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Lecture 10: Geometric Modeling and Visualization

Integrals & Integral Equations:
 Molecular Energetics & Forces

Chandrajit    Bajaj
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Molecular Mechanics and Modeling

Courtesy Charlie
Brooks, TSRI
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Biological Time scale

Courtesy David Case, TSRI
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Biological energy scale

Courtesy David Case, TSRI
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Free Energy of a Macromolecule in Solvent
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Free Energy of a Single Molecule in Solvent
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Free Energy of a Single Molecule in Solvent
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• S,! : surface tension and surface area
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: valence angle and minima

: torsion and minima
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ij
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q : atomic charge
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Binding Energy of Macromolecules
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In structure based drug design,  binding of a drug (ligand)
to a receptor (protein/nucleic acid),  usually causes the ligand
to either enhance or inhibit the activity of the receptor.

receptor
protein

ligand

Binding energy:

Variation of binding energy:
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How to Compute       ? 

   Poisson-Boltzmann (PB) Theory
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finite difference, finite element

   Generalized Born (GB) Theory
   -  Born formula (Born 1920)
      generalized Born formula (Still 1990)
   -  methods to compute the Born radii:

• pairwise summation : fast but not easy for force calculation
• analytic, nFFT,  and higher order quadrature    [Bajaj, Zhao 2006]
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GB Theory
Born formula: (single ion)
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Calculation of Born Radius
A single charge       located at the center of atom i in the molecule. i

q

On the other hand, by approximating the electric
field as the Columbic field,
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Fast Computation of Born Radii

Algorithm:

1. Generate a model for the molecular surface     .

2. Cubature: choose        and       properly so that higher 
    order accuracy can be obtained  for small     .

3. Fast summation to evaluate     ,                .
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Convex/Concave Spherical
Patches
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Toroidal Patches
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Cubature over LR Molecular Surface
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Cubature Sampling

1AJJ, 514 atoms (50x25)
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Fast Fourier Summation
After we find  the weights         and the nodes        by sampling over

the LR surface or the analytic surface, we apply error-bounded

fast Fourier summation methods to evaluate
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Force Calculation
The electrostatic force acting on atom      which is part of the forces driving 
Molecular dynamics is
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Volumetric Analytic Density Function
Introduce a differentiable molecular volumetric density function        
such that
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How to define the analytic volume function?
Im, Lee and Brooks (2003):
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     : distance between the spatial point and center of atom      
     : smoothing length (less than 1 A)      
     : the van der Waals radius of atom
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Force Calculation
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Force Calculation – Integration over A-shells

• Triangulate the molecular surface  with attached normal at each
   vertex.
• For each triangle, along the normal direction at the vertices,
  construct prism A-shells:

      where      is a specified interval
• For a        sampling, we obtain 
   For each     , 
                                  is a
   parametric A-patch
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 Bajaj and Xu, CAGD (2002), 89-112



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   November 2007

Continuum Approximation via A-Spline

atomic/quasi-atomic 
 structure

coarse mesh A-Spline

atomic structure of P3 A-Spline atomic structure 
asymmetric subunit 

P8

A-Spline

molecular surface
triangulation
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Parametrization for FEM/BEM
To evaluate                                                , where       is the jth surface 
element

Apply the quadrature over the planar triangle,
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Force Calculation
• The method to compute the surface integral is as same as
   the electrostatic solvation energy calculation.

• For volume integral in the force calculation, cubature over
  a spherical shell needs to be generated and fast summation
  method can be applied to evaluate the numerical cubature.

• For symmetric structures, both the surface integral and the
  volume integral can be sped up by doing the sampling
  over a single subunit and applying transformations for other
  subunits.
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Error Estimation (I)
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Error Estimation (II)
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Error Estimation (III)
B) Cubature error

By Peano’s theorem, the Gaussian Cubature error for              is mCf 2
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Error Estimation (IV)
C) Fourier series truncation error
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GB versus PB

Feig et al, JCC(2004), 25, 265-284 

GB

PB

faster
more 
accurate
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Generalized Born Energetics
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The solvation energy consists of three components:
• solute-solvent cavity formation

• solute-solvent hydrophobicity (van der Waals interaction) 

• solute-solvent electrostatic polarization

polvdwcavsol GGGG ++=
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polvdwcavsol GGGG ++=

!=+

k

kkvdwcav
SAGG "

: empirical parameterk
!

k
SA : solvent-accessible surface area

polG :     Poisson theory 
  or generalized Born (GB) theory

Given an accurate calculation of the Born radii, GB energy can reproduce
Poisson energy within 1% error. (Lee et al, 2002)
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Poisson theory

Solvent:  high-dielectric continuum, e.g. water

Solute: a macromolecule of lower dielectric embedding charges

The electrostatic potential        in such a system is

C)14(     5.81 0
=!

!

)(r! : charge density at the position
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(Poisson equation)
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For gas phase (air), 

For solvent phase, 
!
"

!
#

$
finite difference or
boundary element method
(expensive calculation!)

The electrostatic component of the solvation energy is

The electrostatic energy is equivalent to the work required to assemble a charge 
distribution, so
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Generalized Born theory

Simple case: one ion of radius      and charge

The electrostatic solvation energy is      

(Born formula)

General case: A molecule consists of atoms of radii                   with charges
                  , and        is the distance between atom i and j, the electrostatic 
solvation energy is

solvent
!! =

1=!

(Still et al, 1990): Born radius of atom i
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Born radius
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The Born radius is chosen in this way: we assume that there is a single charge      
located at the center of atom i in the molecule. We solve the Poisson equation for
this system. If we let it be equivalent to another system where there is a sphere of
radius       with charge       at its center, then       is the effective Born radius of
atom i. So
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Not practical !
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A practical approach to compute       : (Donald Bashford et al, 2000)

In classical electrostatics the work required to assemble a continuous charge
distribution is

From Poisson equation, we know that

So

Because of the fact that                                                          and

therefore

i
R
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Apply Gauss’ theorem:

Assume the solute is embedded in an infinite water dielectric. The electric field
at far distance from the charge distribution looks like the field of a point
charge, so

As

The electric field due to charge       (lying on the origin) is

2
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i
q
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The electrostatic energy of the system :

The electrostatic solvation energy of this system is
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The electrostatic solvation energy of the system:



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   November 2007

!

A sphere of radius        (the van der Waals radius of atom i) is excluded from the
integration domain to avoid singularity at 0.

)( 2

! !! "= ddrrdV
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Poisson-Boltzmann (PB) theory:
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Electrostatic Solvation Energy

PB theory: (cont.)

After we solve the PB equations, we could calculate the reaction field energy 
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and the electrostatic solvation energy 
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Linear Poisson-Boltzmann Equation

The LPB equation is formally correct when

Where           is the first term of Taylor expansion of 
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Boundary Element Solution to LPBE  

The boundary element representation of the solution:
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The interface continuous condition on the boundary     of! !
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Apply Green’s second identity to the above equations

We can get the boundary integral equations:

Nonderivative Boundary Integral Equations
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Derivative Boundary Integral Equations

Let and

Then
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Numerical Treatment of Boundary Integral 
Equations using A-Spline

The numerical treatment of the boundary integral equations
of the LPBE: 

where
: center of the eth element
: number of elements
: collocation point
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Numerical Treatment of Boundary Integral 
Equations using A-Spline

Since                         , we have
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Numerical Treatment of Boundary Integral 
Equations using A-Spline

The boundary integral equations become
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Boundary Element Solver to LPBE

The linear system of LPBE boundary element solver are

where
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F^3 Dock: Fast Flexible Fourier Docking

fA grown layer fB surface skin

fB
interior

fA

fA  + fB

•fA grown layer: Sampled SAS with
pseudo atom centers

•fA: Atom centers of the protein

•fB surface skin: Surface atoms

•fB interior:Atoms of B   which are not surface atoms
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Affinity based Scoring  I

• Affinity:
– (fA , fB interior atoms) overlap: pos imag. * pos imag. = (-)ve real
– (fA grown layer, fB surface skin) overlap: pos real * pos real = pos real
– (fA , fB surface skin) && (fA grown layer, fB interior atoms) overlap: ignore

– Maximal values indicate regions of high skin overlaps and low interior clashes, and therefore
highly plausible  docking sites.

Coeff. weightsFunctionRegion

2ipositive imaginaryfB interior atoms

1positive realfB surface skin

2ipositive imaginaryfA

1positive realfA grown layer

• Summation of Weighted Gaussians with following coefficients:
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• The score of the overlap of two functions , one shifted by x is given
by the integral of their product.

• If we rotate the second function by R, we get the overlap score to
be:

Location of the maximum score, over all R and x is recorded as a potential
docking position:

Affinity based Scoring II
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F^3 Dock:  results

Open pos: 6.2769 Closed pos: 9.8430

Calmodulin (1CLL.PDB) with a peptide (myosin light chain kinase)

148, 36 residues
98 conformation samplings to keep <2A difference.
Used 323 Fourier coefficients

The docking position is in the list of the top 10%
of all combinations checked
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More Reading

•Molecular modelling: Principles and applications, A.R.
Leach 2001, Prentice-Hall

•Molecular modeling and simulation: An interdisciplinary
guide, T. Schlick 2003, Springer-Verlag

•Understanding molecular simulation: From algorithms to
applications, D. Frenkel, B. Smit 1998 Academic Press

•Computer simulation of biomolecular systems, W.F. van
Gunsteren et al. 1997 Kluwer



Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences                               University of Texas at Austin   November 2007

1. W. Still, A. Tempczyk, R. Hawley, T. Hendrickson. Semianalytical treatment of solvation for 
      molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127-6129, 1990.

2.   G. Hawkins, C. Cramer, D. Truhlar. Pairwise solute descreening of solute charges from a 
      dielectric medium. Chemical Physics Letters 246, 122-129, 1995.

3. M. Schaefer, M. Karplus. A comprehensive analytical treatment of continuum electrostatics.
      J. Phys. Chem.  100, 1578-1599, 1996.

4. M. Schaefer, C. Bartels, F. Leclerc, M. Karplus. Effective atom volumes for implicit solvent 
      models: comparison between Voronoi volumes and minimum fluctuation volumes. 
      J. Comput Chem. 22, 1857-1879, 2001.

5. D. Qiu,  P. Shenkin, F. Hollinger, W. Still. The GB/SA continuum model for solvation. A fast 
      analytical method for the calculation of approximate born radii. J. Phys. Chem. A, 101,
      3005-3014, 1997.

6. A. Ghosh, C. Rapp, R. Friesner. Generalized Born model based on a surface integral 
      formulation. J. Phys. Chem. B, 102, 10983-10990, 1998.

Further Reading: GB Theory
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Protein-protein docking

• Early sphere matching by Kuntz et al.:
Irwin D. Kuntz, Jeffrey M. Blaney, Stuart J. Oatley, Robert Langridge, and Thomas E. Ferrin.
A geometric approach to macromolecule-ligand interactions.
Journal of Molecular Biology, 161(2):269–288, October 1982.

• Hashing based scheme:
Daniel Fischer, Raquel Norel, Ruth Nussinov, and Haim J. Wolfson.
3-d docking of protein molecules.
In CPM ’93: Proceedings of the 4th Annual Symposium on Combinatorial Pattern Matching, pages 20–34,
London, UK, 1993. Springer-Verlag.

• FFT grid based:
Ephraim Katchalski-Katzir, Isaac Shariv, Miriam Eisenstein, Asher A. Friesem, Claude Aflalo, and Ilya A.
Vakser.
Molecular surface recognition: determination of geometric fit between proteins and their ligands by
correlation techniques.
Proceedings of the National Academy of Sciences of the United States of America, 89(6):2195–2199,
March 1992.

• ZDock: (same algorithm as above)
Rong Chen, Li Li, and Zhiping Weng. Zdock:
An initial-stage proteindocking algorithm.
Proteins: Structure, Function, and Genetics, Special Issue: CAPRI - Critical Assessment of PRedicted
Interactions . Issue edited by Jol Janin, 52(1):80–87, May 2003.

• Harmonics based algorithms:
Willy Wriggers and Pablo Chacon.
Modeling tricks and fitting techniques for multiresolution structures.
Structure, 9(9):779–788, September 2001.

• Hex:
D. Ritchie.
Evaluation of protein docking predictions using hex 3.1 in capri rounds 1 and 2. Proteins:
Structure, Function, and Genetics, 52(1):98–106, July 2003.
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Further Reading:  Virtual Screening
• AutoDock from TSRI

D. S. Goodsell and Arthur J. Olson,
Automated docking of substrates to proteins by simulated Annealing,
Proteins:Structure, Function and Genetics, 1990, 8,3, 195--202

• Quick Explore (QXP) from Novartis Pharmaceuticals
R. T. Kroemer, A. Vulpetti, J. J. McDonald, D. G, Rohrer, J. Y. Trosset, F. Giordanetto, S. Cotesta, C. McMartin, M. Kihln
and P. F. W. Stouten,
Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations,
J Chem Inf Comput Sci, 2004, 44, 871—888

• Gold, a collaborative project between Sheffield University, Glaxo-Wellcome and the Cambridge Crystallographic
Data Center (CCDC)
G. Jones, P. Willett, R. C. Glen, A. R. L. Leach and R. Taylor,
Development and Validation of a Genetic Algorithm for Flexible Docking,
Journal of Molecular Biology, 1997, 267, 727—748

Jones G, Willett P and Glen RC,
Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation,
Journal of Molecular Biology, 1995,245, 43--53

• FlexX was developed by Markus Lilienthal at BioSolveIT GmbH and Prof. Dr. Matthias Rarey at the Center for
Bioinformatics (ZBH) of the University of Hamburg.
M. Rarey, B. Kramer and T. J. Lengauer,
Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention,
Computer-Aided Mol. Design, 1997, 11, 369—384

M. Rarey, B. Kramer and T. Lengauer and G. Klebe,
A Fast Flexible Docking Method using an Incremental Construction Algorithm,
Journal of Molecular Biology, 1996, 261, 470—489.

M. Rarey, S. Wefing and T. J. Lengauer,
Placement of medium-sized molecular fragments into active sites of proteins,
Computer-Aided Mol. Design, 1996, 10, 41--54


