
TeχMol User Guide

September 20, 2007
Computational Visualization Center

Institute for Computational Engineering and Sciences &
Department of Computer Sciences
The University of Texas at Austin

http://www.ices.utexas.edu/cvc

c© CVC

2

Contents

Contents 2

Preface 5

1 Introduction 7

1.1 Functions . 8
1.2 Installation . 8

1.2.1 Step by step installation guide 9
1.2.2 Common installation problems 9

1.3 The main user interface . 10

2 Opening and rendering files 13

2.1 Loading a molecule description file 13
2.1.1 The static hierarchy for biomolecules 13

2.2 Loading volume files . 16
2.3 Loading surface files . 16

3 Computations 19

3.1 Isosurfaces . 19
3.1.1 Rendering isosurfaces . 19

3.2 Curvatures . 19
3.3 Electron density . 20
3.4 Hydrophobicity . 23
3.5 Contour spectrum . 23
3.6 Pocket . 26
3.7 Curation . 26
3.8 Secondary Structure Elucidation from 3D Maps 28
3.9 Meshing of Molecules . 28
3.10 Protein-Protein Docking . 29

4 Scripting and animations 33

4.1 Batch-mode calculations . 33
4.1.1 Electron density and hydrophobicity 33
4.1.2 Curvatures . 34

3

4 CONTENTS

4.2 Scripting . 35
4.3 Animations . 36

4.3.1 Creating a trajectory . 36
4.3.2 Saving animations . 36

Acknowledgements 39

Bibliography 41

4.4 License Agreement . 43

TexMol

This is the user documentation for TeχMol v1.0. This is to help both new users
familiarize themselves with the software, and to provide a comprehensive list of
functions to everyone. There is a separate programmer documentation available
for those interested in extending the functionality of TeχMol , which is an
open source software. TeχMol was developed at the Center for Computational
Visualization under Dr. Chandrajit Bajaj, at the University of Texas at Austin.

5

6

Chapter 1

Introduction

Computational visualization of large molecules – particularly for protein
and RNA structures – has gained tremendous importance as a cutting-edge tool
for biological research. Previous work has focused on efficient rendering for
single-component, static molecules, which is becoming increasingly restricted
in light of the increasing demand for more complex, dynamic visualization and
representation. We present TeχMol (short for Texture Molecular Viewer), an
interactive molecular exploration package created in response to the increasingly
demanding visualization needs of the biology community.

To efficiently visualize dynamic and flexible structures, TeχMol uses a molec-
ular specification file to construct the Flexible Chain Complex (FCC), a robust,
dynamic data structure that serves as TeχMol ’s internal representation for
molecular structures. The FCC models the flexible joints of a molecule and
contains a biochemically-based hierarchy for level-of-detail optimizations.

Besides high visualizer functionality, TeχMol delivers rapid, accurate ren-
dering via various novel applications of texture-based rendering techniques for
structural and for volumetric representations. For the field of structural rep-
resentation (e.g. CPK (of union of balls, where each atom is represented by
a sphere with the radius equal to the van der Waals radius.), ball-and-stick
model), recent advances in programmable graphics hardware have opened the
door for texture-based rendering – also known as imposter rendering – that
greatly reduces geometric complexity while preserving, and in some cases im-
proving the visual fidelity of the final image. TeχMol ’s level-of-detail hierarchy
allows for static and dynamic multiresolution, which reduces the visual clutter
that often accompanies atom-level visualization while still maintaining biochem-
ical structural information, such as residue-level grouping. Combined with the
level-of-detail hierarchy, texture-based rendering allows TeχMol to render large
and previously intractable molecules.

TeχMol also supports efficient volumetric visualization via texture-based
techniques. By combining rendering modes, the visualizer can either map volu-
metric data onto the structural model of the molecule or it can juxtapose multi-
ple volume sets and structure models concurrently. In both cases, the resulting

7

visualization ties molecular structure to molecular function in an elucidating
manner.

1.1 Functions

TeχMol is both a visualization and computational toolkit for large biomolecules.
Some of the main features include

• Open source software for rendering large molecule data sets. It has been
tested on molecules with more than 3million atoms.

• Written in C++, with a QT front end. The same code should work on
multiple platforms, including Windows and Linux.

• Reads in the well known PDB and PQR formats.

• Produces high quality images using High-end graphics cards functionali-
ties.

• Volume rendering and calculation of electron density, hydrophobicity func-
tions.

• Wireframe and smooth shaded isosurfaces.

• Computes metrics including curvatures, surface areas and volumes.

• Provides programmers with a simple and yet powerful hierarchical data
structure of the molecules, with various torsion angles calculated.

• Multiple views and multiple data set rendering.

1.2 Installation

Please install TeχMol and perform the functions described in the rest of the
tutorial to learn more about the software. TeχMol is open source and should be
available for download from CCV’s software download page. It has been tested
under both windows and linux. You will need the following

• A windows or linux operating system.

• QT and a C++ compiler.

• A high end graphics card, like GeForce fx or better.

• An input PDB file, which can be downloaded off the PDB database.

Once you have downloaded the source, you can compile it using either the
QT’s Makefiles (the .pro files) or the project workspace files (for windows).

8

1.2.1 Step by step installation guide

There are some subtle problems which could come up when compiling and link-
ing TeχMol . Here are some solutions.

• Check to ensure that you have a good graphics card. We have currently
tested our programs on NVidia’s cards, GeForce fx and beyond.

• Upgrade your graphics card drivers and test example Cg programs they
usually provide. There should be examples on NVidia’s website, which
can help you ensure that it is set up well.

• Make sure that the latest Cg compiler is installed.

• Define the environment variables CG BIN PATH, CG LIB PATH and CG INC PATH
if it was not already done.

• Download and install QT. There is a free version for Linux.

• Make sure that the variables QTDIR and QTLIB are defined.

• If the contour library is being used, the user, unfortunately needs to define
whether they are using a big endian or little endian machine. Hence, you
may or may not need to define the variable LITTLE ENDIAN. Other
libraries do not need this and can figure out the endianness in the code.

1.2.2 Common installation problems

• Compilation problems

– QT and X11 incompatibility

You could get into problems due to QT and X11 defining things
arbitrarily. One way to get around this is to change some headers or
redefine the error causing terms.

– Gl extensions

Download the latest glext.h from SGI’s website. DELETE other
vendors glext.h. Before installing TeχMol , check to see if Gl and Cg
demos are working.

– file not found

QT’s internal compilers may not have created the files needed by a
library in a subfolder of TeχMol . Try compiling a different subfolder
or the main folder itself and try again.

• Rendering issues

– Doesn’t render

Cg files provided are linked in at run time. So you will need to keep
them in the same folder as TeχMol ’s executable.

9

1.3 The main user interface

In figure 1.2.2, we show a volume rendering and isosurface of a molecule.
The different regions in the user interface are

• Molecule browser. The list of molecules are shown here. The name is
displayed, and if it was left blank on opening the file, the full filename is
shown. The user can select files to either manipulate it using the properties
window or to delete it.

• The rendering area. This is either in perspective or orthographic mode,
runs using OpenGL and can be either a single or multiple views.

• Properties area. Each type of file (volume, molecule or surface) has its
own unique properties widget which is displayed here. On selecting a data
set from the browser, its corresponding properties are displayed here.

10

Figure 1.1: The main user interface of TeχMol . In this figure, we mark the
three main regions users should get familiar with: 1. Molecule browser where
data sets names are displayed 2. Rendering area, where data is rendered and 3.
The Properties widget where the properties of the selected data set is shown.

11

12

Chapter 2

Opening and rendering files

TexMol reads molecule-specific PDB, PQR files (including simpler XYZ,
XYZR, PTS and a custom GOA formats), volume files (RAWIV, RAWV, DX,
MRC), surface files (RAW, RAWC, RAWN, RAWNC, OBJ, C2C) and a custom
NURBS file. By default, the data set is neither centered to the view, nor ren-
dered to screen. The user needs to specifically render the data set after loading
it.

Warning:If you do not have a good high end graphics card, or if
it is not set up properly to display using Cg, you will not see any
output on the screen. We are in the process of moving to OpenGL
Shading Language.

2.1 Loading a molecule description file

We support multiple molecular files. The most commonly used file formats
are PDB [2] and PQR [3]. We also have simple file formats to describe general
point sets: XYZ (list of centers on successive lines), XYZR (same, includes
radius next to center) and PTS (similar to XYZ, but first line contains number
of centers). The properties box for molecular data sets is shown in figure 1.2.2.
There are two LODs as shown in the figure, the color LOD and the object LOD.

2.1.1 The static hierarchy for biomolecules

We use the biochemical hierarchy in our visualizations. For atoms, we use the
CPK model, with van der Waals radii. The colors and radius used are described
in the table in elementInformation.h. Atoms are grouped into residues, which
are approximated by spheres in the structure LOD. Secondary structures are
rendered with imposters like cylinders and helices. Chains are rendered as a
ball-and-stick model.

13

Figure 2.1: The Properties widget for molecule data sets allows users to pick
their choice of color and structure level of detail to render. Other functions
include associating a volumetric function with the surfaces color.

• Atoms. The atom sequence is the lowest, or finest level in the hierarchy
to obtain the primary structure of the molecule.

• Residues. Atoms are grouped into their respective residues.

• Secondary structures. Residues are grouped in to either helices or sheets,
or into dummy NULL structures.

• Chains. The secondary structures are collected in to chains. They form
the tertiary structure.

• Molecule. The highest or coarsest level in the static hierarchy is the
molecule itself.

After loading the molecule file, one can select a combination of color and
structure LOD to obtain various visualizations. To open a PDB or PQR file,
follow the steps shown in table 2.1. A simple well known molecule to start with
would be hemoglobin (1A00.pdb), as it has multiple chains and helices. Some
interesting combinations of visualizations would be as shown in figure 2.2. Table
2.2 explains how one can visualize the helices in the loaded molecule.

Table 2.1: Loading a molecule

• Select File - Open from menu bar.

• Choose a file name by pressing the File button and select a
PDB or PQR file.

• If you know that you are choosing a isosahedral virus, check
the isVirus check box.

• Press OK to load the file, or Cancel to cancel this action.

14

(a) Atoms colored with element colors (b) Atoms colored with their respective
residues colors

(c) A coarser model with residues rendered
as spheres

(d) Helices forming the secondary struc-
tures in the molecule

Figure 2.2: Molecules can be rendered at different color and structure level
of details. Here we show the hemoglobin molecule (1A00.pdb) rendered in 4
different styles.

15

Table 2.2: Visualizing helices in a molecule

• If you have not loaded a molecule, do so by following the
steps outlined in Table 2.1.

• Set the Structure LOD to Secondary structures and the
Color LOD to any item.

• Render the molecule by checking the Render check box.

• If the molecule is not visible in the current view point, you
may need to zoom out and translate to bring it in to view.

2.2 Loading volume files

We currently support four volume files including the scalar RAWIV, MRC
and DX formats, and vector valued RAWV formats. They are both binary and
ascii files and support multiple data types and sizes. For a complete description,
see the file format descriptions on the CCV web site. To load volume files,
follow the same steps as outlined in table 2.1, but select a volume file instead
of a molecule file.

To render volume files and isosurfaces, you need to get familiar with a widget
called a color table, which is user interface for reading a transfer map. A detailed
description for the color table can be found in the volume rover software user
guide.

2.3 Loading surface files

Warning:Surface files currently supported can be compressed or
not. The uncompressed files can take up to a few minutes to load
for very large meshes.

Like volume files, surface files do not need to deal with molecules. TeχMol
currently supports uncompressed (RAW, RAWC, RAWN, RAWNC and OBJ)
and compressed (c2c) surface files. To load any of these file formats, table 2.1
can be followed with the right input file types. Both wireframe and surface
rendering modes are supported. The user can also view both together. A
visualization of the Mache molecule, showing the gorge is shown in figure 2.1.1.
The OBJ file format is from Alias Wavefront.

16

Figure 2.3: Wireframe rendering of a mesh, showing a gorge type feature in the
surface of the MACHE molecule.

17

18

Chapter 3

Computations

Apart from visualization, TeχMol also allows users to compute functions
of the molecule including surfaces and surface functions like isosurfaces, curva-
tures, and the contour spectrum and volume functions like electron density and
hydrophobicity.

3.1 Isosurfaces

Given a volume f(x, y, z), an isosurface with isovalue c is defined as f(x, y, z) =
c. The extraction of isosurfaces from volume files is known as isocontouring.
There are two packages for isocontouring within TeχMol . One is the marching
cubes algorithm implemented in the Contouring library and the other is the seed
set algorithm implemented in the contourlib library. To create an isosurface,
the user needs to load in a volume and extract it at a given isovalue as described
in table 3.1.

Warning:Isosurfacing of large volume files could take up to a
minute.

3.1.1 Rendering isosurfaces

Isosurfaces are rendered by default on creation and cannot be hidden. We also
currently use smooth shading for rendering the meshes. The color of the mesh
at any vertex is given by the color of the volume at that point. The color of the
entire mesh can be changed by right clicking on the isocontour bar and selecting
edit.

3.2 Curvatures

Using a functional definition for the electron density representation of a
molecule, the curvatures at any point can be estimated. Analytical definitions

19

Table 3.1: Isosurfacing

• Load a volume if it is not already done and select it in the
molecule browser to bring up its property widget.

• In the color table, right click at any point and add an
isocontour.

• This could take a few seconds to a minute or so.

• The isovalue can be modified by dragging the isosurface bar
in the color table.

• The isosurface can be deleted by deleting its isosurface bar.

of the functions yield analytical equations for deriving the curvatures. TeχMol
estimates two curvatures, the Mean curvature H and the Gaussian curvature
K. If kmin and kmax are the minimum and maximum curvatures at a point,
then

H =
1

2
(kmin + kmax), K = kmin × kmax (3.1)

These are calculated from a potential function φ as follows

H =
C(f2

x(fyy + fzz)) − 2C(fxfyfxy)

2(Cf2
x

2)
, K =

2C(fxfy(fxzfyz − fxyfzz))

(C(f2
x))2

(3.2)

C denotes cyclic summation over x, y, z,
subscripts denote partial differentiation with respect to those variables.

There are two ways in which most functions can be calculated in TeχMol .
First, the user can do it through the graphical user interface. Second, it can be
done in batch mode. In table 3.2, we describe how to calculate the mean and
gaussian curvatures from the graphical user interface.

3.3 Electron density

The electron density has been used as a description of molecular shape. One
commonly used model of sum of radial functions has been used in TeχMol .
This field can be described at any point x, y, z in a volume as a scalar value
given by

φdens =

M∑

i=1

eβi (3.3)

20

Figure 3.1: This curvature widget can be opened by selecting Utilities - Con-
struct curvatures from the main menu bar.

21

Table 3.2: Estimation of curvatures from GUI

• Consider figure 3.1.1 for this example.

• Load a molecular file to estimate curvatures for.

• Since we need an electron density function definition, select
values for the volume dimensions and the gaussian
blobbyness parameter.

• If you know the points at which to estimate the curvature,
you can load the mesh file, or ask TeχMol to perform
isocontouring at some selected isovalue.

• The number of grid divisions and the function error allowed
are tradeoffs to performance.

• Three files, the mean and gaussian curvature, and the
curvature values themselves are written out to the selected
files.

and

βi = blobby ∗
(x − xci)

2
+ (y − yci)

2
+ (z − zci)

2

vri
2

− blobby (3.4)

M is the total number of atoms,
xci, yci, zci is the center of the ith atom,
vri is the van der Waal radius of atom i and
blobby is a parameter which controls the shape of the gaussian.

Using the graphical user interface, the users can compute the electron density
of a molecule as shown in table 3.3. See [4] for a fast summation algorithm.
There are four types of electron density volumes we compute with respect to
visualization.

1. Scalar valued electron density.

2. Vector valued electron density, where there are 4 tuples at each point.
RGB at a point contains a color value, and A contains the density itself.
This can be computed in three ways. See figure 3.2 for an example.

(a) Color according to a structure like atoms, residues etc.

(b) Color using the specifications in a color map file.

(c) Use depth coloring to bring out surface features. This feature cur-
rently takes as input a volume file (scalar or volume). Load a

22

volume file and select Utilities, Construct depth colored volume from
the menu bar.

Table 3.3: Electron density computation

• Load a molecule file if it is not already loaded.

• Select the molecule from the molecule browser.

• Select Utilities and Construct volume from the menu bar.

• Select Electron density as the function needed to be
computed and give the dimensions and blobbyness
parameter.

• If you need a output file, then enter a output file name, or
just leave it blank.

• RawV volumes or vector valued volumes can also be
constructed by choosing it in the check box.

• If rawV was chosen, then also choose a color LOD for the
density.

• The generated volume can be loaded in to memory or not
by checking Load generated volume.

3.4 Hydrophobicity

Hydrophobicity maps can be created in a similar fashion as rawiv electron
density files. Follow the procedure outlined in table 3.3, but choose hydrophobic-
ity instead of electron density. You probably cannot create anything meaningful
by choosing hydrophobicity and color mapped volumes together. The hydropho-
bicity is given per atom as shown in the table in file elementInformation.h. The
hydrophobicity of the dengue virus capsid protein (1r6r.pdb) is shown in figure
3.1.1.

3.5 Contour spectrum

23

(a) Volume with colors assigned to sec-
ondary structures, blurred at the atomic
level

(b) Volume with colors assigned to sec-
ondary structures, blurred at the residue
level

(c) In order to show specific atoms like
the iron in the heme structure of the
hemoglobin, we can use a color map file.

(d) A virus (1lp3.pdb) rendered as an iso-
surface of a depth colored volume showing
its surface features

Figure 3.2: Vector valued volumes constructed in different ways to bring out
different features.

24

Figure 3.3: Hydrophobicity volume rendering of the dengue virus capsid protein
(1r6r.pdb). The hydrophobic regions are in yellow and the hydrophillic regions
are in red.

25

The contour spectrum is used for obtaining quantitative information about
the volume files. The documentation for the contour spectrum can be found in
the user manual for CCV’s volume rover.

3.6 Pocket

Several of molecular features are bichemically significant as pockets are often
active sites for ligand binding or enzymatic reactions, and tunnels are often
solvent ion conductance zones. This pocket function extraction is also useful to
compare protein structures based on molecular complementary space features.
The pocket function gives a different way of computing similarity score and
comparing proteins.

Using the graphical user interface, the users can compute the Pocket function
of a molecule as shown in table 3.4

Table 3.4: Pocket function computation

• Load a molecule file if it is not already loaded.

• Select the molecule from the molecule browser.

• Select Utilities and Construct pockets from the menu bar.

• The generated volume and mesh are loaded in to memory.

• Highlight each file by selecting and check render checkbox
to visualize, respectively

• Save each file with right mouse button

3.7 Curation

The selection of appropriate level sets for the quantitative visualization of
three dimensional imaging or simulation data, is a problem that is both funda-
mental and essential. The selected level set needs to satisfy several topological
and geometric constraints to be useful for subsequent quantitative processing
and visualization. For an initial selection of an isosurface, guided by contour
tree data structures, we detect the topological features by computing stable and
unstable manifolds of the critical points of the distance function induced by the

26

Figure 3.4: Combined isosurface and volume rendering of the Acetylicholine
Receptor (2bg9.pdb). The pocket regions are identified with the shield (gray
color).

Figure 3.5: Secondary Structure Elucidation from electron density volume data.

27

Figure 3.6: Secondary Structure Elucidation from electron density volume data.

isosurface. We further enhance the description of these features by associat-
ing geometric attributes with them. We then rank the attributed features and
provide a handle to them for curation of the topological anomalies.

The steps for the curation is described in Table 3.5. A visual illustration of
the process is given in 3.1.1.

3.8 Secondary Structure Elucidation from 3D

Maps

Recent advances in three dimensional Electron Microscopy (3D EM) have
given an opportunity to look at the structural building blocks of proteins (and
nucleic acids) at varying resolutions. In TexMol, we have incorporated algorithm
to detect the secondary structural motifs (α-helices and β-sheets) from proteins
for which the volumetric maps are reconstructed at 5 − 10Å resolution. The
algorithm uses the tools from computational geometry and differential topol-
ogy, specifically the computation of stable/unstable manifolds of certain critical
points of the distance function induced by a suitably extracted molecular sur-
face. Details of the theory and computation involved in various algorithmic
steps are given in the accompanying paper [6].

The steps for the curation is described in Table 3.6. A visual illustration of
the process is given in 3.1.1.

3.9 Meshing of Molecules

28

3.10 Protein-Protein Docking

29

Table 3.5: Curation

• Load a pdb file or an electron density map or a surface
geometry.

• Select the molecule or map or geometry from the molecule
browser.

• Select Utilities and Compute pocket-tunnel by Stable

Manifold from the menu bar.

• A pop-up menu asks for the number of pockets or tunnels
that the user wants to compute. The user should enter two
numbers if this information is already known. Otherwise
any two large integers should capture all the pockets and
tunnels that this molecular surface posseses.

• For input pdb, a molecular surface is extracted and in case
of a volume representing the electron density map, a deafult
isovalue is used to extract a molecular surface from the
density map. If a molecular surface is given as input, no
pre-processing is done.

• For the pre-processed (from pdb or volume) or the input
geometry, the depressions (pockets) on the molecular
surface, and the through holes (tunnels) are computed by
the algorithm described in [5].

• The colored geometry files of the pockets and tunnels are
loaded into the browser for visual inspection.

• Highlight each file by selecting and check render checkbox
to visualize, respectively.

• Save each file with right mouse button

30

Table 3.6: Secondary Structure from EM Maps

• Load an electron density map (.rawiv) file.

• Use the volume rendering widget to extract an isosurface
geometry.

• Select Utilities and Secondary Structure from the menu
bar.

• This will compute the α-helices and the β-sheets of the
molecule.

• After completion of the computation, a new panel will
appear at the bottom which will expose the parameters
related to the width of the helices and sheets. The overall
distribution of the width of the skeletal structure of the
molecule is drawn as a histogram. User can select a portion
of the histogram and correspondingly the helices and sheets
are displayed in the main rendering area.

31

32

Chapter 4

Scripting and animations

The computations defined in chapter 2.1.1 can also be performed in batch
mode. This is useful when a large number of files need to be manipulated at
once. Two other powerful features of TeχMol include

• Scripting.

• Animation.

In this chapter, we will go through simple examples for each of the above three
features.

4.1 Batch-mode calculations

Electron density, hydrophobicity and curvatures can be estimated from the
command line. The commands are as follows.

4.1.1 Electron density and hydrophobicity

The command line for creating an electron density or hydrophobicity map is:

TeχMol -blur input molecule file name output volume file name dim1

dim2 dim3 density type colored volume gaussian blobbiness color colormap file name

gap

The different parameters are:

input molecule file name The full path and name of the input molecule file.

output volume file name The full path and name of the output rawiv or

rawv file.

dim1, dim2, dim3 Dimensions of the output volume.

density type Enter 0 for electron density and 1 for hydrophobicity.

colored volume true if you want a rawv volume.

33

gaussian blobbiness We recommend a value of -2.3 to conform with previous

research and bigger values, say -0.1, to get smoother shapes representing the
volume at much lower resolutions.

color If the colored volume parameter was true, then we can either specify
either color by structure or provide a color map file. If we do not provide a
color map file, then this parameter is relevant. 0 stands for atom coloring, 1 for
residue, 2 for secondary structure and 3 for chain coloring.

colormap file name The molecule can be colored according to some user

defined colors, to perhaps highlight some structure which cannot be done in the
more general method previous described. The file format for the colormap file
name is given in the file format description page from CCV’s website.

gap This should be used sparingly, to provide a gap of empty space around

the requested dimensions. It is best left as 0.

4.1.2 Curvatures

There are two commands for generating curvatures. One is from a volume file
with a given isovalue, where TeχMol extracts the mesh where we need to obtain
the curvature, and second, where the user inputs the mesh directly. The two
commands in order are:

TeχMol -setcurvature 1 input molecule file name output volume file name

output mean curvature file name output gaussian curvature file name dim1

dim2 dim3 gaussian blobbiness isovalue number of grid subdivisions maximum function error

TeχMol -setcurvature 0 input molecule file name input surface file name

output mean curvature file name output gaussian curvature file name dim1

dim2 dim3 gaussian blobbiness number of grid subdivisions maximum function error

The various parameters are described below.

0 and 1 differentiate between the two calls.

input molecule file name The full path and name of the input molecule file.

output volume file name The full path and name of the output rawiv or

rawv file.

output mean curvature file name The full path and name of the output

mean curvature file.

output gaussian curvature file name The full path and name of the output

gaussian curvature file.

dim1, dim2, dim3 Dimensions of the output volume.

gaussian blobbiness We recommend a value of -2.3 to conform with previous

research and bigger values, say -0.1, to get smoother shapes representing the
volume at much lower resolutions.

34

number of grid subdivisions The higher this value, the more the precom-

putation and memory requirement. There is a cut off value around 10 to 20
where you get optimum speed for a given machine.

maximum function error The maximum allowable function error while cal-
culating the curvatures.

Warning:While creating curvatures, if we overestimate the value of
grid spacing, we could end up with very high memory usages and
may have to kill the program.

4.2 Scripting

TeχMol currently offers a limited but powerful set of functions as part of its
scripting module. This module is available once TeχMol is run in user interface
mode. The parser command window can be opened from Utilities - script from
the main menu bar. Here users can enter commands, select one or more and
execute them. Some of the commands available are listed below.

bool blur(int argc, char* argv[]);
bool setCurvature(int argc, char* argv[]);
bool outGridPositions(int argc, char* argv[]);
bool classifyPoints(int argc, char* argv[]);
bool growOut(int argc, char* argv[]);
bool getSurface(int argc, char* argv[]);
bool evolve(int argc, char* argv[]);
bool writePDB(int argc, char* argv[]);
bool writeGOA(int argc, char* argv[]);
bool depthColor(int argc, char* argv[]);
bool printPDBInformation(int argc, char* argv[]);
bool getMaxDistanceFromPoint(int argc, char* argv[]);
bool addNewDataSet(int argc, char* argv[], MoleculeVizMainWindow *mWin-

dow);
bool splitView(int argc, char* argv[], MoleculeVizMainWindow *mWindow

);
bool deleteData(int argc, char* argv[], MoleculeVizMainWindow *mWindow

);
bool deletePrevData(int argc, char* argv[], MoleculeVizMainWindow *mWin-

dow);
bool deleteAllData(int argc, char* argv[], MoleculeVizMainWindow *mWin-

dow);
bool setVisible(int argc, char* argv[], MoleculeVizMainWindow *mWindow

);
bool setVisiblePrev(int argc, char* argv[], MoleculeVizMainWindow *mWin-

dow);

35

bool saveImage(int argc, char* argv[], MoleculeVizMainWindow *mWindow
);

bool setGridVisible(int argc, char* argv[], MoleculeVizMainWindow *mWin-
dow);

4.3 Animations

This module is mainly useful for making movies. Animations can be saved
as a sequence of images in TeχMol . We allow the user to load a data set, render
it and transform the view point, and save trajectories and play it back. There
are actually two steps in the animation process.

1. Create and save a trajectory.

2. Save the animation based on a trajectory.

4.3.1 Creating a trajectory

Data sets can be quite large, making them hard to interact with. Hence, it
is sometimes useful to save a trajectory using a low resolution data set and
later use it to render a large data set in high resolution. In order to create
the trajectory it is useful to have a low resolution data set which the user can
comfortably rotate, zoom and translate interactively. To save a trajectory, follow
the procedure outlined in table 4.1

4.3.2 Saving animations

Before you can save a sequence of images, you need to create a trajectory as
described in section 4.3.1.

Warning:Disable the screensaver as saving images in high resolution
can take a long time. We also interpolate between mouse move-
ments using linear interpolation to get better smoothness, causing
the movie to be longer than expected.

36

Table 4.1: Creating and saving a trajectory

• Load and display the data set or set of data sets you want
to create a movie of.

• Use the mouse to move them into the correct starting
viewing position.

• Click Animation, Start recording from the menu bar.

• Enter and save the file name of the trajectory file. It does
not require any specific file extension.

• On pressing OK, the recording is on. Any mouse movement
in the rendering area is saved in to the file, along with the
time.

• Once you are done with transforming the data, click
Animation, Stop recording in the menu bar.

• You can see if the trajectory was satisfactory by playing it
back by clicking on Animation, Playback animation from
the menu bar.

Table 4.2: Saving an animation

• Load the high resolution data sets to save.

• keep the screen resolution and window size as high as
required.

• Open the trajectory file by selecting Animation, Record
animation from the menu bar.

• TeχMol will automatically begin to replay the trajectory
and save images.

37

38

Acknowledgements

TeχMol was developed at the Computational Visualization Center (CVC) under
the direction of Prof. Chandrajit Bajaj. The constributors are

• Albert Chen

• Rezaul Chowdhury

• Peter Djeu

• Samrat Goswami

• Bongjune Kwon

• Alex Lee

• Vinay Siddavanahalli

• Matt Strange

• Anthony Thane

• John Wiggins

• Xiaoyu Zhang

• Wenqi Zhao

Grants

39

40

Bibliography

[1] Chandrajit Bajaj, Peter Djeu, Vinay Siddavanahalli and Anthony Thane
TeχMol : Interactive Visual Exploration of Large Flexible Multi-
component Molecular Complexes IEEE Visualization 2004, pp. 243-250.

[2] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weis-
sig, I.N. Shindyalov, P.E. Bourne: The Protein Data Bank. Nucleic Acids
Research, 28 pp. 235-242 (2000).

[3] Todd J. Dolinsky, Jens E. Nielsen, J. Andrew McCammon, and Nathan A.
Baker: PDB2PQR: an automated pipeline for the setup of PoissonBoltz-
mann electrostatics calculations. Nucleic Acids Res. 2004 July 1; 32

[4] Chandrajit Bajaj and Vinay Siddavanahalli, Fast Error-bounded Surfaces
and Derivatives Computation for Volumetric Particle Data, ICES Report
06-03, January 2006.

[5] Chandrajit Bajaj and Andrew Gillette and Samrat Goswami, Topology
Based Selection and Curation of Level Sets. To appear as a book chapter
of Mathematics and Visualization.

[6] Chandrajit Bajaj and Samrat Goswami, Automatic Fold and Structural
Motif Elucidation from 3D EM Maps of Macromolecules. ICVGIP 2006.

[7] X. Zhang and C. Bajaj, Extraction, Visualization and Quantification of
Protein Pockets. 6th Ann. Int. Conf. on Comput. Sys. Bioinfo. CSB2007.

[8] W. Zhao, G. Xu and C. Bajaj, An algebraic spline model of molecular
surfaces. Proc. ACM Solid and Physical Modeling, pp. 297-302, 2007.

[9] C. Bajaj, G. Xu and X. Zhang, Smooth surface constructions via a higher-
order level-set method. Pro. CAD/GRAPHICS 2007

[10] X. Zhang and C. Bajaj and B. Kwon and T. Dolinsky and J. Nielsen and
N. Baker, Application of New Multiresolution Methods for the Compari-
son of Biomolecular Electrostatic Properties in the Absence of Structural
Similarity. Multiscale Modeling and Simulation, 5 (4), pp. 1196-213, 2006.

41

[11] S. Goswami, A. Gillette and C. Bajaj, Efficient Delaunay Mesh Genera-
tion From Sampled Scalar Functions. Accepted in International Meshing
Roundtable 2007.

[12] C. Bajaj, J. Castrillon-Candas, V. Siddavanahalli and Z. Xu, Compressed
Representations of Macromolecular Structures and Properties. Structure,
13 (3), pp. 463-471, 2005.

42

4.4 License Agreement

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MOD-
IFICATION

1. This License Agreement applies to any software library or other program which contains a
notice placed by the copyright holder (THE COMPUTATIONAL VISUALIZATION CEN-
TER at THE UNIVERSITY OF TEXAS AT AUSTIN) or other authorized party saying it
may be distributed under the terms of this Lesser General Public License (also called ”this
License”). Each licensee is addressed as ”you”.

A ”library” means a collection of software functions and/or data prepared so as to be con-
veniently linked with application programs (which use some of those functions and data) to
form executables.

The ”Library”, below, refers to any such software library or work which has been distributed
under these terms. A ”work based on the Library” means either the Library or any derivative
work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another lan-
guage. (Hereinafter, translation is included without limitation in the term ”modification”.)

”Source code” for a work means the preferred form of the work for making modifications to
it. For a library, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running a program using the Library is not restricted,
and output from such a program is covered only if its contents constitute a work based on
the Library (independent of the use of the Library in a tool for writing it). Whether that is
true depends on what the Library does and what the program that uses the Library does.

2. You may copy and distribute verbatim copies of the Library’s complete source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish on
each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty; and distribute a copy
of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Library or any portion of it, thus forming a work
based on the Library, and copy and distribute such modifications or work under the terms
of Section 2 above, provided that you also meet all of these conditions:

• The modified work must itself be a software library.

• You must cause the files modified to carry prominent notices stating that you changed
the files and the date of any change.

• You must cause the whole of the work to be licensed at no charge to all third parties
under the terms of this License.

• If a facility in the modified Library refers to a function or a table of data to be
supplied by an application program that uses the facility, other than as an argument
passed when the facility is invoked, then you must make a good faith effort to ensure
that, in the event an application does not supply such function or table, the facility
still operates, and performs whatever part of its purpose remains meaningful. (For
example, a function in a library to compute square roots has a purpose that is entirely
well-defined independent of the application. Therefore, Subsection 3d requires that
any application-supplied function or table used by this function must be optional: if
the application does not supply it, the square root function must still compute square
roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Library, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Library, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

43

Thus, it is not the intent of this section to claim rights or contest your rights to work
written entirely by you; rather, the intent is to exercise the right to control the distribution
of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library
(or with a work based on the Library) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

4. You may opt to apply the terms of the ordinary GNU General Public License instead of this
License to a given copy of the Library. To do this, you must alter all the notices that refer
to this License, so that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the ordinary GNU General
Public License has appeared, then you can specify that version instead if you wish.) Do not
make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU
General Public License applies to all subsequent copies and derivative works made from that
copy.

This option is useful when you wish to copy part of the code of the Library into a program
that is not a library.

5. You may copy and distribute the Library (or a portion or derivative of it, under Section 3) in
object code or executable form under the terms of Sections 2 and 3 above provided that you
accompany it with the complete corresponding machine-readable source code, which must
be distributed under the terms of Sections 2 and 3 above on a medium customarily used for
software interchange.

If distribution of object code is made by offering access to copy from a designated place,
then offering equivalent access to copy the source code from the same place satisfies the
requirement to distribute the source code, even though third parties are not compelled to
copy the source along with the object code.

6. A program that contains no derivative of any portion of the Library, but is designed to work
with the Library by being compiled or linked with it, is called a ”work that uses the Library”.
Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a ”work that uses the Library” with the Library creates an executable that
is a derivative of the Library (because it contains portions of the Library), rather than a
”work that uses the library”. The executable is therefore covered by this License. Section 7
states terms for distribution of such executables.

When a ”work that uses the Library” uses material from a header file that is part of the
Library, the object code for the work may be a derivative work of the Library even though
the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not
precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors,
and small macros and small inline functions (ten lines or less in length), then the use of the
object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 7.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for
the work under the terms of Section 7 Any executables containing that work also fall under
Section 7, whether or not they are linked directly with the Library itself.

7. As an exception to the Sections above, you may also combine or link a ”work that uses the Li-
brary” with the Library to produce a work containing portions of the Library, and distribute
that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it
and that the Library and its use are covered by this License. You must supply a copy of
this License. If the work during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference directing the user to the
copy of this License. Also, you must do one of these things:

• Accompany the work with the complete corresponding machine-readable source code
for the Library including whatever changes were used in the work (which must be
distributed under Sections 2 and 3 above); and, if the work is an executable linked
with the Library, with the complete machine-readable ”work that uses the Library”, as

44

object code and/or source code, so that the user can modify the Library and then relink
to produce a modified executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the Library will not
necessarily be able to recompile the application to use the modified definitions.)

• Use a suitable shared library mechanism for linking with the Library. A suitable
mechanism is one that (2) uses at run time a copy of the library already present on
the user’s computer system, rather than copying library functions into the executable,
and (3) will operate properly with a modified version of the library, if the user installs
one, as long as the modified version is interface-compatible with the version that the
work was made with.

• Accompany the work with a written offer, valid for at least three years, to give the
same user the materials specified in Subsection 7a, above, for a charge no more than
the cost of performing this distribution.

• If distribution of the work is made by offering access to copy from a designated place,
offer equivalent access to copy the above specified materials from the same place.

• Verify that the user has already received a copy of these materials or that you have
already sent this user a copy.

For an executable, the required form of the ”work that uses the Library” must include any
data and utility programs needed for reproducing the executable from it. However, as a
special exception, the materials to be distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary
libraries that do not normally accompany the operating system. Such a contradiction means
you cannot use both them and the Library together in an executable that you distribute.

8. You may place library facilities that are a work based on the Library side-by-side in a single
library together with other library facilities not covered by this License, and distribute such
a combined library, provided that the separate distribution of the work based on the Library
and of the other library facilities is otherwise permitted, and provided that you do these two
things:

• Accompany the combined library with a copy of the same work based on the Library,
uncombined with any other library facilities. This must be distributed under the terms
of the Sections above.

• Give prominent notice with the combined library of the fact that part of it is a work
based on the Library, and explaining where to find the accompanying uncombined
form of the same work.

9. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, link with,
or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License
will not have their licenses terminated so long as such parties remain in full compliance.

10. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Library or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Library (or any work based on the Library), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

11. Each time you redistribute the Library (or any work based on the Library), the recipient
automatically receives a license from the original licensor to copy, distribute, link with or
modify the Library subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties with this License.

12. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then

45

as a consequence you may not distribute the Library at all. For example, if a patent license
would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply, and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through
any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

13. If the distribution and/or use of the Library is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Library under this
License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case,
this License incorporates the limitation as if written in the body of this License.

14. The Free Software Foundation may publish revised and/or new versions of the Lesser General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version
number of this License which applies to it and ”any later version”, you have the option of
following the terms and conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a license version number, you
may choose any version ever published by the Free Software Foundation.

15. If you wish to incorporate parts of the Library into other free programs whose distribution
conditions are incompatible with these, write to the author to ask for permission. For
software which is copyrighted by the Free Software Foundation, write to the Free Software
Foundation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

CREDITS

WE REQUEST THAT YOU AGREE TO ACKNOWLEDGE THE USE
OF THE SOFTWARE THAT RESULTS IN ANY PUBLISHED WORK,
INCLUDING SCIENTIFIC PAPERS, FILMS AND VIDEOTAPES BY
CITING THE REFERENCES IN CODE FILE AND DOCUMENTA-
TION BOUNDED WITH THE SOFTWARE.

C. Bajaj, P. Djeu, V. Siddavanahalli and A. Thane
TeχMol : Interactive Visual Exploration of Large Flexible Multi-component
Molecular Complexes, Proc. IEEE Visualization 2004, pp. 243–250.

This software has been developed at the Computational Visualization Cen-
ter at The University of Texas at Austin under

Dr Chandrajit Bajaj
Computational Applied Mathematics Chair in Visualization
Professor of Computer Sciences
Director of Computational Visualization Center
The Institute of Computational Engineering and Sciences
The University of Texas at Austin

46

201 East 24th Street, ACES 2.324A
1 University Station, C0200
Austin, TX 78712-0027
email: bajaj@ices.utexas.edu
URL: http://www.cs.utexas.edu/users/bajaj/

NO WARRANTY

16. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT PER-
MITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED
IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PAR-
TIES PROVIDE THE LIBRARY ”AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE LI-
BRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

17. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED
TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER
PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY
AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

18. WE REQUEST THAT YOU PROVIDE A MENU OR A SCREEN THAT
IS TO BE SHOWN WITH OUR CENTER NAME(CVC) AND THE UNI-
VERSITY OF TEXAS AT AUSTIN TO SHOW THAT WE ARE THE
PROVIDER OF THE LIBRARY OR SOURCE CODE. AND WE ALSO
REQUEST THAT YOU PROVIDE OUR WORLD WIDE WEB AD-
DRESS (HTTP://WWW.ICES.UTEXAS.EDU/CVC) IN YOUR SOFT-
WARE.

19. IF YOU DESIRE TO USE THIS CODE FOR A PROFIT VENTURE,
OR IF YOU DO NOT WISH TO ACCEPT THIS LGPL, BUT DESIRE
USAGE OF THIS CODE, PLEASE CONTACT CHANDRAJIT BAJAJ
AT THE ADDRESS ABOVE FOR A DIFFERENT LICENSE.

END OF TERMS AND CONDITIONS

47

	Contents
	Preface
	Introduction
	Functions
	Installation
	Step by step installation guide
	Common installation problems

	The main user interface

	Opening and rendering files
	Loading a molecule description file
	The static hierarchy for biomolecules

	Loading volume files
	Loading surface files

	Computations
	Isosurfaces
	Rendering isosurfaces

	Curvatures
	Electron density
	Hydrophobicity
	Contour spectrum
	Pocket
	Curation
	Secondary Structure Elucidation from 3D Maps
	Meshing of Molecules
	Protein-Protein Docking

	Scripting and animations
	Batch-mode calculations
	Electron density and hydrophobicity
	Curvatures

	Scripting
	Animations
	Creating a trajectory
	Saving animations

	Acknowledgements
	Bibliography
	License Agreement

