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Introduction
Most if not all proteins in a cell are organized into cellular
machines that are built from up to several dozens of individual
proteins. For such multi-protein complexes, electron
tomographic imaging provides the only foreseeable way to 
obtain 3D structural information. All other structural 
techniques such as spectroscopic, diffraction or single-particle 
analysis cryo-electron microscopic techniques rely implicitly or 
explicitly on averaging of a large number of identical particles.
Electron tomography, in contrast, can provide 3D structural 
information of such unique volumes as whole cells. Although 
cellular tomographic imaging is no means a new technique, 
only recently it has received more attention. While recording 
devices (CCDs) are becoming larger, and data collection 
becomes faster, the bottleneck in this emerging field lies more 
and more on the visualization and interpretation of the 
tomograms. So why are tomograms so much harder to study 
and interpret? The answer may lie in the following co- mingled 
reasons: First, most tomograms exhibit a very low signal-to-
noise ratio. Second, the cellular machine does not reside in 
isolation but are embedded in their cellular context, and 
densely surrounded by other proteins that may or may not 
directly interact with the cellular machine. Third, we don't 
know the exact composition and conformation of cellular 
machines at the time of investigation. 

The poor signal-to-noise ratio usually observed in tomograms 
complicates the visualization of the volume as well as the 
automated feature extraction. Hence, noise reduction is always 
in demand as a pre-processing step to improve the signal-to-
noise ratio. Segmentation is often necessary to obtain an 
unobstructed view into the machinery's architectural 
organization, and to reduce the complexity of the scenery to 
allow for biological interpretation. Feature extraction is 
particularly challenging if cellular machine of interest is in 
close contact to its cellular surrounding, and if there is no 
preconception of its 3D structure. In such cases, manual 
segmentation approaches appear somewhat subjective and
become less feasible even with the help of 3D data re-slicing
along non-orthogonal angles to obtain a more favorable view, 
and sophisticated graphics tools. Moreover, they are unlikely 
to keep up with the amount of data that can be generated by 
modern-day electron microscope data collection schemes. The 
complexity of cellular 3D volumes requires some form of data 
reduction and simplification. Skeletonization may be a way to 
simplify 3D data sets while retaining their characteristics,
which is also important in comparing two complexes that are
similar but not identical. Skeletons will be helpful in 
comparing two such cellular machines and describing their 
similarities and discrepancies.

Anisotropic Filtering
Our approach to three dimensional nonlinear noise reduction 
filters, such as bilateral pre-filtering coupled with an evolution 
driven anisotropic geometric diffusion PDE (partial differential 
equation), have shown significant results in enhancing the 
visualization of macromolecular tomographic imaging. The PDE 
model is :

The efficacy of our method is based on a careful selection of the
anisotropic diffusion tensor    - based on estimates of the 
normal and two principal curvatures and curvature directions of a 
feature isosurface in three dimensions. 
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Fig. 2 A sub-volume of dataset comprising extracellular links between a
stereocilium and the kinociliar bulb in a bullfrog macular sensory epithelia 
hair bundle. 

Visualization Tool
The volume-rendering client can act as a 3D roving microscope,
allowing users to visualize data that is too large to fit on a single 
machine. The graphical user interface allows for interactive visual 
selection of transfer function and isosurface. The user interface 
also allows the user to move and resize the sub-volume window. 
The data within the sub-window is then transmitted by the server 
to the client computer, and displayed interactively using fast 
texture based volume rendering that can be combined with
rendered geometry. The rover connects to a data server that 
contains large datasets. The server can extract and resample sub-
volumes of different sizes, which are then transmitted to the client 
for visualization.

Fig. 1 Example of Volume Rover

3D Gradient Vector Diffusion
We propose a new method for gradient vector diffusion, based 
on anisotropic PDE-based diffusion:

where          is a decreasing function and     is the angle between 
the central vector and the surrounding vectors. For faster 
implementation, the calculation of the angle between two vectors 
is usually approximated by the inner-product of two vectors 
divided by their magnitudes. 

3D Segmentation
Our segmentation algorithm is based on the fast marching 
method and includes the following steps: First, we compute and 
diffuse the gradient vector field of the original density map. Then 
the critical points (local maxima and local minima) are calculated 
and used as the seeds of the marching contours. The critical 
points, and accordingly the marching contours, are classified into 
several groups. Two marching contours merge into a single one if
they come from the same group. Otherwise, they automatically 
stop on their common boundaries.  
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Fig. 3  Segmentation of densely grouped extracellular fibrillar proteins

Fig. 4  Segmentation of extracellular filaments being secreted from frog 
saccular sensory epithelium supporting cells
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3D Skeletonization
Our skeletonization algorithm is based on the anisotropic vector 
diffusion. We first compute and diffuse the gradient vector field, 
and then calculate a map, called skeleton magnitude map, by 
summing up all the outgoing vectors minus all the incoming 
vectors, at each voxel. The obtained map gives a magnitude (or, 
possibility) for each voxel being on the skeletons. From the 
skeleton magnitude map, we then trace the skeletons by, for 
example, Canny’s edge tracing algorithm or other ridge tracing 
methods. The problem to be solved is the proof of the 
connectivity, the thickness, and the topology-preservation of the 
obtained skeletons.  
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Fig. 5  Top: original density map; gradient vector fields (iso- & aniso-)
Bottom: skeleton magnitude maps (iso- & aniso-); skeleton tracing

Fig. 6 The skeletons of the bullfrog hair bundle tip link.
Left: overall dataset. Right: skeletons of a sub-volume


