Lecture 10: Geometric Modeling and Visualization

Integrals \& Integral Equations: Molecular Energetics \& Forces

Chandrajit Bajaj

Center for Computational Visualization

Molecular Mechanics and Modeling

Courtesy Charlie
Brooks, TSRI

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Biological Time scale

$$
\begin{array}{lll}
\text { Bond vibrations } & 1 \mathrm{fs} & \left(10^{-15} \mathrm{~s}\right) \\
\text { Sugar repuckering } & 1 \mathrm{ps} & (10-12 \mathrm{~s})
\end{array}
$$

Transcription
2.5 ms / nucleotide

Protein synthesis $\quad 6.5 \mathrm{~ms}$ / amino acid
Protein folding $\sim 10 \mathrm{~s}$
RNA lifetime $\sim 300 \mathrm{~s}$

Center for Computational Visualization

Biological energy scale

Chemical bonds	$\mathrm{C}-\mathrm{H}$	105 $\mathrm{C}=\mathrm{C}$	kcal.mol 172
Ionic hydration	Na^{+}	-93	
Ca^{2+}	-373		
Hydrogen bonds	$\mathrm{O} \ldots \mathrm{H}$	-5	(in vacuum)
Protein folding Protein-DNA binding	$\sim 2-10$	(in solution)	
($\sim 200 \AA^{2}$ contact)			

Courtesy David Case, TSRI

Free Energy of a Macromolecule in Solvent

Total free energy : $G=E_{M M}+G_{\text {sol }}-T S$

$$
\begin{array}{rlrl}
E= & E_{b}+E_{\theta}+E_{\varphi} & G_{\mathrm{sol}}=G_{\mathrm{cav}}+G_{\mathrm{vdw}}+G_{\mathrm{pol}} \\
& +F+F
\end{array}
$$

$$
+E_{v d w}+E_{\text {elec }}
$$

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Free Energy of a Single Molecule in Solvent

Total free energy : $G=E_{M M}+G_{\text {sol }}-T S$

$$
E_{M M}=E_{b}+E_{\theta}+E_{\varphi}+E_{v d w}+E_{\text {elec }} \quad G_{\mathrm{sol}}=G_{\mathrm{cav}}+G_{\mathrm{vdw}}+G_{\mathrm{pol}}
$$

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Free Energy of a Single Molecule in Solvent

- bonded

$$
\begin{aligned}
& \left(E_{b}=\sum_{b} k_{b}\left(r_{b}-r_{b}^{0}\right)^{2}\right. \\
& r, r_{0} \text { : covalent bond and minima } \\
& \theta, \theta_{0} \text { : valence angle and minima } \\
& E_{\varphi}=\sum_{t} k_{t}\left(1+\cos n\left(\varphi_{t}-\varphi_{t}^{0}\right)\right) \quad \varphi, \varphi_{0}: \text { torsion and minima } \\
& \sum_{v d w}=\sum_{i<j} \frac{C_{i j}}{r_{i j}^{12}}-\frac{D_{i j}}{r_{i j}^{6}} \\
& C, D \text { : Lennard-Jones parameters } \\
& r_{i j} \text { : distance between atoms } \\
& E_{\text {elec }}=\sum_{i<j} \frac{q_{i} q_{j}}{r_{i j}} \quad q: \text { atomic charge }
\end{aligned}
$$

- nonbonded
- $G_{\mathrm{cav}}+G_{\mathrm{vdw}}=\gamma S \quad \gamma, S$: surface tension and surface area

Center for Computational Visualization

Binding Energy of Macromolecules

In structure based drug design, binding of a drug (ligand) to a receptor (protein/nucleic acid), usually causes the ligand to either enhance or inhibit the activity of the receptor.

Binding energy:
$\Delta G_{\text {bind }}=G_{\text {protein+ligand }}-\left(G_{\text {protein }}+G_{\text {ligand }}\right)$

Variation of binding energy:

$$
\Delta \Delta G_{\text {bind }}=\Delta G_{\text {bind }}^{\text {wildype }}-\Delta G_{\text {bind }}^{\text {mutant }}
$$

receptor
protein
ligand

How to Compute $G_{\text {pol }}$?

$$
G_{\text {pol }}=\frac{1}{2} \int\left[\phi_{\text {solvent }}(\mathbf{r})-\phi_{\text {air }}(\mathbf{r})\right] \rho(\mathbf{r}) d V
$$

- Poisson-Boltzmann (PB) Theory
$-\nabla \cdot[\varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r})]=4 \pi \rho(\mathbf{r})+4 \pi \lambda(\mathbf{r}) \sum_{j=1} c_{j}^{\infty} q_{j} \exp \left(-q_{j} \phi(\mathbf{r}) / k_{B} T\right)$
finite difference, finite element

$$
\begin{array}{ll}
\varepsilon & \text { dielectric constant } \\
\phi & \text { electrostatic potential } \\
\rho & \text { solute charge density } \\
\lambda & \text { ion accessibility parameter } \\
c_{j}^{\infty} & \text { ion bulk concentration } \\
q_{j} & \text { ion charge } \\
k_{B} & \text { Boltzmann's constant } \\
T & \text { temperature }
\end{array}
$$

- Generalized Born (GB) Theory
- Born formula (Born 1920) generalized Born formula (Still 1990)
- methods to compute the Born radii:
- pairwise summation : fast but not easy for force calculation
- analytic, nFFT, and higher order quadrature [Bajaj, Zhao 2006]

$$
R_{i}^{-1}=\frac{1}{4 \pi} \int_{\Gamma} \frac{\left(\mathbf{r}-\mathbf{x}_{i}\right) \cdot \mathbf{n}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d S
$$

GB Theory

Born formula: (single ion)

$$
G_{\mathrm{pol}}=-\left(1-\frac{1}{\varepsilon}\right) \frac{q^{2}}{2 a}
$$

ε dielectric constant
a atomic radius
q atomic charge

Generalized Born formula: (molecule)

$$
\begin{array}{r}
G_{\mathrm{pol}}=-\frac{\tau}{2} \sum_{i j} \frac{q_{i} q_{j}}{\left[r_{i j}^{2}+R_{i} R_{j} \exp \left(-\frac{r_{i j}^{2}}{4 R_{i} R_{j}}\right)\right]^{\frac{1}{2}}} \\
\tau=1-\frac{1}{\varepsilon_{\text {solv }}} \quad r_{i j}: \text { distance between atom } \mathrm{i} \text { and } \mathrm{j}
\end{array}
$$

q_{i} : charge of atom i
R_{i} : effective Born radius of atom i
W. C. Still et al., JACS (1990), 112, 6127-6129

Center for Computational Visualization

Calculation of Born Radius

A single charge q_{i} located at the center of atom i in the molecule.

$$
G_{\mathrm{pol}}=-\frac{\tau}{2} \frac{q_{i}^{2}}{R_{i}} \quad \text { (by GB) }
$$

On the other hand, by approximating the electric field as the Columbic field,

$$
G_{\mathrm{pol}}=-\frac{1}{8 \pi} \tau \int_{\mathrm{ex}} \frac{q_{i}^{2}}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V
$$

Therefore $\quad R_{i}^{-1}=\frac{1}{4 \pi} \int_{\mathrm{ex}} \frac{1}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V$
ex: exterior of the molecule via Gauss'
Divergence Thm

$$
R_{i}^{-1}=\frac{1}{4 \pi} \int_{\Gamma} \frac{\left(\mathbf{r}-\mathbf{x}_{i}\right) \cdot \mathbf{n}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d S
$$

Center for Computational Visualization

Fast Computation of Born Radii

$$
R_{i}^{-1}=\frac{1}{4 \pi} \int_{\Gamma} \frac{\left(\mathbf{r}-\mathbf{x}_{i}\right) \cdot \mathbf{n}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d S \approx \frac{1}{4 \pi} \sum_{k=1}^{N} w_{k} \frac{\left(\mathbf{r}_{k}-\mathbf{x}_{i}\right) \cdot \mathbf{n}\left(\mathbf{r}_{k}\right)}{\left|\mathbf{r}_{k}-\mathbf{x}_{i}\right|^{4}}, \quad \mathbf{r}_{k} \in \Gamma
$$

Algorithm:

1. Generate a model for the molecular surface Γ.
2. Cubature: choose w_{k} and \mathbf{r}_{k} properly so that higher order accuracy can be obtained for small N.
3. Fast summation to evaluate $R_{i}, i=1, \ldots, M$.

Convex/Concave Spherical

 PatchesThe rational map
$\mathbf{g}:(u, v) \rightarrow(x, y, z)$

$$
\begin{aligned}
& x=\frac{2 r u}{u^{2}+v^{2}+1} \\
& y=\frac{2 r v}{u^{2}+v^{2}+1} \\
& z=\frac{r\left(u^{2}+v^{2}-1\right)}{u^{2}+v^{2}+1}
\end{aligned}
$$

($r=1$, for unit sphere)

Center for Computational Visualization
 Institute of Computational and Engineering Sciences

Toroidal Patches

$$
\mathbf{g}:(u, v) \rightarrow(x, y, z)
$$

For $\quad x \geq 0, y \geq 0, z \geq 0$

$$
\begin{aligned}
& \mathbf{g}:(u, v) \rightarrow(x, y, z) \\
& \text { For } x \geq 0, y \geq 0, z \geq 0 \\
& \left\{\begin{array}{l}
x=\frac{1}{\Sigma}\left[(1-v)^{2}+\sqrt{2} v(1-v)\right]\left[a\left[(1-u)^{2}+\sqrt{2} u(1-u)+u^{2}\right]+r u^{2}\right] \\
y=\frac{1}{\Sigma}\left[v^{2}+\sqrt{2} v(1-v)\right]\left[a\left[(1-u)^{2}+\sqrt{2} u(1-u)+u^{2}\right]+r u^{2}\right] \\
z=\frac{r\left[u^{2}+\sqrt{2} u(1-u)\right]}{(1-u)^{2}+\sqrt{2} u(1-u)+u^{2}} \\
\Sigma=\left[(1-u)^{2}+\sqrt{2} u(1-u)+u^{2}\right]\left[(1-v)^{2}+\sqrt{2} v(1-v)+v^{2}\right]
\end{array}\right. \\
& \text { where } u \in[0,1], v \in[0,1]
\end{aligned}
$$

Center for Computational Visualization

Cubature over LR Molecular Surface

Center for Computational Visualization Institute of Computational and Engineering Sciences

Cubature Sampling

1AJJ, 514 atoms

(50x25)

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Fast Fourier Summation

After we find the weights w_{k} and the nodes \mathbf{r}_{k} by sampling over the LR surface or the analytic surface, we apply error-bounded fast Fourier summation methods to evaluate

$$
R_{i}^{-1}=\frac{1}{4 \pi} \sum_{k=1}^{N} w_{k} \frac{\left(\mathbf{r}_{k}-\mathbf{x}_{i}\right) \cdot \mathbf{n}\left(\mathbf{r}_{k}\right)}{\left|\mathbf{r}_{k}-\mathbf{x}_{i}\right|^{4}} \quad i=1, \ldots, M
$$

Force Calculation

The electrostatic force acting on atom α which is part of the forces driving Molecular dynamics is

$$
\begin{gathered}
\mathbf{F}_{\alpha}^{\mathrm{elce}}=-\frac{\partial G_{\mathrm{pol}}}{\partial \mathbf{x}_{\alpha}} \\
\frac{\partial G_{\mathrm{pol}}}{\partial \mathbf{x}_{\alpha}}=\sum_{i} \sum_{j \neq i} \frac{\partial G_{\mathrm{pol}}}{\partial r_{i j}} \frac{\partial r_{i j}}{\partial \mathbf{x}_{\alpha}}+\sum_{i} \frac{\partial G_{\mathrm{pol}}}{\partial R_{i}} \frac{\partial R_{i}}{\partial \mathbf{x}_{\alpha}} \\
R_{i}^{-1}=\frac{1}{4 \pi} \int_{\mathrm{ex}} \frac{1}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V \quad \text {, or } R_{i}^{-1}=\frac{1}{4 \pi} \int_{\Gamma} \frac{\left(\mathbf{r}-\mathbf{x}_{i}\right) \cdot \mathbf{n}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d S
\end{gathered}
$$

The integration domain depends on \mathbf{x}_{α}.

Volumetric Analytic Density Function

Introduce a differentiable molecular volumetric density function $\rho(\mathbf{r})$ such that

$$
\int_{\mathrm{ex}} \frac{1}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V \approx \int_{\mathbf{R}^{3}} \frac{1-\rho(\mathbf{r})}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V
$$

For atom i , define $\rho_{i}(x)= \begin{cases}1 & x \leq a_{i}-w \\ \frac{1}{4 w^{3}}\left(x-\left(a_{i}-w\right)\right)^{3}-\frac{3}{4 w^{2}}\left(x-\left(a_{i}-w\right)\right)^{2}+1 & a_{i}-w<x<a_{i}+w \\ 0 & x \geq a_{i}+w\end{cases}$
where $\quad x=\left\|\mathbf{r}-\mathbf{x}_{i}\right\|$
Then define

$$
\rho(\mathbf{r})=\sum_{i} \rho_{i}-\sum_{k \ll} \rho_{i} \rho_{j}+\sum_{k \ll k i} \rho_{k} \rho_{j} \rho_{k}-\sum_{i \ll k l} \rho_{i} \rho_{j} \rho_{k} \rho_{l}
$$

Let $\bar{\rho}=1-\rho$, then

$$
R_{i}^{-1} \approx \frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\bar{\varrho}\left(\mathbf{r},\left\{\mathbf{x}_{j}\right\}\right)}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V
$$

Molecular Skin

How to define the analytic volume function?

Im, Lee and Brooks (2003):

$$
V(\mathbf{r})=1-\mathrm{H}(\mathbf{r})
$$

where $\mathrm{H}(\mathbf{r})=\prod_{j}\left(\left|\mathbf{r}-\mathbf{x}_{j}\right|\right)$
$H_{j}(x)= \begin{cases}0, & x \leq a_{j}-w \\ \frac{1}{2}+\frac{3}{4 w}\left(x-a_{j}\right)-\frac{1}{4 w^{3}}\left(x-a_{j}\right)^{3}, & a_{j}-w<x<a_{j}+w \\ 1, & x \geq a_{j}+w\end{cases}$
\mathbf{x} : distance between the spatial point and center of atom j
$2 w$: smoothing length (less than 1 A)
a_{j} : the van der Waals radius of atom j
In such a model, $V(\mathbf{r}) \in C^{1}$

Force Calculation

$$
\begin{aligned}
&-\frac{1}{R_{i}^{2}} \frac{\partial R_{i}}{\partial \mathbf{x}_{\alpha}}=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{\partial}{\partial \mathbf{x}_{\alpha}} \frac{\bar{\varrho}\left(\mathbf{r},\left\{\mathbf{x}_{j}\right\}\right)}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V \\
& \frac{\partial R_{i}}{\partial \mathbf{x}_{\alpha}}=-\frac{R_{i}^{2}}{4 \pi}\left(\sqrt[\int_{\mathbb{R}^{3}} \frac{\frac{\partial}{\partial \mathbf{x}_{\alpha}} \bar{\varrho}\left(\mathbf{r},\left\{\mathbf{x}_{j}\right\}\right)}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V]{ }+\int_{\mathrm{ex}} \frac{\partial}{\partial \mathbf{x}_{\alpha}} \frac{1}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V\right) \\
&-4 \mathbf{x}_{i} 3 \int_{\Gamma} \frac{\left(\mathbf{r}-\mathbf{x}_{i}\right) \cdot \mathbf{n}(\mathbf{r})}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{6}} d S
\end{aligned}
$$

$$
\frac{\partial}{\partial \mathbf{x}_{\alpha}} \bar{\varrho}=-\frac{\partial}{\partial \mathbf{x}_{\alpha}} \widetilde{\varrho}=\frac{\partial \varrho_{\alpha}}{\partial \mathbf{x}_{\alpha}}\left(1-\sum_{j} \varrho_{j}+\sum_{j<k} \varrho_{j} \varrho_{k}-\sum_{j<k<l} \varrho_{j} \varrho_{k} \varrho_{l}\right)
$$

Since $\frac{\partial \rho_{\alpha}}{\partial \mathbf{x}_{\alpha}} \neq 0$ only if $a_{\alpha}-w<\left|\mathbf{r}-\mathbf{x}_{\alpha}\right|<a_{\alpha}+w \quad$ Molecular skin

$$
\int_{\mathbb{R}^{3}} \frac{\frac{\partial}{\partial \mathbf{x}_{\alpha}} \bar{\rho}\left(\mathbf{r},\left\{\mathbf{x}_{j}\right\}\right)}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}} d V=\int_{\left|\mathbf{r}-\mathbf{x}_{\alpha}\right|=a_{\alpha}-w}^{\left|\mathbf{r}-\mathbf{x}_{\alpha}\right|=a_{\alpha}+w} \frac{\partial \rho_{\alpha}}{\partial \mathbf{x}_{\alpha}} \frac{1-\sum_{j} \rho_{j}+\sum_{j<k} \rho_{j} \rho_{k}-\sum_{j<k<l} \rho_{j} \rho_{k} \rho_{l}}{\left|\mathbf{r}-\mathbf{x}_{i}\right|^{4}}
$$

Center for Computational Visualization

Force Calculation - Integration over A-shells

- Triangulate the molecular surface with attached normal at each vertex.
- For each triangle, along the normal direction at the vertices, construct prism A-shells:

$$
P_{i j k}(I)=\left\{p:=b_{1} v_{i}(\lambda)+b_{2} v_{j}(\lambda)+b_{3} v_{k}(\lambda), b_{1}+b_{2}+b_{3}=1, \lambda \in I\right\}
$$

where I is a specified interval

- For a λ sampling, we obtain $\left\{\lambda_{l}\right\}$ For each λ_{l},
$\left\{v_{i}\left(\lambda_{l}\right), v_{j}\left(\lambda_{l}\right), v_{k}\left(\lambda_{l}\right)\right\}$ is a parametric A-patch

Bajaj and Xu, CAGD (2002), 89-112

Continuum Approximation via A-Spline

molecular surface triangulation

atomic structure of P3

A-Spline

Center for Computational Visualization

A-Spline

A-Spline model:

$S:=\left\{\mathbf{p}\left(b_{1}, b_{2}, b_{3}, \lambda\right): F\left(b_{1}, b_{2}, b_{3}, \lambda\right)=0, \mathbf{p} \in D_{i j k}\right\}$ where

- $D_{i j k}=\left\{\mathbf{p}\left(b_{1}, b_{2}, b_{3}, \lambda\right): \mathbf{p}=b_{1} \mathbf{v}_{i}(\lambda)+b_{2} \mathbf{v}_{j}(\lambda)+b_{3} \mathbf{v}_{k}(\lambda), \lambda \in I_{i j k}\right\}$
- $I_{i j k}$ is an interval containing 0
- $F\left(b_{1}, b_{2}, b_{3}, \lambda\right)=\sum_{i+j+k=n} b_{i j k}(\lambda) B_{i j k}^{n}\left(b_{1}, b_{2}, b_{3}\right)$
- $B_{i j k}^{n}\left(b_{1}, b_{2}, b_{3}\right)=\frac{n!}{i!j!k!} b_{1}^{i} b_{2}^{j} b_{3}^{k}$
- $n>2$ so that S is smooth. We consider the case $\mathrm{n}=3$. $b_{i j k}(\lambda)$ are determined so that C^{1} continuity is obtained across the patch boundaries.

Parametrization for FEM/BEM

To evaluate $\int_{\Gamma} f(\mathbf{x}) d S=\sum_{j} \int_{\Gamma_{j}} f(\mathbf{x}) d S$, where Γ_{j} is the jth surface element

$$
\int_{\Gamma_{i}} f(\mathbf{x}) d S=\int_{\sigma_{i}} f\left(x\left(b_{1}, b_{2}\right), y\left(b_{1}, b_{2}\right), z\left(b_{1}, b_{2}\right)\right) \sqrt{E G-F^{2}} d b_{1} d b_{2}
$$

where

$$
\begin{aligned}
E & =\left(\frac{\partial x}{\partial b_{1}}\right)^{2}+\left(\frac{\partial y}{\partial b_{1}}\right)^{2}+\left(\frac{\partial z}{\partial b_{1}}\right)^{2} \\
F & =\frac{\partial x}{\partial b_{1}} \frac{\partial x}{\partial b_{2}}+\frac{\partial y}{\partial b_{1}} \frac{\partial y}{\partial b_{2}}+\frac{\partial z}{\partial b_{1}} \frac{\partial z}{\partial b_{2}} \\
G & =\left(\frac{\partial x}{\partial b_{2}}\right)^{2}+\left(\frac{\partial y}{\partial b_{2}}\right)^{2}+\left(\frac{\partial z}{\partial b_{2}}\right)^{2}
\end{aligned}
$$

Apply the quadrature over the planar triangle,

$$
\left.\int_{\sigma_{i}} f\left(b_{1}, b_{2}\right) \sqrt{E G-F^{2}} d b_{1} d b_{2} \approx \sum_{k=1}^{n} W_{k} f\left(b_{1}^{k}, b_{2}^{k}\right) \sqrt{E G-F^{2}}\right|_{b_{1}^{k}, b_{2}^{k}}
$$

Center for Computational Visualization

Force Calculation

- The method to compute the surface integral is as same as the electrostatic solvation energy calculation.
- For volume integral in the force calculation, cubature over a spherical shell needs to be generated and fast summation method can be applied to evaluate the numerical cubature.
- For symmetric structures, both the surface integral and the volume integral can be sped up by doing the sampling over a single subunit and applying transformations for other subunits.

Error Estimation (I)

Center for Computational Visualization

Error Estimation (II)

A) NFFT error

$$
\begin{aligned}
& \left|I_{2}\left(\mathbf{x}_{i}\right)-\widetilde{I}\left(\mathbf{x}_{i}\right)\right| \leq E_{f}\left(\mathbf{x}_{i}\right)+E_{t}\left(\mathbf{x}_{i}\right) \\
& \left\|E_{f}\right\|_{\infty} \leq\|\hat{f}\|_{1} \max _{\mathbf{u} \in I_{n}} \sum_{r \in \mathcal{Z}^{\backslash} \backslash\{0\}}|\hat{\phi}(\hat{\mathbf{u}}+n r) / \hat{\phi}(\mathbf{u})| \\
& \left\|E_{t}\right\|_{\infty} \leq\|\hat{f}\|_{1} n^{-3}\left(\max _{\mathbf{u} \in I_{n}}|\hat{\phi}(\hat{\mathbf{u}})|^{-1}\right) \sum_{\| \in I_{\sigma n}}\left|\phi\left(\mathbf{x}-\frac{1}{\sigma_{n}}\right)-\psi\left(\mathbf{x}-\frac{1}{\sigma_{n}}\right)\right| \\
& \text { where } \quad\|\hat{f}\|_{1}=\sum_{\hat{\mathbf{u}} \in I_{n}}\left|\hat{f}_{\mathbf{u}}\right|
\end{aligned}
$$

Steidl, ACM (1998), 337-352

Center for Computational Visualization

Error Estimation (III)

B) Cubature error

By Peano's theorem, the Gaussian Cubature error for $f \in C^{2 m}$ is

$$
E_{m}(f)=\left|\int_{a}^{b} f(x) d x-\sum_{k=1}^{m} w_{k} f\left(x_{k}\right)\right|=\frac{(b-a)^{2 m+1}(m!)^{4}}{(2 m+1)[(2 m)!]^{3}}\left|f^{(2 m)}(\xi)\right|
$$

For 2D quad patches:

$$
E_{m_{1} m_{2}}(f)=\left|\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f(x, y) d y d x-\sum_{i=1}^{m_{1}} \sum_{j=1}^{m_{2}} A_{i} B_{j} f\left(x_{i}, y_{j}\right)\right| \leq\left(b_{2}-a_{2}\right) E_{m_{1}}+\left(b_{1}-a_{1}\right) E_{m_{2}}
$$

Let $m_{1}=m_{2}=m, N_{P}$ be the number of patches, $M=\max \left\{\left\|\frac{\partial^{2 m}}{\partial u^{m} n^{m}}\right\|_{\infty},\left\|\frac{\partial^{2 m} \nu^{2}}{\partial \nu^{2} m}\right\|_{\infty}\right\}$ $h(u, v)=f(\mathbf{g}(u, v))|J(\mathbf{g})|$

$$
\left|I\left(\mathbf{x}_{i}\right)-I_{1}\left(\mathbf{x}_{i}\right)\right| \leq N_{P} \frac{\left(u_{2}-u_{1}\right)\left(v_{2}-v_{1}\right)(m!)^{4}}{(2 m+1)[(2 m)!]^{3}} M\left(h_{u}{ }^{2 m}+h_{v}^{2 m}\right)
$$

Error Estimation (IV)

C) Fourier series truncation error

$$
R_{n}=I_{1}(\mathbf{x})-I_{2}(\mathbf{x})=\sum_{\dot{\mathbf{u}} \in I_{\infty} \backslash I_{n}} b_{\grave{u}} e^{2 \pi \dot{\mathbf{u}} \cdot \mathbf{x}}
$$

In one dimension,
$\left|R_{n}\right| \leq \sum_{\omega=n+1}^{\infty}\left(\left|b_{\omega}\right|+\left|b_{-\omega}\right|\right)$, where $\quad b_{\omega}=\int_{-\frac{1}{2}}^{\frac{1}{2}} K(x) e^{-2 \pi i \omega x} d x$
If $K \in C^{2 m}, m \geq 1$, by successive integration by parts,
$\left|b_{\omega}\right| \leq\left(\frac{1}{2 \pi \omega}\right)^{2 m} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|K^{(2 m)}(x)\right| d x=\left(\frac{1}{2 \pi \omega}\right)^{2 m} \mu_{2 m}$
$\left|R_{n}\right| \leq \frac{2 \mu_{2 m}}{(2 \pi)^{2 m}} \sum_{\omega=n+1}^{\infty} \frac{1}{\omega^{2 m}} \leq \frac{2 \mu_{2 m}}{(2 \pi)^{2 m}} \int_{n}^{\infty} \frac{1}{\omega^{2 m}} d \omega=\frac{2 \mu_{2 m}}{(2 \pi)^{2 m}(2 m-1) n^{2 m-1}}$

Center for Computational Visualization

GB versus PB

Center for Computational Visualization
Feig et al, JCC(2004), 25, 265-284
Institute of Computational and Engineering Sciences
Department of Computer Sciences

Generalized Born Energetics

Name	Year	Authors	Program	Calculation of Born radii	CFA Corr.	Dielectric Boundary
GB GB/SA	1990	Still, Tempczyk, Hawley, Hendrickson	Macromodel	FDPB	Yes	Molecular surface
GB	1995	Hawkins, Cramer, Truhlar	Amber, Tinker	Pairwise descreening	No	Overlapping spheres
ACE	$1996 /$ 2001	Schaefer, Karplus	CHARMM	Pairwise sum of atomic volumes	No	Overlapping Gaussians
GB	1997	Qiu, Shenkin, Hollinger, Still	Macromodel, Tinker	Pairwise sum of atomic volumes	No	Overlapping spheres
S-GB	1998	Ghosh, Rapp, Friesner	Impact	Surface integral formulation	Yes	Overlapping spheres
GB1	1999	Dominy, Brooks	CHARMM	Pairwise sum of atomic volumes	No	Overlapping spheres
GBMV	$2002 /$	Lee, Salsbury, Feig, Brooks	CHARMM	Numerical integration	Yes	Molecular surface
GBSW	2003	Im, Lee, Brooks	CHARMM	Numerical integration	Yes	Overlapping spheres + smooth boundary
AGB	2004	Gallicchio, Levy	Impact	Pairwise descreening	No	Overlapping spheres
GB	2004	Onufriev, Case	Amber	Pairwise descreening, radius rescaling	No	Molecular surface

Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences

The solvation energy consists of three components:

- solute-solvent cavity formation
- solute-solvent hydrophobicity (van der Waals interaction)
- solute-solvent electrostatic polarization

$$
G_{s o l}=G_{c a v}+G_{v d w}+G_{p o l}
$$

$$
G_{s o l}=G_{c a v}+G_{v d w}+G_{p o l}
$$

- $G_{c a v}+G_{v d w}=\sum_{k} \sigma_{k} S A_{k}$
σ_{k} : empirical parameter
(7.2 cal/(mol $\left.\AA^{2}\right)$, still et al, 1990)
$S A_{k}$: solvent-accessible surface area

- $G_{p o l}$: Poisson theory or generalized Born (GB) theory
Given an accurate calculation of the Born radii, GB energy can reproduce Poisson energy within 1% error. (Lee et al, 2002)

Center for Computational Visualization

Poisson theory

Model:

Solvent: high-dielectric continuum, e.g. water $\varepsilon=81.5 \quad\left(14^{\circ} \mathrm{C}\right)$
Solute: a macromolecule of lower dielectric embedding charges
The electrostatic potential ϕ in such a system is

$$
-\nabla \cdot[\varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r})]=4 \pi \rho(\mathbf{r}) \quad \text { (Poisson equation) }
$$

$\rho(r)$: charge density at the position r

$$
\varepsilon(r)= \begin{cases}\varepsilon_{i n} & \text { if } \mathrm{r} \text { is in the molecule interior } \\ \varepsilon_{e x} & \text { if } \mathrm{r} \text { is in the exterior }\end{cases}
$$

For gas phase (air), $\varepsilon_{e x}=1 \quad \Rightarrow \quad \phi=\phi_{v a c}(\mathbf{r})$
For solvent phase, $\varepsilon_{e x}=\varepsilon_{\text {solvent }} \Rightarrow \phi=\phi_{\text {sol }}(\mathbf{r})$
finite difference or boundary element method (expensive calculation!)

The electrostatic energy is equivalent to the work required to assemble a charge distribution, so

$$
G=\frac{1}{2} \int \rho(\mathbf{r}) \phi(\mathbf{r}) d V
$$

The electrostatic component of the solvation energy is

$$
G_{p o l}=\frac{1}{2} \int\left(\phi_{s o l}(\mathbf{r})-\phi_{v a c}(\mathbf{r})\right) \rho(\mathbf{r}) d V
$$

Generalized Born theory

Simple case: one ion of radius a and charge q
The electrostatic solvation energy is

$$
G_{\text {pol }}=\frac{q^{2}}{2 a}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right)
$$

(Born formula)

General case: A molecule consists of atoms of radii $a_{1} \ldots a_{N}$ with charges $q_{1} \ldots q_{N}$, and $r_{i j}$ is the distance between atom i and j , the electrostatic solvation energy is

$$
G_{\text {pol }}=\frac{1}{2}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right) \sum_{i, j} \frac{q_{i} q_{j}}{\left[r_{i j}^{2}+R_{i} R_{j} \exp \left(-\frac{r_{i j}^{2}}{4 R_{i} R_{j}}\right)\right]^{\frac{1}{2}}}
$$

R_{i} : Born radius of atom i
(Still et al, 1990)

Born radius

The Born radius is chosen in this way: we assume that there is a single charge q_{i} located at the center of atom i in the molecule. We solve the Poisson equation for this system. If we let it be equivalent to another system where there is a sphere of radius R_{i} with charge q_{i} at its center, then R_{i} is the effective Born radius of atom i. So

$$
\frac{1}{2} q_{i}\left(\phi_{\text {sol }}-\phi_{\text {vac }}\right)=\frac{q_{i}^{2}}{2 R_{i}}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right)
$$

Not practical !

A practical approach to compute $R_{i}:($ Donald Bashford et al, 2000)
In classical electrostatics the work required to assemble a continuous charge distribution is

$$
W=\frac{1}{2} \int \rho(\mathbf{r}) \phi(\mathbf{r}) d V
$$

From Poisson equation, we know that

$$
\rho=\frac{\varepsilon}{4 \pi} \nabla \cdot \mathbf{E}
$$

So

$$
W=\frac{1}{8 \pi} \int \varepsilon \phi \nabla \cdot \mathbf{E} d V
$$

Because of the fact that $\nabla \cdot(\mathbf{E} \phi)=\phi \nabla \cdot \mathbf{E}+\mathbf{E} \cdot \nabla \phi$ and $\nabla \phi=-\mathbf{E}$ therefore

$$
W=\frac{1}{8 \pi}\left[\int \varepsilon \nabla \cdot(\mathbf{E} \phi) d V+\int \varepsilon \mathbf{E} \cdot \mathbf{E} d V\right]
$$

Center for Computational Visualization
$W=\frac{1}{8 \pi}\left[\int \varepsilon \nabla \cdot(\mathbf{E} \phi) d V+\int \varepsilon \mathbf{E} \cdot \mathbf{E} d V\right]$
Apply Gauss' theorem: $\quad \int_{V}(\nabla \cdot \mathbf{F}) d V=\int_{\partial V} \mathbf{F} \cdot d \mathbf{S}$

$$
W=\frac{1}{8 \pi}\left[\oint_{S} \varepsilon \mathbf{E} \phi d \mathbf{S}+\int_{V} \varepsilon \mathbf{E} \cdot \mathbf{E} d V\right]
$$

Assume the solute is embedded in an infinite water dielectric. The electric field at far distance from the charge distribution looks like the field of a point charge, so

$$
E \sim \frac{1}{r^{2}} \quad \phi \sim \frac{1}{r} \quad S \sim r^{2} \quad \oint_{S} \varepsilon \mathbf{E} \phi d \mathbf{S} \sim \frac{1}{r}
$$

As $r \rightarrow \infty$

$$
W=\frac{1}{8 \pi} \int \varepsilon \mathbf{E} \cdot \mathbf{E} d V
$$

The electric field due to charge q_{i} (lying on the origin) is

$$
\left.\mathbf{E}_{\mathrm{i}}=\frac{q_{i} \mathbf{r}}{\varepsilon r^{3}} \quad \text { (Coulombic electric field }\right)
$$

Center for Computational Visualization

The electrostatic energy of the system :

$$
G_{i}=\frac{1}{8 \pi} \int \varepsilon \mathbf{E} \cdot \mathbf{E} d V \approx \frac{1}{8 \pi} \int_{i n} \frac{q_{i}^{2}}{r^{4} \varepsilon_{i n}} d V+\frac{1}{8 \pi} \int_{e x} \frac{q_{i}^{2}}{r^{4} \varepsilon_{e x}} d V
$$

The electrostatic solvation energy of this system is

$$
G_{p o l}^{i}=G_{i, \text { solvent }}-G_{i, a i r}=\frac{1}{8 \pi}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right) \int_{e x} \frac{q_{i}^{2}}{r^{4}} d V
$$

The electrostatic solvation energy of the system:

$$
G_{\text {pol }}^{i}=\frac{q_{i}^{2}}{2 R_{i}}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right)
$$

Center for Computational Visualization

$$
\begin{aligned}
& \xrightarrow{\frac{1}{8 \pi}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right) \int_{\text {ex }} \frac{q_{i}^{2}}{r^{4}} d V=\frac{q_{i}^{2}}{2 R_{i}}\left(\frac{1}{\varepsilon_{\text {solvent }}}-1\right)} \\
& R_{i}^{-1} \\
& =\frac{1}{4 \pi} \int_{e x} \frac{1}{r^{4}} d V \\
& \\
& =\frac{1}{4 \pi}\left(\int_{V, r>a_{i}} \frac{1}{r^{4}} d V-\int_{\text {in,r>ai }} \frac{1}{r^{4}} d V\right) \quad\left(\int d V=\iint r^{2} d r d \Omega\right) \\
& \quad=a_{i}^{-1}-\frac{1}{4 \pi} \int_{i n, r>a_{i}} \frac{1}{r^{4}} d V
\end{aligned}
$$

A sphere of radius a_{i} (the van der Waals radius of atom i) is excluded from the integration domain to avoid singularity at 0 .

Electrostatic Solvation Energy

- $G_{\text {pol }}=\frac{1}{2} \int\left[\phi_{\text {solvent }}(\mathbf{r})-\phi_{\text {air }}(\mathbf{r})\right] \rho(\mathbf{r}) d V$

Poisson-Boltzmann (PB) theory:

$\nabla \cdot[\varepsilon(\mathbf{r}) \nabla \phi(\mathbf{r})]=\rho_{c}(\mathbf{r})+\rho_{b}(\mathbf{r})$
$\rho_{c}(\mathbf{r})=-4 \pi \sum_{k=1}^{M} q_{k} \delta\left(\mathbf{r}-\mathbf{x}_{k}\right), \quad \rho_{b}(\mathbf{r})=\kappa^{2}(\mathbf{r})\left(\frac{k_{B} T}{e_{c}}\right) \sinh \left(\frac{e^{e} \phi(\mathbf{r})}{k_{B} T}\right)$
$\mathrm{R}^{3}-\Omega$:exterior
where

$\varepsilon(\mathbf{r})$	dielectric coefficient at \mathbf{r} position of charge point q_{k}	q_{k}	charge of atom k
\mathbf{x}_{k}	M	the number of point charge	
$\kappa(\mathbf{r})=\sqrt{\frac{8 \pi e_{c}^{2} I(\mathbf{r})}{k_{B} T}}$	center of atom k) modified Debye-Huckel parameter	e_{c}	charge of an electron
k_{B}	Boltzmann's constant	T	absolute temperature
$I(\mathbf{r})=\frac{1}{2} \sum_{i} c_{i} z_{i}^{2}$	ionic strengths at \mathbf{r}	c_{i}, z_{i}concentration and charge of ith ionic species	

Center for Computational Visualization

Electrostatic Solvation Energy

PB theory: (cont.)

After we solve the PB equations, we could calculate the reaction field energy

$$
G_{r f}\left(\kappa, \varepsilon_{e}\right)=\frac{1}{2} \sum_{k=1}^{M} \phi\left(\mathbf{x}_{k}\right) q_{k}
$$

and the electrostatic solvation energy

$$
G_{p o l}\left(\kappa, \varepsilon_{e}\right)=G_{r f}\left(\kappa, \varepsilon_{e}\right)-G_{r f}(0,1)
$$

Linear Poisson-Boltzmann Equation

The LPB equation is formally correct when $q_{i} \phi(r) / k T \ll 1$

$$
\nabla(\epsilon(\vec{x}) \nabla \phi(\vec{x}))=\rho_{c}(\vec{x})+\rho_{b}^{L}(\vec{x})
$$

Where $\rho_{b}^{L}(x)$ is the first term of Taylor expansion of $\rho_{b}(x)$

$$
\begin{aligned}
\rho_{b}(x) & =\frac{k_{B} T}{e_{c}} \sinh \left(\frac{e_{c} \phi(\vec{x})}{k_{B} T}\right) \\
& =\phi(\vec{x})+\frac{k_{B} T}{e_{c}}\left(\frac{1}{3!}\left(\frac{e_{c} \phi(\vec{x})}{k_{B} T}\right)^{3}+\frac{1}{5!}\left(\frac{e_{c} \phi(\vec{x})}{k_{B} T}\right)^{5}+\ldots\right)
\end{aligned}
$$

Boundary Element Solution to LPBE

The boundary element representation of the solution:

$$
\begin{array}{ll}
\nabla(\epsilon(x) \nabla \phi(x))=-4 \pi \sum_{k=1}^{n_{c}} q_{k} \delta\left(x-x_{k}\right) & \\
\mathrm{x} \in \Omega \\
\nabla(\epsilon(x) \nabla \phi(x))=\kappa^{2} \phi(x) & \\
\mathrm{x} \in R^{3} \backslash \Omega
\end{array}
$$

The interface continuous condition on the boundary Γ of Ω

$$
\begin{array}{llll}
\phi(\vec{x}) & =\phi_{1}(\vec{x}) & =\phi_{2}(\vec{x}) & \\
\mathrm{x} \in \Gamma \\
\frac{\partial \phi}{\partial n_{x}}(\vec{x})=\frac{\partial \phi_{1}}{\partial n_{x}}(\vec{x})=\frac{\epsilon_{e}}{\epsilon_{i}} \frac{\partial \phi_{2}}{\partial n_{x}}(\vec{x}) & & \mathrm{x} \in \Gamma
\end{array}
$$

Nonderivative Boundary Integral Equations

Apply Green's second identity to the above equations

$$
\int_{\Omega}\left(\phi \nabla^{2} \psi-\psi \nabla^{2} \phi\right) \cdot d \Omega=\int_{\Gamma}(\phi \nabla \psi-\psi \nabla \phi) \cdot d \Gamma
$$

We can get the boundary integral equations:

$$
\begin{aligned}
& \frac{1}{2} \phi(x)+\int_{\Gamma} \frac{1}{4 \pi}\left(\frac{\partial}{\partial n_{y}} \frac{1}{|x-y|} \phi(y)-\frac{1}{|x-y|} \frac{\partial \phi(y)}{\partial n_{y}}\right) d \Gamma=\sum_{k=1}^{n_{c}} \frac{q_{k}}{4 \pi \epsilon_{i}\left|x-x_{k}\right|} \\
& \frac{1}{2} \phi(x)+\int_{\Gamma} \frac{1}{4 \pi}\left(\frac{\epsilon_{e}}{\epsilon_{i}} \frac{e^{-\kappa|x-y|}}{|x-y|} \frac{\partial \phi(y)}{\partial n_{y}}-\frac{\partial}{\partial n_{y}} \frac{e^{-\kappa|x-y|}}{|x-y|} \phi(y)\right) d \Gamma=0
\end{aligned}
$$

Derivative Boundary Integral Equations

Let $G_{0}(x, y)=\frac{1}{4 \pi|x-y|}$ and $G_{\kappa}(x, y)=\frac{e^{-\kappa|x-y|}}{4 \pi|x-y|}$

Then

$$
\begin{aligned}
& \frac{1}{2}\left(1+\frac{\epsilon_{e}}{\epsilon_{i}}\right) \phi(x)+\int_{\Gamma}\left(\frac{\partial G_{0}(x, y)}{\partial n_{y}}-\frac{\partial G_{x}(x, y)}{\partial n_{y}}\right) \phi(y) d \Gamma \\
& -\int_{\Gamma}\left(G_{0}(x, y)-G_{k}(x, y)\right) \frac{\partial \phi(y)}{\partial n_{y}} d \Gamma=\sum_{k=1}^{n_{c}} \frac{q_{k}}{\epsilon_{i}} G_{0}\left(x, x_{k}\right) \\
& \frac{1}{2}\left(1+\frac{\epsilon_{i}}{\epsilon_{\epsilon}}\right) \frac{\partial \phi(x)}{\partial n_{x}}+\int_{\Gamma}\left(\frac{\partial^{2} \sigma_{0}(x, y)}{\partial n_{x} \partial \eta_{y}}-\frac{\epsilon_{e}}{\epsilon_{i}} \frac{\partial^{2} \sigma_{\epsilon}(x, y)}{\partial_{x} \partial n_{y}}\right) \phi(y) d \Gamma \\
& -\int_{\Gamma}\left(\frac{\partial \sigma_{0}(x, y)}{\partial n_{x}}-\frac{\epsilon_{\epsilon}}{\epsilon_{e}} \frac{\partial G_{\kappa}(x, y)}{\partial n_{x}}\right) \frac{\partial \phi(y)}{\partial n_{y}}=\sum_{k=1}^{n_{c}} \frac{q_{k}}{\epsilon_{i}} \frac{\partial G_{0}\left(x, x_{k}\right)}{\partial n_{x}}
\end{aligned}
$$

Numerical Treatment of Boundary Integral Equations using A-Spline

The numerical treatment of the boundary integral equations of the LPBE:

$$
\begin{aligned}
& \frac{1}{2}\left(1+\frac{\epsilon_{e}}{\epsilon_{i}}\right) \phi(x) \\
& =\sum_{e=1}^{E} \frac{\partial \phi}{\partial n}\left(x_{e}\right) \sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{k}\right)\left(G_{0}\left(x, b_{1}^{k}, b_{2}^{k}\right)-G_{\kappa}\left(x, b_{1}^{k}, b_{2}^{k}\right)\right) \\
& \left.-\sum_{e=1}^{E}=\frac{\phi\left(x_{e}\right)}{}\right) \sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{K}\right)\left(\frac{\partial G_{0}}{\partial n}\left(x, b_{1}^{k}, b_{2}^{K}\right)-\frac{\partial G_{n}}{\partial n}\left(x, b_{1}^{k}, b_{2}^{k}\right)\right) \\
& +\sum_{k=1}^{\bar{r}_{k}} \frac{q_{k}}{\epsilon_{i}} G_{0}\left(x, x_{k}\right)
\end{aligned}
$$

where
x_{e} : center of the eth element
E : number of elements
X : collocation point

Numerical Treatment of Boundary Integral Equations using A-Spline

Since $y=\sum_{i=1}^{3} b_{i} v_{i}(\lambda)$, we have

$$
\begin{aligned}
& G_{0}(x, y)=\frac{1}{4 \pi\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|} \quad G_{\kappa}(x, y)=\frac{e^{-\kappa\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|}}{4 \pi\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|} \\
& \frac{\partial G_{0}(x, y)}{\partial n_{y}}=\frac{-\left(x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right) \cdot n_{y}(\lambda)}{4 \pi\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|^{3}} \\
& \frac{\partial G_{\kappa}(x, y)}{\partial n_{y}}=\frac{-e^{-\kappa\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|}\left(1+\kappa\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|\right)\left(x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right) \cdot n_{y}}{4 \pi\left|x-\sum_{i=1}^{3} b_{i} v_{i}(\lambda)\right|^{3}}
\end{aligned}
$$

Numerical Treatment of Boundary Integral Equations using A-Spline

The boundary integral equations become

$$
\begin{aligned}
\frac{1}{2}\left(1+\frac{\epsilon_{e}}{\epsilon_{i}}\right) \phi(x) & =\sum_{e=1}^{E} \frac{\partial \phi}{\partial n}\left(X_{e}\right) \sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{k}\right) \frac{1-e^{-\kappa\left|x-\sum b_{i} v_{i}(\lambda)\right|}}{4 \pi\left|x-\sum b_{i} v_{i}(\lambda)\right|} \\
& -\sum_{e=1}^{E} \phi\left(X_{e}\right) \sum_{k}\left(W_{k f} J\left(b_{1}^{k}, b_{2}^{k}\right)\right. \\
& \left.\times \frac{\left(-1+\left(1.0+\kappa\left|x-\sum b_{i} v_{i}(\lambda)\right|\right) e^{-\kappa\left|x-\sum b_{i} v_{i}(\lambda)\right|}\right)\left(x-\sum b_{i} v_{i}(\lambda)\right) \cdot n_{y}(\lambda)}{4 \pi\left|x-\sum b_{i} v_{i}(\lambda)\right|^{3}}\right) \\
& +\sum_{k=1}^{n_{c}} \frac{q_{k}}{\epsilon_{i}} \frac{1}{4 \pi\left|x-x_{k}\right|}
\end{aligned}
$$

where

$$
n_{y}(\lambda)=\nabla F=T^{-1}\left(\frac{\partial F}{\partial b_{1}}, \frac{\partial F}{\partial b_{2}}, \frac{\partial F}{\partial \lambda}\right)^{T}
$$

Center for Computational Visualization

Boundary Element Solver to LPBE

The linear system of LPBE boundary element solver are

$$
\begin{aligned}
\frac{1}{2}\left(1+\frac{\epsilon_{e}}{\epsilon_{i}}\right) \phi_{j} & =\sum_{e=1}^{E} \frac{\partial \phi^{e}}{\partial n} A_{j}^{e}+\sum_{e=1}^{E} \phi^{e} B_{j}^{e}+\sum_{k=1}^{n_{c}} q_{k} G_{0}\left(x_{j}, x_{k}\right) \\
\frac{1}{2}\left(1+\frac{\epsilon_{i}}{\epsilon_{e}}\right) \frac{\partial \phi_{j}}{\partial n} & =\sum_{e=1}^{E} \frac{\partial \phi^{e}}{\partial n} D_{j}^{e}+\sum_{e=1}^{E} \phi^{e} C_{j}^{e}+\sum_{k=1}^{n_{c}} q_{k} \frac{\partial G_{0}}{\partial n}\left(x_{j}, x_{k}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{i}^{e}=\sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{k}\right)\left(G_{0}\left(x, b_{1}^{k}, b_{2}^{k}\right)-G_{k}\left(x, b_{1}^{k}, b_{2}^{k}\right)\right) \\
& B_{i}^{e}=\sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{K}\right)\left(\frac{\partial G_{0}}{\partial n_{i}}\left(x, b_{1}^{k}, b_{2}^{k}\right)-\frac{\epsilon_{e}}{\epsilon_{i}} \frac{\partial G_{k}}{\partial n}\left(x, b_{1}^{k}, b_{2}^{k}\right)\right) \\
& C_{i}^{e}=\sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{k}\right)\left(\frac{\partial^{2} G_{0}}{\partial n_{j} \partial n}\left(x, b_{1}^{k}, b_{2}^{k}\right)-\frac{\partial^{2} G_{\kappa}}{\partial n_{i} \partial n}\left(x, b_{1}^{k}, b_{2}^{k}\right)\right) \\
& D_{i}^{e}=\sum_{k} W_{k f} J\left(b_{1}^{k}, b_{2}^{k}\right)\left(\frac{\partial G_{0}}{\partial n_{i}}\left(x, b_{1}^{k}, b_{2}^{k}\right)-\frac{\epsilon_{i}}{\epsilon_{\theta}} \frac{\partial G_{k}}{\partial n_{i}}\left(x, b_{1}^{k}, b_{2}^{k}\right)\right)
\end{aligned}
$$

F^3 Dock: Fast Flexible Fourier Docking

$f_{A}+f_{B}$

-fA grown layer: Sampled SAS with pseudo atom centers

-fA: Atom centers of the protein
-fB surface skin: Surface atoms
-fB interior:Atoms of B which are not surface atoms

Affinity based Scoring I

- Summation of Weighted Gaussians with following coefficients:

Region	Function	Coeff. weights
f_{A} grown layer	positive real	1
f_{A}	positive imaginary	2 i
f_{B} sufface skin	positive real	1
f_{B} interior atoms	positive imaginary	2 i

- Affinity:
- $\left(f_{A}, f_{B}{ }^{\text {interior atoms }}\right)$ overlap: pos imag. * pos imag. $=(-)$ ve real

- $\left(f_{A}, f_{B}\right.$ surface skin $) \& \&\left(f_{A}\right.$ grown layer, $\left.f_{B}{ }^{\text {interior atoms }}\right)$ overlap: ignore
- Maximal values indicate regions of high skin overlaps and low interior clashes, and therefore highly plausible docking sites.

Affinity based Scoring II

$$
\begin{aligned}
& f_{1}(\vec{x})=F_{A}^{\text {grown layer }}(\vec{x})+F_{A}(\vec{x})=F_{A}^{R e}(\vec{x})+F_{A}^{I m}(\vec{x}) \\
& f_{2}(\vec{x})=F_{B}^{\text {surfaceskin }}(\vec{x})+F_{B}^{\text {interior atoms }}(\vec{x})=F_{B}^{R e}(\vec{x})+F_{B}^{I m}(\vec{x})
\end{aligned}
$$

- The score of the overlap of two functions, one shifted by \mathbf{x} is given by the integral of their product.

$$
s(\vec{x})=\int_{\vec{y} \in R^{3}} f_{1}(\vec{y}) f_{2}(\vec{x}-\vec{y}) d \vec{y}
$$

- If we rotate the second function by \mathbf{R}, we get the overlap score to be:

$$
s(\vec{x})=\int_{\vec{y} \in R^{3}} f_{1}(\vec{y})\left(\Delta_{R}\left(f_{2}\right)\right)(\vec{x}-\vec{y}) d \vec{y}
$$

Location of the maximum score, over all \mathbf{R} and \mathbf{x} is recorded as a potential dockino nocition.

$$
\text { pos }=\arg \max _{[\vec{x}, R]} \int_{\vec{y} \in R^{3}} f_{1}(\vec{y})\left(\Delta_{R}\left(f_{2}\right)\right)(\vec{x}-\vec{y}) d \vec{y}, \forall[\vec{x}, R]
$$

Center for Computational Visualization

F^3 Dock: results

Calmodulin (1CLL.PDB) with a peptide (myosin light chain kinase)

148, 36 residues

98 conformation samplings to keep <2A difference. Used 32^{3} Fourier coefficients

Open pos: 6.2769

Closed pos: 9.8430

The docking position is in the list of the top 10\% of all combinations checked

Center for Computational Visualization

More Reading

- Molecular modelling: Principles and applications, A.R. Leach 2001, Prentice-Hall
- Molecular modeling and simulation: An interdisciplinary guide, T. Schlick 2003, Springer-Verlag
-Understanding molecular simulation: From algorithms to applications, D. Frenkel, B. Smit 1998 Academic Press
-Computer simulation of biomolecular systems, W.F. van Gunsteren et al. 1997 Kluwer

Further Reading: GB Theory

1. W. Still, A. Tempczyk, R. Hawley, T. Hendrickson. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127-6129, 1990.
2. G. Hawkins, C. Cramer, D. Truhlar. Pairwise solute descreening of solute charges from a dielectric medium. Chemical Physics Letters 246, 122-129, 1995.
3. M. Schaefer, M. Karplus. A comprehensive analytical treatment of continuum electrostatics. J. Phys. Chem. 100, 1578-1599, 1996.
4. M. Schaefer, C. Bartels, F. Leclerc, M. Karplus. Effective atom volumes for implicit solvent models: comparison between Voronoi volumes and minimum fluctuation volumes.
J. Comput Chem. 22, 1857-1879, 2001.
5. D. Qiu, P. Shenkin, F. Hollinger, W. Still. The GB/SA continuum model for solvation. A fast analytical method for the calculation of approximate born radii. J. Phys. Chem. A, 101, 3005-3014, 1997.
6. A. Ghosh, C. Rapp, R. Friesner. Generalized Born model based on a surface integral formulation. J. Phys. Chem. B, 102, 10983-10990, 1998.

Center for Computational Visualization

Further Reading: GB Theory

7. B. Dominy, C. Brooks. Development of a generalized Born model parametrization for proteins and nucleic acids. J. Phys. Chem. B, 103, 3765-3773, 1999.
8. M. Lee, F. Salsbury, C. Brooks. Novel generalized Born methods. J Chemical Physics, 116, 10606-10614, 2002.
9. M. Lee, M. Feig, F. Salsbury, C. Brooks. New analytic approximation to the standard molecular volume definition and its application to generalized Born calculations.
J. Comput Chem. 24, 1348-1356, 2003.
10. W. Im, M. Lee, C. Brooks. Generalized Born model with a simple smoothing function. J. Comput Chem. 24, 1691-1702, 2003.
11. A. Onufriev, D. Bashford, D. Case. Modification of the generalized Born model suitable for macromolecules. J. Phys. Chem. B 104, 3712-3720, 2000.
12. Amber: http://amber.scripps.edu/

Protein-protein docking

- Early sphere matching by Kuntz et al.:

Irwin D. Kuntz, Jeffrey M. Blaney, Stuart J. Oatley, Robert Langridge, and Thomas E. Ferrin.
A geometric approach to macromolecule-ligand interactions.
Journal of Molecular Biology, 161(2):269-288, October 1982.

- Hashing based scheme:

Daniel Fischer, Raquel Norel, Ruth Nussinov, and Haim J. Wolfson.
3-d docking of protein molecules.
In CPM '93: Proceedings of the $4^{\text {th }}$ Annual Symposium on Combinatorial Pattern Matching, pages 20-34, London, UK, 1993. Springer-Verlag.

- FFT grid based:

Ephraim Katchalski-Katzir, Isaac Shariv, Miriam Eisenstein, Asher A. Friesem, Claude Aflalo, and Ilya A. Vakser.
Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques.
Proceedings of the National Academy of Sciences of the United States of America, 89(6):2195-2199, March 1992.

- ZDock: (same algorithm as above)

Rong Chen, Li Li, and Zhiping Weng. Zdock:
An initial-stage proteindocking algorithm.
Proteins: Structure, Function, and Genetics, Special Issue: CAPRI - Critical Assessment of PRedicted
Interactions. Issue edited by Jol Janin, 52(1):80-87, May 2003.

- Harmonics based algorithms:

Willy Wriggers and Pablo Chacon.
Modeling tricks and fitting techniques for multiresolution structures.
Structure, 9(9):779-788, September 2001.

- Hex:
D. Ritchie.

Evaluation of protein docking predictions using hex 3.1 in capri rounds 1 and 2. Proteins:
Structure, Function, and Genetics, 52(1):98-106, July 2003.
Center for Computational Visualization
Institute of Computational and Engineering Sciences
Department of Computer Sciences
University of Texas at Austin

Further Reading: Virtual Screening

- AutoDock from TSRI
D. S. Goodsell and Arthur J. Olson,

Automated docking of substrates to proteins by simulated Annealing,
Proteins:Structure, Function and Genetics, 1990, 8,3, 195--202

- Quick Explore (QXP) from Novartis Pharmaceuticals
R. T. Kroemer, A. Vulpetti, J. J. McDonald, D. G, Rohrer, J. Y. Trosset, F. Giordanetto, S. Cotesta, C. McMartin, M. Kihln and P. F. W. Stouten,
Assessment of docking poses: interactions-based accuracy classification (IBAC) versus crystal structure deviations, J Chem Inf Comput Sci, 2004, 44, 871-888
- Gold, a collaborative project between Sheffield University, Glaxo-Wellcome and the Cambridge Crystallographic Data Center (CCDC)
G. Jones, P. Willett, R. C. Glen, A. R. L. Leach and R. Taylor,

Development and Validation of a Genetic Algorithm for Flexible Docking,
Journal of Molecular Biology, 1997, 267, 727-748
Jones G, Willett P and Glen RC,
Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation,
Journal of Molecular Biology, 1995,245, 43--53

- FlexX was developed by Markus Lilienthal at BioSolveIT GmbH and Prof. Dr. Matthias Rarey at the Center for Bioinformatics (ZBH) of the University of Hamburg.
M. Rarey, B. Kramer and T. J. Lengauer,

Multiple automatic base selection: Protein-ligand docking based on incremental construction without manual intervention, Computer-Aided Mol. Design, 1997, 11, 369-384
M. Rarey, B. Kramer and T. Lengauer and G. Klebe, A Fast Flexible Docking Method using an Incremental Construction Algorithm, Journal of Molecular Biology, 1996, 261, 470-489.
M. Rarey, S. Wefing and T. J. Lengauer,

Placement of medium-sized molecular fragments into active sites of proteins, Computer-Aided Mol. Design, 1996, 10, 41--54

