁdvz o 1

ST € solvent T rd 2Rz € solvent
—
1 1
R'=— [ < dV
A Jo. T
! (/ Lav ! V) (Jav=[[rdrdQ)
— - — — =||r°dr
AT v rsa r in,r>a rd
1 1
—1
Mm,r>a;

A sphere of radius @; (the van der Waals radius of atom 1) is excluded from the
integration domain to avoid singularity at 0.

Department of Computer Sciences November 2007
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Electrostatic Solvation Energy

atom k
position: Xy

1
. GP01 = 5 J[¢solvent (r) — ¢air (r)]P(l’) dV +
Poisson-Boltzmann (PB) theory: .

V-[e(m)Vor)]=p (r)+p,(r)

charge: Yk

R -Q:exterior +
< kT e
p.(r)= —471'2qk5(r -X,), p,(r)= Kk (r)(—2—)sinh( P )
k=1 € kT
where
e(r) dielectric coefficient at r q, charge of atom k

. . g .
X, position of charge point M the number of point charge

; (center of atom k)
K(r) = /S”Zc ; () modified Debye-Huckel parameter e charge of an electron
B

c

ky Boltzmann’s constant T  absolute temperature

concentration and charge of

i™" ionic species

27

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences November 2007
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Electrostatic Solvation Energy

PB theory: (cont.)

After we solve the PB equations, we could calculate the reaction field energy
1 M
G, (Kx,€,)= EZcb(Xk)qk
k=1
and the electrostatic solvation energy

G, (x&g)=G6,(x¢€,)—G,(0,1)

Center for Computational Visualization
Institute of Computational and Engineering Sciences
November 2007
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Linear Poisson-Boltzmann Equation

The LPB equation is formally correct when q;o(r)/kT < 1

V(e(X)V(X)) = pe(X) + pp(X)

Where pk(x) is the first term of Taylor expansion of 75(X)

kg T cO(X
po(x) = "L sinh (%2 )
sy \ 3 v\ D
] kg T 1 [ €c(X 1 Ccd( X
= f#)(x) + & (ﬂ (ﬁ) + o (ﬁ) i )

Center for Computational Visualization
Institute of Computational and Engineering Sciences
i November 2007
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Boundary Element Solution to LPBE

The boundary element representation of the solution:

V(ex)Vo(x)) = =47 0% quo(x — Xx)  xe€Q
V(e(x)Vp(x)) = r?o(x) xe R°\Q

The interface continuous condition on the boundary I'" of Q

(f)»()?) = p1(X) = QTBZ(Y) xel
e(X) =G (X) =252(X)  xeT
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Nonderivative Boundary Integral Equations

Apply Green’s second identity to the above equations

JO JI

We can get the boundary integral equations:
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Derivative Boundary Integral Equations

o 1 —ﬁlx Yl
Let Gp(x.y) = e P and G.(x.y) = e pay
Then
1 €o \ 4 ()G oG,
31+ 2)o(x) + [r(ZHrd — =5 )o(y)dr

— [1(Go(x.y) — GH‘(x,y))";}’,Sf)dF = Yok L Go(x, Xi)

dq &G eo 9’6y
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Numerical Treatment of Boundary Integral
Equations using A-Spline

The numerical treatment of the boundary integral equations
of the LPBE:

=3 E'};(Xe)zk Wisd (bY. b5)(Go(x. bY. b3) — G.(x. b, b))

—Zf L 0(Xe) D, lf’l/mru'f(,.‘:vK b*‘)(“d—"f}(x bk b‘f) Ji (X, bk b*’*-’))
+> 51 LGo(x, k)
where

Xe: center of the eth element
E: number of elements
X : collocation point
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Numerical Treatment of Boundary Integral
Equations using A-Spline

Since ¥ = Yi_1bivi(\) . we have

3
G X, 1 —+|x D=1 Pivi(A)]
o(X,¥) = Am|x =327, bivi(N)] G (X y)= 4T-\x S 3 bvi (V)]
0Go(xy) _ —(x=37 bivi(A)-n,(N)
ony 4r|x—=3 3 bivi(N\))?
, 3 .
0G,.(xy)  —e P Xim PV 44k x—5 2 biv(\))(X=S 2 bivi(\))-ny

on, 4r|x—Y" 74 bivi(N)]?
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Numerical Treatment of Boundary Integral
Equations using A-Spline

The boundary integral equations become

€e \ | L E ‘E:J'() k k —r|x—=3 bjvi(A\)|
%(1 + C_I)O(X) - 2621 E)n(XE‘)Zk kaJ(b ,b ) |x S5V (Y]

Ze 1 O(Xe) Dok (Wird (b b5)

L (104 sIx =3 by (W)e” "2 B (x5 b;vf()\))‘nyw)
4 |X— va,()\ﬂ

+ 2k 2 —4-r|x Xe]

where
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Boundary Element Solver to LPBE

The linear system of LPBE boundary element solver are

1, )
S(1+ =)0y = Zd—; AS +ZoeBe +quGo (% Xk)

e=1 e=1 k=1

a 4 E . e E Ne

71+ ) =Z1j—n Df+z1oec,e+;qk%(x, X
where

A = 3, Wigd (bl b)(Go(x. b bs) — G..(x. b b))
BE =3, Wied (b, bE) (28 (x, bl b) — 2= 98= (x. b b5)
Co = 3, Wird (k. bA) (28 (x. bk b) - ;’nin(x bk bk))
DE = 3 Wagd (b, bE)( 285 (x. b ) — 56 (x. b5 b)
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F~3 Dock: Fast Flexible Fourier Docking

fA grown layer fB surface skin

Pseudo Skin

atom

fg

f Core
A interior

*fA grown layer: Sampled SAS with *fB surface skin: Surface atoms
pseudo atom centers

*fB interior:Atoms of B which are not surface atoms
*fA: Atom centers of the protein
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Affinity based Scoring |

« Summation of Weighted Gaussians with following coefficients:

Region Function Coeff. weights
S &rown layer positive real 1
/4 positive imaginary 21
S Surface skin positive real 1
g Interior atoms positive imaginary 2i

. Affinity:
— (f,, fp nterior atoms) gyerlap: pos imag. * pos imag. = (-)ve real
_ (ﬂl grown layer’fB surface skin) overlap: pos real X pos real — pOS real
— (ﬂl , fB surface skin) && (ﬂl grown layer’ fB interior atoms) overlap: ignore

— Maximal values indicate regions of high skin overlaps and low interior clashes, and therefore
highly plausible docking sites.
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Affinity based Scoring II

fi@) = FO VT (@) + Fa(@) = Fi(@) + FA™ ()
f)( ): 9Wf(106 9“”(;}:)+antenoratome< ) FB ( ) Im( )

» The score of the overlap of two functions , one shifted by x is given
by the integral of their product.

S(7) = / 1) (@ — )dif
JERS

» |f we rotate the second function by R, we get the overlap score to
be:

5@ = [ R@OR(F)@E - D
J je R3

Location of the maximum score, over all R and x is recorded as a potential

docliine nacitinn:

2

pos = argmarizry | Fu@Ar(R)E - D, V[E R
g‘GRS
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FA3 Dock: results

Calmodulin (1CLL.PDB) with a peptide (myosin light chain kinase)

148, 36 residues
98 conformation samplings to keep <2A difference.
Used 323 Fourier coefficients

The docking position is in the list of the top 10%
of all combinations checked

Open pos: 6.2769 Closed pos: 9.8430

Center for Computational Visualization
Institute of Computational and Engineering Sciences

Department of Computer Sciences University of Texas at Austin November 2007




More Reading

*Molecular modelling: Principles and applications, A.R.
Leach 2001, Prentice-Hall

*Molecular modeling and simulation: An interdisciplinary
guide, T. Schlick 2003, Springer-Verlag

*Understanding molecular simulation: From algorithms to
applications, D. Frenkel, B. Smit 1998 Academic Press

*Computer simulation of biomolecular systems, W.F. van
Gunsteren et al. 1997 Kluwer
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Further Reading: GB Theory

W. Still, A. Tempczyk, R. Hawley, T. Hendrickson. Semianalytical treatment of solvation for
molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127-6129, 1990.

G. Hawkins, C. Cramer, D. Truhlar. Pairwise solute descreening of solute charges from a
dielectric medium. Chemical Physics Letters 246, 122-129, 1995.

M. Schaefer, M. Karplus. A comprehensive analytical treatment of continuum electrostatics.
J. Phys. Chem. 100, 1578-1599, 1996.

M. Schaefer, C. Bartels, F. Leclerc, M. Karplus. Effective atom volumes for implicit solvent
models: comparison between Voronoi volumes and minimum fluctuation volumes.
J. Comput Chem. 22, 1857-1879, 2001.

D. Qiu, P. Shenkin, F. Hollinger, W. Still. The GB/SA continuum model for solvation. A fast
analytical method for the calculation of approximate born radii. J. Phys. Chem. A, 101,
3005-3014, 1997.

A. Ghosh, C. Rapp, R. Friesner. Generalized Born model based on a surface integral
formulation. J. Phys. Chem. B, 102, 10983-10990, 1998.
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Further Reading: GB Theory

7. B. Dominy, C. Brooks. Development of a generalized Born model parametrization for
proteins and nucleic acids. J. Phys. Chem. B, 103, 3765-3773, 19909.

8. M. Lee, F. Salsbury, C. Brooks. Novel generalized Born methods. J Chemical Physics, 116,
10606-10614, 2002.

9. M. Lee, M. Feig, F. Salsbury, C. Brooks. New analytic approximation to the standard
molecular volume definition and its application to generalized Born calculations.
J. Comput Chem. 24, 1348-1356, 2003.

10. W. Im, M. Lee, C. Brooks. Generalized Born model with a simple smoothing function.
J. Comput Chem. 24, 1691-1702, 2003.

11. A. Onufriev, D. Bashford, D. Case. Modification of the generalized Born model suitable for
macromolecules. J. Phys. Chem. B 104, 3712-3720, 2000.

12. Amber: http://amber.scripps.edu/
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Protein-protein docking

*  Early sphere matching by Kuntz et al.:
Irwin D. Kuntz, Jeffrey M. Blaney, Stuart J. Oatley, Robert Langridge, and Thomas E. Ferrin.
A geometric approach to macromolecule-ligand interactions.
Journal of Molecular Biology, 161(2):269-288, October 1982.

*  Hashing based scheme:
Daniel Fischer, Raquel Norel, Ruth Nussinov, and Haim J. Wolfson.
3-d docking of protein molecules.
In CPM ’93: Proceedings of the 4" Annual Symposium on Combinatorial Pattern Matching, pages 2034,
London, UK, 1993. Springer-Verlag.

*  FFT grid based:
Ephraim Katchalski-Katzir, Isaac Shariv, Miriam Eisenstein, Asher A. Friesem, Claude Aflalo, and Ilya A.
Vakser.
Molecular surface recognition: determination of geometric fit between proteins and their ligands by
correlation techniques.
Proceedings of the National Academy of Sciences of the United States of America, 89(6):2195-2199,
March 1992.

*  ZDock: (same algorithm as above)
Rong Chen, Li Li, and Zhiping Weng. Zdock:
An initial-stage proteindocking algorithm.
Proteins: Structure, Function, and Genetics, Special Issue: CAPRI - Critical Assessment of PRedicted
Interactions . Issue edited by Jol Janin, 52(1):80-87, May 2003.

*  Harmonics based algorithms:
Willy Wriggers and Pablo Chacon.
Modeling tricks and fitting techniques for multiresolution structures.
Structure, 9(9):779-788, September 2001.

* Hex:
D. Ritchie.
Evaluation of protein docking predictions using hex 3.1 in capri rounds 1 and 2. Proteins:
Structure, Function, and Genetics, 52(1):98-106, July 2003.
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Further Reading: Virtual Screening

AutoDock from TSRI

D. S. Goodsell and Arthur J. Olson,

Automated docking of substrates to proteins by simulated Annealing,
Proteins:Structure, Function and Genetics, 1990, 8,3, 195--202

Quick Explore (QXP) from Novartis Pharmaceuticals

R. T. Kroemer, A. Vulpetti, J. J. McDonald, D. G, Rohrer, J. Y. Trosset, F. Giordanetto, S. Cotesta, C. McMartin, M. Kihln
and P. F. W. Stouten,

Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations,

J Chem Inf Comput Sci, 2004, 44, 871—888

Gold, a collaborative project between Sheffield University, Glaxo-Wellcome and the Cambridge Crystallographic
Data Center (CCDC)

G. Jones, P. Willett, R. C. Glen, A. R. L. Leach and R. Taylor,

Development and Validation of a Genetic Algorithm for Flexible Docking,

Journal of Molecular Biology, 1997, 267, 727—748

Jones G, Willett P and Glen RC,
Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation,
Journal of Molecular Biology, 1995,245, 43--53

FlexX was developed by Markus Lilienthal at BioSolvelT GmbH and Prof. Dr. Matthias Rarey at the Center for
Bioinformatics (ZBH) of the University of Hamburg.

M. Rarey, B. Kramer and T. J. Lengauer,

Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention,
Computer-Aided Mol. Design, 1997, 11, 369—384

M. Rarey, B. Kramer and T. Lengauer and G. Klebe,
A Fast Flexible Docking Method using an Incremental Construction Algorithm,
Journal of Molecular Biology, 1996, 261, 470—489.

M. Rarey, S. Wefing and T. J. Lengauer,

Placement of medium-sized molecular fragments into active sites of proteins,
Computer-Aided Mol. Design, 1996, 10, 41--54
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