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ABSTRACT
Attributes define, classify, or annotate the datum to which
they are assigned. However, traditional attribute architec-
tures and cryptosystems are ill-equipped to provide security
in the face of diverse access requirements and environments.
In this paper, we introduce a novel secure information man-
agement architecture based on emerging attribute-based en-
cryption (ABE) primitives. A policy system that meets the
needs of complex policies is defined and illustrated. Based
on the needs of those policies, we propose cryptographic op-
timizations that vastly improve enforcement efficiency. We
further explore the use of such policies in two example ap-
plications: a HIPAA compliant distributed file system and a
social network. A performance analysis of our ABE system
and example applications demonstrates the ability to reduce
cryptographic costs by as much as 98% over previously pro-
posed constructions. Through this, we demonstrate that our
attribute system is an efficient solution for securely manag-
ing information in large, loosely-coupled, distributed sys-
tems.

Categories and Subject Descriptors: K.6 Management
of Computing and Information Systems: Security and Pro-
tection

General Terms: Security, Performance

Keywords: Attribute-based encryption, secure systems,
applied cryptography

1. INTRODUCTION
Attributes define, classify, or annotate the datum to which

they are assigned. The semantics of an attribute indicate
some purpose or characteristic and, when used within larger
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collections, enable efficient identification and classification of
like objects. For example, individuals in enterprise systems
are often segregated into groups of common interest or duty
based on a given set of attributes [27], e.g., function, depart-
ment, university. These attributes are then used to associate
sets of permissions and tasks to the specified individuals.
Existing systems principally rely on the assignment and sub-
sequent enforcement of policies by trusted and often central-
ized servers. However, these servers are acutely ill-equipped
to deal with disconnected and asynchronous clients. Re-
liance upon centralized servers further limits scalability and
mandates a single point of trust.

Attribute-based encryption (ABE) [26], a generalization
of identity-based cryptosystems, incorporates attributes
as inputs to its cryptographic primitives. Objects are
encrypted using a set of attributes describing the intended
receiver. A principal possessing this subset as part of their
pool of attributes can recover the original plaintext. More
flexible requirements are achievable through the use of a
thresholding primitive, for which only k-of-n attributes are
necessary to perform decryption. Furthermore, decryp-
tion under both the standard and threshold approaches is
collusion-resistant as multiple parties are unable to mean-
ingfully pool attributes. Such cryptographic mechanisms
allow encryption to inextricably bind expressive, enforceable
access policy to objects.

Attribute-based systems have enormous potential for pro-
viding data security in distributed environments. Peer-to-
peer systems are an example of one such beneficiary: indi-
viduals may publish documents that implicitly target those
users who are assigned the appropriate attributes. More-
over, such publishing can be completely transparent to the
peer-to-peer system. For example, a user Bob looking for
employment in the field of secure systems engineering could
place a copy of his résumé in publicly accessible web space
encrypted with the attributes “secure systems engineering”
and “human resources manager”. Only potential employ-
ers satisfying these attributes would be able to decrypt this
information and contact Bob.

In this paper, we develop and evaluate a secure attribute
system built on attribute-based encryption (ABE). A de-
scriptive policy system is defined that predicates access
on logical expressions over attributes. We show how these
policies can be realized through applications of novel ABE
constructions. We also demonstrate their semantic depth
through their use in two applications: a HIPAA compliant
distributed file system and a social network.

We have developed an extensive ABE implementation tai-



lored for the rapid creation of attribute systems- the first
known implementation and characterization of such crypto-
graphic constructions. In an effort to aid development and
subsequent system use, we perform an in-depth empirical
analysis of the input parameter space. Our implementa-
tion includes several novel optimizations to the original ABE
cryptosystem described by Sahai and Waters [26]. The ma-
jor operations of the system, including system initialization,
key generation, and the encryption and decryption of ob-
jects are benchmarked. We then measure the cost of imple-
menting complex attribute policies. Whereas past work has
suggested that these constructions were too expensive for
use in real systems [25], this analysis shows that such poli-
cies are not only feasible, but can also be highly efficient.
For instance, we demonstrate that the cost of key genera-
tion and encryption can be reduced by more than 80% and
98%, respectively, by using constructions secure in the ran-
dom oracle model.

The remainder of this paper is organized as follows: Sec-
tion 2 presents an overview of the cryptographic mechanisms
supporting ABE; Section 3 compares ABE systems to PKI
systems; Section 4 introduces a descriptive policy system for
use in ABE-based systems; Section 5 offers sample policies
for two example applications; Section 6 gives the results of
our performance analysis; Section 7 explores relevant related
work; Section 8 offers concluding remarks.

2. ATTRIBUTE-BASED ENCRYPTION
We now give an overview of Attribute-Based Encryption

(ABE) algorithms. The Sahai-Waters [26] (ABE) cryptosys-
tem as implemented in this paper is specifically detailed. We
focus our efforts on providing the description of the scheme
and intuition for its construction. For the proof of security
see Sahai and Waters [26].

Attribute-Based Encryption can be viewed as a general-
ization of Identity-Based Encryption (IBE) [5,9,30]. In IBE
a user’s identity is a string such as “bobsmith@yahoo.com”.
A party in the system can encrypt a message to this partic-
ular user with only the knowledge of the recipient’s identity
and the system’s public parameters. In particular the en-
cryption algorithm does not need to have access to a sepa-
rate public key certificate of the recipient.

In Attribute-Based Encryption a user’s identity is com-
posed of a set, S, of strings which serve as descriptive at-
tributes of the user. For example, a user’s identity could
consist of attributes describing their university, department,
and job function. A party in the system can then specify
another set of attributes S′ such that a receiver can only
decrypt a message if his identity S has at least k attributes
in common with the set S′, where k is a parameter set by
the system. Like traditional Identity-Based Encryption, a
party in an Attribute-Based Encryption system only needs
to know the receiver’s description in order to determine their
public key. However, the expressiveness of an ABE system
is potentially much more powerful. For example, there could
be several different recipients that are able to decrypt a mes-
sage encrypted for a set S′.

ABE-based systems can also leverage “threshold construc-
tions” where a user with identity S will be able to decrypt
a message if it has at least k attributes that overlap with
a set S′ chosen by the encryptor. Although there could in
theory exist even more expressive ABE systems, the thresh-
old constructions described and illustrated in the following

sections are sufficiently semantically deep that we can define
complex and precise encryption policies.

2.1 ABE Algorithms
We now informally specify a threshold Attribute-Based

Encryption system as a collection of four algorithms:

• Setup(k): The Setup algorithm is run by an authority
in order to create a new ABE system. Setup takes as
input a threshold value, k and outputs a master key
MK and a set of public parameters PK.

• Key-Gen(S, MK): The authority executes the Key-
Gen algorithm for the purpose of generating a new
secret key SK. The algorithm takes as input the user’s
identity, S, as a set of strings representing a user’s
attributes and the master-key MK and outputs S’s
secret key SK.

• Encrypt(M, S′, PK): The Encrypt algorithm is run
by a user to encrypt a message M , with a target set S′,
and the public parameters. It outputs a ciphertext, C.

• Decrypt(C, S′, S, SK): The Decrypt algorithm is run
by a user with identity S and secret key SK to attempt
to decrypt a ciphertext C that has been encrypted with
S′. If the set overlap |S ∩ S′| is greater than or equal
to k the algorithm will output the decrypted message
M .

2.2 ABE Constructions
We have investigated the use of two separate ABE con-

structions: the Sahai-Waters construction and a variant of
the Sahai-Waters construction that we refer to as the ran-
dom oracle construction. The Sahai-Waters construction is
from the Sahai-Waters Large Universe system as described
in Section 6 of [26]. A formal explanation of both construc-
tions can be found in Appendix B.

Both constructions use elliptic curves to perform pairing-
based cryptography. Bilinear maps (pairings) e : G1×G2 →
GT upon elements of an elliptic curve are the basis for
pairing-based cryptosystems. In the Sahai-Waters construc-
tion, decryption is possible by performing pairings between
k components of a ciphertext and k private key components.
We refer the reader to the IBE paper by Boneh-Franklin [5]
for more details on pairing-based cryptosystems.

2.2.1 Sahai-Waters Construction
We note two observations about the Sahai-Waters con-

struction, which have led us to design the random oracle
construction. Both observations pertain to the use of fol-
lowing function used in both the Key-Gen and Encrypt
algorithms:

T (i) = gxi
n+1Y
j=1

t
∆j,N (i)

j , (1)

where N is the set {1, . . . , n + 1}.
Our first observation is that because of T , the Setup al-

gorithm must take as input a ciphertext size n in addition to
the threshold value k. Without the techniques proposed in
Section 4.3, this construction mandates that each ciphertext
must contain exactly n attributes and that the threshold
must be a fixed value k for all ciphertexts.



Our second observation is based upon our experience in
building an implementation of the Sahai-Waters construc-
tion. We have found T requires a great deal of computa-
tional effort. It is easily seen that the number of exponenti-
ations required to solve T is equal to n + 1.

Because of these two observations we have proposed the
following modification to the Sahai-Waters construction.

2.2.2 Random Oracle Construction
We drastically reduce computational overhead in the key

generation and encryption algorithms by replacing T with a
hash function used as a random oracle [4]. A simple argu-
ment shows that the random oracle can be “programmed”
such that the security proof of Sahai and Waters still holds.
We refer the reader to the literature [4,8] for further discus-
sion on the random oracle model.

Implementing T as a random oracle has the following char-
acteristics. First, ciphertexts can contain a variable number
of attributes, rather than be required to contain n. Sec-
ond, the n + 1 exponentiations needed to solve T in the
Sahai-Waters construction have been replaced with a single
cryptographic hash.

However, using model that requires the random oracle
heuristic results in a slightly weaker security model; the use
of random oracles makes the security of the cryptosystem
dependent upon the security of the hash function used to
compute T . In Section 6, we experimentally compare imple-
mentations of the original Sahai and Waters construction
with our variant.

2.2.3 Decryption Optimization
Under both constructions, the dominant operations are

pairings followed by exponentiations. Decryption as de-
scribed by Sahai and Waters has the following form [26]:

M = E′
Y
i∈S

„
e(di, Ei)

e(Di, E′′)

«∆i,S(0)

(2)

where e denotes a pairing operation. In the equation above,
there are 2k pairings and k exponentiations. Decryption can
be optimized to reduce the number of bilinear map opera-
tions by bringing the Lagrange coefficients in:

M =
E′ Q

i∈S e(d
∆i,S(0)
i , Ei)

e(
Q

i∈S D
∆i,S(0)
i , E′′)

(3)

This optimization reduces the number of bilinear map op-
erations from 2k to k + 1 at the expense of increasing the
number of exponentiations from k to 2k. Because bilinear
map operations are more computationally intensive than ex-
ponentiations, this optimization increases the overall speed
of decryption.

3. ATTRIBUTE KEY INFRASTRUCTURE
ABE systems do not vouch for identity in the traditional

sense, as users are represented by the summation of their at-
tributes. Accordingly, as identities are no longer necessarily
unique, there is no need to validate bindings between keys
and users. This alleviates many of the managerial problems
found in traditional PKI systems [12] (e.g., user name colli-
sions, per-user revocation). However, new challenges arise.
We briefly consider these issues, as well as their similarity
to traditional PKI systems. Note that this work is not in-

tended to solve the problems of PKIs, but to apply available
approaches where possible and invent others where needed.

The process by which users are certified in an ABE system
is analogous to certification in a PKI. Similar to a traditional
PKI, a user presents the authority with a set of credentials
that prove their right to fulfill an attribute. Instead of map-
ping a user to an identity, certification establishes that the
user fulfills the semantic of the attribute. Such semantics
are specific to the supported community (e.g. job function
in a business system, clubs belonged to in a social network).
This process is repeated for all attributes appropriate to
each user. Key distribution is significantly simplified in such
a system, as public keys are simply the combination of the
cryptosystem’s public parameters and attribute names.

The revocation process is significantly different in a ABE
system as attributes, not users or keys, are revoked. In
fact, there is no way to revoke a user, save revoking all of
his attributes. Like traditional PKI systems, revocation can
impact all users who either have or use an attribute. Un-
like traditional PKI systems, however, the compromise of
a particular attribute may not mandate its revocation. As
Section 4 details, it is the specific application of multiple
attributes that defines policy. The compromise of any sin-
gle attribute may therefore be a necessary but not sufficient
condition for its revocation. Consequently, it may be desir-
able to revoke all, a subset or none of the compromised user
attributes. Explored in depth in Section 6.3, we consider
both online and offline revocation approaches.

A superficial reading of the above issues may lead one to
falsely conclude that ABE systems must be online. The cre-
ation of keys, certification of users, and adding attributes
are largely isomorphic to certification issuance operations
present in current PKI. Revocation can also be handled of-
fline (however, online approaches such as OCSP [24] are
likely to be desirable in some environments). Hence, ABE
systems can operate entirely offline in largely the same that
current PKI systems do.

4. ATTRIBUTE POLICY
We now informally define an expository system for de-

scribing encryption policies in attribute-based systems. An
attribute policy (or just policy throughout) is a specification
of cryptographic operations carried out on a plaintext in the
attribute-based system. Hence, through encryption, a party
is able to embed expressive policies into objects themselves,
allowing for the decentralized enforcement of such policies.
Note that the following policy description is not particu-
lar to the specific constructions of our implementation, and
is appropriate for defining policy in any ABE system that
supports threshold constructions.

4.1 Definition
There are two components central to the definition of

policies: attributes and objects. An attribute consists of a
uniquely identifying string, Name, and its hash, H(Name).
The semantics of the Name identifier are irrelevant to the
policy itself and will be driven by the application it sup-
ports (see Section 5 for examples). The hash is necessary
for the ABE construction (see Appendix B), but plays no
role in the formulation of policy. We broadly refer to all en-
crypted or recovered data as objects. For example, objects
in a distributed file system would be the files that it stores.
Conversely, objects in a social network may include a mix of



personal communiques (e.g. emails, instant messages, etc.),
profile information, and pictures. We refer to the universe
of all attributes as the set A = {a1, a2, . . . ax}, the set of
objects O = {o1, o2, . . . , oy}. Where meaning is obvious or
differentiation unnecessary, subscripts may be omitted.

The attribute policy is a specification of the attributes and
threshold used to encrypt an object. For example, consider
a policy P that mandates encryption using a single attribute
a under a threshold of 1. We denote this policy:

P = T1(a) (4)

Of course, policies are of most interest when they are applied
to objects. The application of the example attribute policy
on an object o is denoted:

E(o, P ) or equivalently E(o, T1(a)) (5)

which states that o has been encrypted under attribute a us-
ing a 1-out-of-1 threshold encryption function. This object
can therefore only be decrypted by a user possessing this
attribute. Now consider the application of a similar pol-
icy P ′ on o that encrypts using 2-out-of-3 threshold using
attributes a1, a2, and a3:

E(o, P ′) or equivalently E(o, T2(a1, a2, a3)) (6)

Now consider the most general case. An arbitrary policy P ′′

is defined:

P ′′ = Tk(S) | S ⊆ A, S 6= ∅, 1 ≤ k ≤ |S| (7)

which states that the following must be true for any legal
policy, a) the set of attributes must be a nonempty subset
of A, and b) the threshold must at least 1 and no more than
the total number of attributes.

Note that policies can be arbitrarily nested. Users can
build complex expressions of attributes, thresholds, and log-
ical operators. For example one may wish to combine P and
P ′ over o above to achieve,

E(E(o, P ′), P ) or equivalently E(E(o, T2(a1, a2, a3)), T1(a)
(8)

which states that one must decrypt under policy P first,
then P ′ to recover o. Explored more fully in the following
section, logical conjunction and disjunction are expressible
through attribute policy. For example, if Pi and Pj are
policies, then:

Pk = (Pi) ∧ (Pj) Pl = (Pi) ∨ (Pj) (9)

The semantics of these policies are straightforward. A log-
ical ‘and’ policy states that one must be able to decrypt
both under both policies to extract the plaintext. The logi-
cal ‘or’ policy requires that one must be able decrypt under
either or both of the policies to obtain the plaintext. Such
constructions are examined in greater detail in Section 5.

The remainder of this paper explores how we build con-
structions meeting the semantics of these policies and how
they can be applied to build novel and interesting applica-
tions.

4.2 Implementing Policy
Implementing singular attribute or threshold policies is

straightforward using ABE constructions. An example of a
threshold policy is depicted in Figure 1. This policy states
that decryption is possible if the party performing decryp-
tion possess at least three of the following attributes: a1,

P1 = T3(a1,a2,a3,a4)

E

a1 a2 a3 a4

T3

o1 E(o1,P1)

Figure 1: Encryption using threshold policy P1. Object

o1 can only be decrypted by a principal in possession of

at least three of the requisite attributes.

P2 = T4(a1,a2,a3,a4)

E

a1 a2 a3 a4

T4

o2 E(o2,P2)

Figure 2: Encryption using and policy P2. Object o2 can

be decrypted by principals who possess all four requisite

attributes.

a2, a3, a4. This is illustrated by the requisite attributes
being fed to the threshold operator T3. The output of the
threshold primitive is the desired policy P1, which can then
be used to define an encryption operation.

We refer to a policy where k out of k attributes are re-
quired to decrypt an object as an and logic policy, and 1 in
k attributes as or logic policy. These policies can be eas-
ily implemented using the thresholding primitive, where the
threshold is k in the case of and logic and 1 in or logic.
Figure 2 illustrates an and policy. The policy P2 requires
that the party performing decryption must possess all four
of the following attributes: a1, a2, a3, a4. P2 is implemented
by giving the threshold operator T4 the four required at-
tributes. An or policy is trivially similar, and is thus not
illustrated.

Expressing policy becomes somewhat more complex when
the input policies are not subsets of S, i.e., not expressions
over atomic policies. Consider the case of an or policy span-
ning three (possibly complex) policies P1, P2, and P3. In
this case, one need only encrypt each of the input objects
under each policy and concatenate them together; anyone
able to decrypt at least one of these objects should be able
to recover the underlying object. Denoting concatenation as
“·”, the ciphertext of an object oi encrypted under a policy
P1 ∨ P2 ∨ P3 would be E(oi, P1) · E(oi, P2) · E(oi, P3).

Now consider the case of an and policy spanning three
(possibly complex) policies P1, P2, and P3. One cannot
simply use a threshold as above because the input policies



P3 = P4 ∧ P5 = T2(a1,a2) ∨ T2(a3,a4)

E

a1 a2 a3 a4

T3

E(o3,P4) E

T3

E(o3,P5)
o3

Figure 3: Encryption operation using and-or pol-

icy P3. Principals who possess either attributes a1

and a2 or a3 and a4 are capable of decrypting object

o3.

P6 = P7 ∧ P8 = T1(a1) ∨ T1(a2) ∧ T1(a3)

E

a1 a2 a3

T1o4 T1

E

T1

E

E(o4,P6)

E(o4,P7) E(o4,P8)

Figure 4: Encryption operation using or-and pol-

icy P4. A principal possessing attribute a3 and ei-

ther a1 or a2 may decrypt object o4.

do not reflect a threshold over atomic attributes. Hence,
another construction must be used. Observe that we can
achieve and semantics by sequentially encrypting the ob-
ject with each policy. Thus the policy P1 ∧ P2 ∧ P3 would
be E(E(E(oi, P1), P2), P3). This satisfies the policy seman-
tic because only principals which possess the underlying at-
tributes satisfying all policies can recover the plaintext.

Conjunction and disjunction constructions can be nested
arbitrarily. In Figures 3 and 4 we illustrate policies that use
both and logic and or logic. Specifically, in the and-or
policy, any party performing decryption must possess either
the attributes a1 and a2 or the attributes a3 and a4. The
or-and policy requires the decrypting party possess a1 or
a2 in addition to attribute a3.

Observe that the conjunction constructor has a weaker
security model than the original ABE constructions, where
the base objects are encrypted under attributes. Whereas
ABE encryption prevents any collusion attack, it is possi-
ble for adversaries to collude to recover the plaintext in this
construction. To illustrate, in the or-and example1 in Fig-

1This policy expression could be optimized to reduce the

ure 4, two colluding parties satisfying P7 and P8 indepen-
dently can recover the plaintext. The first adversary need
decrypt the outer encryption using its a3 assignment, then
pass the inner E(o4, T1(A1)) ciphertext to the second adver-
sary who can then decrypt using a1 to recover the original
plaintext o4. Work to improve this aspect of the associated
cryptographic constructions is currently under way. Until
then, our constructions are no weaker than standard cryp-
tographic methods e.g. public key cryptosystems.

4.3 Extending the Flexibility of ABE
ABE natively supports a k-of-n threshold primitive.

However the cryptographic constructions discussed in Ap-
pendix B mandate that k be a fixed constant across all
ciphertext objects created by a given attribute system.
Further, for the implementation without random oracles,
the number of attributes in each ciphertext n, must also
be fixed. These requirements greatly limit the liberty at
which principals can draft policies; each policy must be
created with a single type of threshold primitive. Thus, if
k = 4, n = 4, then all policies would have to be written
using T4 threshold operators and each ciphertext would
have to contain exactly 4 attributes. As a result the policy
P10 = T2(a1, a2, a3) could not be implemented.

Because we are interested in enabling the creation of
highly expressive policies, we discuss three separate ap-
proaches which circumvent the fixed n, k requirement for
constructions without random oracles2. The first two ap-
proaches were initially introduced by Sahai and Waters [26].
To better understand the difference between these three
solutions it is helpful to introduce the following notation.
Let (ki, ni) denote a valid pairing of k, n for a particular
system.

The first solution is to provide all principals in a system
with “default attributes”, which act as placeholders and are
devoid of semantic meaning (i.e. they are given to all users
regardless of their attributes). The purpose of these at-
tributes is to enable objects to contain any threshold oper-
ator, Tk′ such that 1 ≤ k′ ≤ k. To attain this end, each
object must contain the maximum number of possible at-
tributes n. The default attributes can then pad for any of
the required n attributes. This scheme extends a system
where only (k, n) is valid to a system where any of the fol-
lowing are valid: (1, n− (k− 1)), (2, n− (k− 2)), . . . , (k, n).
Given k, n = 10, this method allows a single cryptosystem
to express the ten and policies between (1,1) and (10,10);
however, this example cryptosystem could not express any
system in which k, n were not equal.

The second solution entails creating n separate cryptosys-
tems, each with a different value of k, enabling policy to use
any of the following: (1, n), (2, n), . . . , (n, n). Similar to the
previous approach, this scheme extends policy expressive-
ness, but requires a large number of systems to express a
diverse set of policies.

required number of encryptions. Specifically, (a1∨a2)∧a3 ≡
(a1 ∧ a3) ∨ (a2 ∧ a3). This optimization would require two
encryptions with T2, as opposed to four encryptions with
T1. Such logic expression reductions have been thoroughly
studied by other works [17] and are therefore not the focus
of this work.
2While this discussion focuses on circumventing the fixed
n, k in the constructions without random oracles, our ap-
proaches can be extended to constructions with random or-
acles, which is only limited by having a fixed k.



Figure 5: Example of our method for extending flexibil-

ity of ABE. ABE constructions without random oracles

can only directly implement a k out of n policy where k

and n are fixed. In this example we show how any pos-

sible pairing of k ≤ n and n, given that no more than 10

attributes will be present in any ciphertext. To attain

this end, 10 separate cryptosystems (denoted by stars)

are implemented. Arrows indicate the use of semanti-

cally void default attributes. These attributes can be

used on each of the 10 cryptosystems to attain any k, n

pairing.

Our approach is a hybrid of the above two techniques.
Specifically, this approach enables any policy that is ex-
pressed with at most n attributes. More exactly, ∀nj ≤
n and ∀ki ≤ nj , (ki, nj) are all valid pairings of k and n.
This scheme is implemented by creating n separate cryp-
tosystems as described in the second solution. From these
cryptosystems, default attributes can be used to attain all
the desired policies. This is illustrated in Figure 5, where
n = 10. Each of these 10 cryptosystems are denoted with a
“star,” giving the following (k, n) pairs: (1, 10), (2, 10), . . .,
(10, 10). The diagonal lines indicate the other pairings of
(k, n) that are obtainable by using default attributes from
within the 10 cryptosystems. Consider the (9, 10) cryptosys-
tem, in which default attributes allow for the expression of
the policies (1, 2), (2, 3), . . . , (9, 10). Similar expressiveness
is possible for the remaining cryptosystems.

This scheme can easily be extended to meet the needs of
the target application. For instance, a system may opt to
only create a subset of the possible cryptosystems (e.g. the
values of k for powers of 2 less than or equal to n). Sec-
tion 6 explores the performance trade-offs associated with
using such a sampling. Trade-offs between expressibility,
performance and overhead must be carefully considered.

5. APPLICATION OF POLICY
The threshold, conjunction and disjunction constructions

discussed in Section 4 result in an expressive policy system.
In this section we illustrate the use of policy in two separate
applications: HIPAA compliant distributed storage systems
and social networks.

5.1 Distributed File Systems
A content-addressable file system enables users to locate

files based on attributes or keywords describing their con-
tents. Accordingly, data becomes searchable in a more
meaningful fashion than the traditional approach of speci-
fying file paths. To date, most work on content-addressable

Alexander Fleming

Leonard McCoy

Beverly Crusher

Walt Whitman

Arthur Miller

Benedict Arnold

Blue Cross
Medicare A
Medicare B

ACME
Medicare D

Insurance

Doctor
Nurse
Billing
Pharmacist
Drug Rep

Job

Figure 6: Mapping of attributes to principals in HIPAA

compliant medical system.

file systems has focused on automatically generating de-
scriptions of a file’s contents [6, 14, 16]. The use of ABE
strengthens the security properties of such systems. Be-
cause the access control policy of every object is embedded
within it, the enforcement of policy becomes an inseparable
characteristic of the data itself. This is in direct contrast to
most currently available systems, which rely directly upon
a trusted host to mediate access and administer policy. As
file systems become more distributed in nature and rely
upon domains of varying trust to control access, traditional
approaches no longer provide adequate guarantees.

Example systems include large multisite research efforts
such as the Human Genome Project, which was formed in or-
der to map the sequence of chemical building blocks compos-
ing the human genome. While this multinational research
effort requires a total of only 3 gigabytes of space to store
the genome itself, the space estimated for additional anno-
tations will sufficiently dwarf the initial sequence data in
the system [2]. As this and other research projects begin
to require petabytes of storage, the ability to securely store
such information across multiple sites becomes increasingly
critical.

5.1.1 Policy for HIPAA Compliant Medical Systems
We use a Health Insurance Portability and Accountability

Act (HIPAA) compliant medical system as an example of a
loosely-coupled, content-addressable file system with strict
security requirements. HIPAA was designed to clearly enu-
merate the security requirements and provide information
flow control for electronically stored medical information
such that patient privacy is maintained [32]. While the sys-
tem below is by far not a comprehensive example of HIPAA
requirements, it demonstrates the ease with which a fully
compliant system could be constructed using ABE.

In this example, a patient i’s medical information is com-
posed of several fields. Patients define the following pri-
vacy policies to best protect each component of their medi-
cal information: currently used medications (Pi,Med), medi-
cal history (Pi,Hist), contact information (Pi,CI), and insur-
ance information (Pi,Ins). A patient’s policy describes the
attributes that must be possessed by medical personnel in
order to access their medical information. As illustrated in
Figure 6, these attributes describe various job functions of
medical personnel as well as the health insurance plans they
accept.



A patient, Robert Oppenheimer, supplements his limited
insurance coverage through the ACME Corporation with a
“Medicare D” prescription plan. His policy therefore stipu-
lates that only doctors (Dr) and nurses (Rn) supporting his
insurance plan can view his full medical history, contact in-
formation, and a listing of his current medications. Oppen-
heimer’s policy also allows a pharmacist (Rx) in his plan to
view the medications he is currently taking, so that he/she
can ensure no conflicts between prescriptions exist. Fur-
ther, a pharmacist is allowed access to contact information
to notify him when prescriptions have been filled. Oppen-
heimer’s policy also restricts the access of billing personnel
(Bill) to his insurance and contact information such that
charges can be filed with his insurance providers without
danger of exposing private information. Lastly, without re-
vealing his contact information, Oppenheimer allows the list
of medications he is currently using to be made available to
pharmaceutical representatives (Rep) analyzing the combi-
nation of drugs with which their products are prescribed
in concert. As described above, Oppenheimer’s policies are
represented as follows:

PO,Hist = T1(Dr, Rn) ∧ T1(ACME, MedicareD)

PO,CI = T1(Dr, Rn, Bill, Rx)

∧T1(ACME, MedicareD)

PO,Ins = T1(Bill) ∧ T1(ACME, MedicareD)

PO,Med = (T1(Dr, Rn, Rx) ∧ T1(ACME, MedicareD))

∨T1(Rep)

From the above policies, only Dr. Crusher and Nurse
Whitman can access his medical history. Dr. Crusher, Nurse
Whitman, Billing Secretary Arnold, and Pharmacist Flem-
ing can access his contact information. Billing Specialist
Arnold can also access Oppenheimer’s insurance informa-
tion. Dr. Crusher, Nurse Whitman, Pharmacist Fleming
and Pharmaceutical Representative Miller are able to deter-
mine Oppenheimer’s current regime of medication.

5.2 Social Networks and Online Communities
Social networks, such as orkut, Facebook and Friend-

ster [1], are an online application which enable users to find
other users with similar interests. To use these applications,
users must reveal large quantities of personal information
(e.g. name, age, address, personal interests, sexuality, etc.)
into the public domain. Groups of people sharing similar
attributes and friends are then automatically linked to each
other. Currently, such systems provide only weak privacy
guarantees; network membership allows access to the wealth
of user information. Accordingly, user data can readily be
mined and abused by undesirable parties.

ABE-based systems are well suited to provide user
controlled-privacy, as users in these communities are al-
ready characterized by their attributes. In Friendster, for
example, a user with the attribute “Anon U. Alumnus” is
automatically enrolled in a group of the same name. Ac-
cordingly, the creation of “white-lists” for communication
immediately becomes possible without requiring enumer-
ation of all user identities. Constructing a social network
using ABE also provides scalability. Current social networks
require a trusted central server to store all profile informa-
tion and enforce policy. Because ABE-based systems do not
require a trusted storage system, profile information could

Van Buren
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Hair Color
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Figure 7: Mapping of attributes to principals in social

network application.

be stored on untrusted servers, significantly decreasing
the traffic and storage requirements incurred by a system.
Further, in an ABE-based system, objects are embedded
with policy, enabling distributed enforcement.

5.2.1 Policy in a Social Network
We now demonstrate policy in a social network through

an application where the principals are users of an online
dating service. Each user dictates their own policy in order
to restrict access to their personal information.

Figure 7 illustrates a sample network. A principal’s pol-
icy can be viewed as a description of attributes they find
desirable in other principals. Possession of the attributes
described in the policy is therefore a prerequisite to being
able to access another principal’s personal information. We
begin with a relatively simple policy. Van Buren is only in-
terested in meeting women with black hair, medium wealth,
and medium weight. His policy is represented as:

PV = T4(Female ∧BlackHair ∧MedWealth

∧MedWeight).

Of the above principals, only Jones can access Van Buren’s
profile. This policy, which is equivalent to policy P2 as de-
picted in Figure 2, can be expressed using a single threshold
primitive T4. It is therefore possible to directly implement
PV with a single ABE encryption. Accordingly, data en-
crypted under this policy will be resistant to collusion.

Grant’s policy, whereby only blonde or red haired women
can access his profile information, is represented as:

PG = T1(Female) ∧ (T1(Blonde) ∨ T1(Red)).

As such, only Anderson or Kidman can access his informa-
tion. Notice that Grant’s policy is equivalent to policy P6

in Figure 4 and therefore cannot be implemented using a
single threshold operator. Accordingly, PG is less resistant
to collusion than PV .

Lastly, Anderson is interested in hearing from men who
possess at least two of the following attributes: red hair,
medium weight, overweight, or medium wealth. Her policy
can be represented as:

PA = T1(Male) ∧ T2(Red, MedWeight, Overweight,

MedWealth).
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Given Anderson’s policy Coolidge and Grant can access her
information. Notice, however, that a principal’s policy is
not necessarily symmetric. For instance, of these two, only
Grant has a policy that would allow Anderson to contact
him.

6. SYSTEM EVALUATION
The policies discussed in the previous section illustrate

the potential expressibility of ABE-based systems. In this
section, we characterize the performance of systems provid-
ing such functionality. We begin by exploring the cost of
the base cryptographic constructions. We then determine
the cost of implementing a selection of the previously de-
fined policies. We finish by comparing the performance of
an ABE-based system to a comparable system implemented
with RSA cryptographic primitives.

As demonstrated by numerous others (e.g. [10]), the selec-
tion of cryptographic parameters can have a drastic impact
on system performance. In this section, we characterize the
parameter space by profiling the performance of attribute
systems under different input parameters. Such analysis is
necessary to optimize the system for a particular application
or environment. All experiments were carried out on a 2.0
GHz Apple Xserve G5 with 4GB memory running Mac OS
X Server 10.3.9. All disk operations were performed on a
1.82TB RAID 5 disk array. All results are calculated from
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an average of 500 iterations of the measured operation.
We have implemented an ABE library upon which secure

attribute systems can be constructed. This C library con-
tains approximately 5,200 lines of code and has been tested
on Solaris, OS X and Linux platforms. To our knowledge,
we are the first to implement, measure, and characterize the
theoretical mechanisms of attribute-based encryption. Ac-
cordingly, we explore a wide range of potential inputs and
settings system architects should consider when designing
new secure attribute-based environments. For instance, sys-
tems using our API can choose between the two most studied
elliptic curve groups providing bilinear maps: supersingular
elliptic curves (SS), which enable fast cryptographic pairing
operations [22], and MNT elliptic curves, which are used
to obtain small ciphertext sizes [23]. We use the Pairing-
Based Crypto library [19] for the underlying implementation
of these groups and OpenSSL [3] for providing a supporting
Key Encapsulation Mechanism (KEM) [31].

The following analysis measures the four central func-
tions of the attribute system as defined in Section 2:
Setup System, Key Generation, Encryption, and Decryption.
For reference, Table 1 provides an outline of the base cryp-
tographic operations for each of the base operations. See
Appendix A for greater detail on the use of these functions
and the design of our attribute system API. All source code
and documentation are available at:

http://siis.cse.psu.edu/attribute.html



Table 1: Base cryptographic operations for the major attribute functions.
Random Oracle No Random Oracle

operation hashes expon. pairings hashes expon. pairings

System Setup 1 1 1 1
Key Generation (x attributes) x 3x 3x + (n ∗ x)

Encryption (y attributes) y 2 + y 2 + y + (n ∗ y)
Decryption (threshold k) 2k k + 1 2k k + 1

Table 2: Table of R-Square values (No Random Oracles)
# Attributes Data Length Curve Type Rand Init

Initialize Randomness 2.083E−5 1.043E−5 1.440E−6 0.9721
System Setup 0.8052 1.321E−4 0.0138 2.355E−6
New Attribute 0.0442 1.499E−4 6.959E−4 2.282E−5
Key Generation 0.8297 2.480E−4 0.0369 1.158E−9
Encryption 0.7134 2.120E−4 0.0692 6.470E−9
Decryption 0.5355 1.733E−4 0.2222 5.466E−9

Table 3: Table of R-Square values (Random Oracles)
# Attributes Data Length Curve Type Rand Init

Initialize Randomness 1.167E−5 1.254E−5 3.363E−7 0.9721
System Setup 0.7908 8.915E−7 0.0176 3.827E−7
New Attribute 0.0394 1.014E−4 8.343E−5 3.719E−6
Key Generation 0.9997 9.792E−8 1.551E−4 3.916E−8
Encryption 0.4781 3.167E−7 0.1993 5.456E−8
Decryption 0.5608 4.543E−9 0.2041 4.078E−9

These experiments indicate several important properties
of the parameter space. Firstly, MNT is faster than SS
for encryption whereas the opposite is true for decryption.
Secondly, encryption costs are significantly improved by the
use of random oracles. Hence, the curve selected should be a
reflection of the relative number of encryptions and decryp-
tions performed in the system, as well as the capabilities of
the encryptor and the intended recipients. Lastly, the abil-
ity to express complex policies with ABE allows for practical
use of attribute-based systems.

6.1 Experimental Results
The first set of experiments measure the degree to which

different system parameters affect performance: we vary the
number of attributes, length of data, elliptic curve and ini-
tialization of randomness parameters. We then perform an
R-squared or coefficient of determination analysis over the
measured results. This technique identifies the portion of
observed variance in one variable that is directly attributable
to a second. On a scale from zero to one, numbers closer
to one represent a significant correlation between variables.
For precision, we also include measurements for two addi-
tional subfunctions: Initialize Randomness preloads ran-
dom bytes from the local entropy pool and New Attribute

allocates a new attribute to a principal.3 The results of
these tests reveal that the number of attributes followed by
the elliptic curve used are the dominant factors, as shown
in Tables 2 and 3. Lastly, to characterize the growth of
execution time against the number of attributes, we run a
regression analysis for the worst case and present our find-
ings in the standard linear form, i.e., y = mx + b.

Figure 8 shows the cost of System Setup as a function of
the number of attributes. Systems using a SS curve without
random oracles average 0.366 seconds (σ = 0.049) and 2.141
seconds (σ = 0.133) for 1 and 32 attributes, respectively. A

3In all tests in this section, Initialize Randomness
is included in measurements of System Setup, and
New Attribute is included by Key Generation.

system using the MNT elliptic curve without random ora-
cles averages between 0.737 seconds (σ = 0.202) and 1.699
seconds (σ = 0.284) for the same range. Execution time
for both curves scales linearly in the number of attributes
(SS w/o random oracles: y = 0.572x + 0.3126; r2 = 0.9999).
Random oracles have no role in system setup, and hence
have no bearing on performance. System setup therefore
poses no significant computational burden in real systems.

Figure 9 illustrates the cost of key generation, which is
consistently cheaper for MNT curves. For a system using
32 attributes without random oracles, MNT curves require
an average of 12.355 seconds (σ = 0.035) to generate a user
key, compared to 25.05 seconds (σ = 0.052) for SS curves.
Random oracle constructions are significantly faster - sys-
tems built on SS and MNT curves perform similarly at all
numbers of attributes, e.g., at 5.051 (σ = 0.017) and 4.927
(σ = 0.017) seconds, respectively for 32 attributes. Exe-
cution time scales linearly for both curves with and with-
out the use of random oracles (SS w/o random oracles:
y = 0.8003x − 2.37; r2 = 0.9584). Note that key genera-
tion for each user is performed infrequently (likely once). If
the user community is fairly static, such costs will be amor-
tized by operations on data. Conversely, in environments
where users may join frequently, it behooves the adminis-
trator to select parameter choices that minimize these costs,
e.g., MNT elliptic curves using random oracles.

As shown in Figure 10 for both SS and MNT elliptic
curves, the construction without random oracles requires
an average of 11.213 (σ = 0.031) and 3.946 (σ = 0.017)
seconds to encrypt data using 32 attributes. Systems imple-
menting the construction with random oracles experience
dramatically improved encryption performance, i.e., 1.207
(σ = 0.009) and 0.204 (σ = 0.006) seconds, respectively.
Here, MNT elliptic curves are approximately 65% to 85%
faster than their SS counter-parts (in constructions with and
without random oracles, respectively). Systems using MNT
curves with random oracles are in fact 98% faster those using
SS curves without random oracles. Both systems scale lin-



early in the number of attributes with and without random
oracles (SS w/o random oracles: y = 0.3590x − 1.148; r2 =
0.9487). Conversely, as illustrated in Figure 11, a system
of 32 attributes with and without random oracles exhibits a
decryption time of 1.452 (σ = 0.009) and 1.348 (σ = 0.044)
for an SS construction and 7.341 (σ = 0.029) and 5.342
(σ = 0.841) seconds in MNT, respectively. Execution time
for both systems scales linearly in the number of attributes
with and without random oracles (MNT w/o random ora-
cles: y = 0.2298x − 0.103; r2 = 0.9999). Note the systems
using SS curves experience approximately 80% faster per-
formance than their MNT counterparts.

Lastly, we compare the performance of ABE against tra-
ditional cryptographic techniques. From OpenSSL’s bench-
marking tool [3], the platform used for ABE benchmark-
ing is capable of performing RSA public key encryption in
0.0003 and 0.00097 seconds for 1024 and 2048-bit keys, re-
spectively. To offer similar semantic expressiveness and pre-
vent the need for 2N−1 keys (there are 2N−1 nonempty sub-
sets in a set of size N), we assume that each attribute in an
ABE system has a corresponding RSA key pair. For simple
policies, encryption under a single attribute/key is 300 and
93 times faster under RSA (0.0003 and 0.00097 vs 0.09 sec-
onds). ABE’s thresholding primitive, however, allows much
more efficient execution. For example, a policy requiring a
threshold of 2 of 32 attributes has nearly identical execution
times (0.1488 vs 0.2043 seconds) for both RSA-1024 and
ABE with MNT curves and random oracles. RSA-2048 re-
quires approximately 0.5 seconds to achieve the same ends.
A system requiring 16 of 32 attributes would also require
0.2043 seconds for an ABE system; however, the equivalent
RSA systems would require approximately 33.4 and 107.97
days, over 46.6 million times slower, to achieve the same.
ABE’s inherent expressibility makes it a practical means of
constructing real attribute systems.

6.1.1 HIPAA System Policy Analysis
We now determine the cost incurred for implementing ex-

pressive policies. Encrypting with the policy PO,CI from
Section 5.1.1 requires an initial encryption of the principal
Oppenheimer’s contact information using T1(ACME, Medi-
care D), a process requiring E2 time to complete. This
ciphertext object is then independently re-encrypted with
each of the following attributes: Dr, Rn, Billing, Rx. Each
of these encryptions requires 1 attribute, and thus takes
E1 time to complete. This policy could alternatively be
implemented using two encryptions if the or construction
is replaced with T1(Dr, Rn,Bill, Rx). Table 4 shows the
timing values for this optimized policy, noted as PO,CI =
E(E(CI, T1(ACME,Medicare D )), T1(Dr,Rn,Bill,Rx)).

Decrypting data encrypted under PO,CI requires two op-
erations. The first decryption occurs with any of the follow-
ing attributes: Dr, Rn, Billing, Rx. The second decryption,
which enables recovery of the plaintext, requires decryption
of T1(ACME, Medicare D). Table 4 shows average execution
time.

6.1.2 Social Network Analysis
We now examine the cost of expressing policy as described

in Section 5.2.1 for a social network application. Consider
the time required to encrypt a message under Grant’s policy,
PG. Grant’s information IG is first independently encrypted
under T1(Red Hair) and T1(Blonde). Both values, noted

Table 4: Average performance (sec) for PO,CI

No Rand Oracles Rand Oracles
SS MNT SS MNT

E2 0.13 0.12 0.10 0.10
E4 0.31 0.18 0.18 0.10
D2 0.09 0.46 0.10 0.42
D4 0.18 0.91 0.18 0.75

E(PO,CI) 0.44 0.30 0.28 0.20
D(PO,CI) 0.27 1.37 0.28 1.17

Table 5: Average performance (sec) for PG.
No Rand Oracles Rand Oracles
SS MNT SS MNT

E1 0.07 0.10 0.07 0.09
D1 0.04 0.20 0.04 0.20

E(PG) 0.28 0.40 0.28 0.36
D(PG) 0.08 0.40 0.08 0.40

as I ′G = E(IG, T1(Red Hair)) and I ′′G =E(IG,T1(Blonde))
respectively, are then encrypted under T1(Female), yielding
E(I ′G, T1(Female)) and E(I ′′G, T1(Female)). Note that the
total number of encryptions can be halved if the or semantic
is equivalently implemented as T1(Red Hair, Blonde). The
total time to encrypt PG is given by E(PG).

Table 5 details the time required to perform the unopti-
mized operations required to formulate PG. These values
represent the encryption and decryption operations for SS
and MNT elliptic curves with and without random oracles.

In the case of decryption for PG, two decryptions are re-
quired. The decrypting party initially performs two decryp-
tions with a3. From this, only a1 or a2 must be decrypted
in order to recover the original plaintext. The total time to
decrypt PG is given by D(PG).

6.2 Ciphertext Size and User Key Length
Ciphertext size and key length are important to some

classes of applications, e.g., in high traffic volume or low
bandwidth networks or on resource poor devices. Here, we
briefly detail the size of ciphertexts and the size of a user’s
private key. Specifically, we quantify ciphertext length and
user key length as described in Appendix B. Because the
focus of this paper is on attribute systems and ABE, we do
not include structured data framing or data encrypted with
symmetric cryptography in our treatment of ciphertext size.

We shall first discuss a discrepancy between MNT curves
and SS curves that is necessary to understand our analy-
sis. Recall that the Sahai-Waters construction makes use
of a bilinear group G to perform bilinear map operations:
e : G × G → GT . This type of bilinear map is said have
symmetric groups. A bilinear map that is asymmetric has
the following form: e : G1 × G2 → GT , G1 6= G2. SS curves
are characterized by having symmetric bilinear groups. Both
G and GT require 512 bits to be represented. MNT curves
are characterized by having asymmetric bilinear groups. G1

is represented with 170 bits while G2, GT are represented
with 510 bits.

Each attribute i possessed by a principal corresponds to
two private key components di and Di. For SS curves both
of these components are members of G. For MNT curves
Di ∈ G1, di ∈ G2. This yields (for a private key with n



attributes):

Supersingular KeySize(n) = 2 · n · 512bits (10)

MNT KeySize(n) = (170 + 510) · nbits (11)

A ciphertext C scales with the number of attributes it con-
tains as follows. A ciphertext with n attributes is composed
of C′, C′′, and n elements Ci. For SS curves C′′, Ci ∈ G
and C′ ∈ GT . For MNT curves C′′ ∈ G2, C′ ∈ GT , and
Ci ∈ G1. This yields (for a n attribute ciphertext):

Supersingular CTLen(n) = (n + 2) · 512 bits (12)

MNT CTLen(n) = 2 · 510 + 170n bits(13)

6.3 Attribute Revocation Issues
We now address some of the practical issues relevant to

constructing ABE-based systems. An in-depth discussion of
the implementation and the associated parameters is pro-
vided in Appendix A.

Revocation of users and keys in systems is a well stud-
ied but nontrivial problem [21]. Revocation is even more
difficult in attribute systems, given that each attribute is
conceivably possessed by multiple different users, whereas
public/private key pairs are uniquely associated with a sin-
gle principal. While an in-depth discussion of revocation is
out of the scope of this paper, we give a brief overview of
one method by which revocation could be implemented.

One revocation technique would require each attribute to
contain a time frame within which it is valid. For instance,
the attribute “Staff Member-December 31st 2006” denotes
that the usefulness of the current attribute expires at the
end of 2006. Affixing temporal information to each attribute
necessitates the system administrator periodically releasing
the latest version of attributes and periodically reissue user
keying information. Removal of an attribute from this sys-
tem would be accomplished by the administrator not releas-
ing the latest version of the attribute. Similarly, revoking
an attribute from an individual requires the administrator
to withdraw the updated attribute in the user’s private key.
There are significant trade-offs between the load placed upon
the administrator and the amount of time that can elapse
before an attribute/user can be purged. We therefore leave
more efficient solutions to future work.

7. RELATED WORK
Securing the sharing of information between groups is a

fundamental problem that arises in numerous applications.
Such applications include multilevel security, secure multi-
cast, collaborative online communities, and distributed file
systems. The fundamental importance of the secure ex-
change of information has resulted in a wide range of so-
lutions.

Traditional access control mechanisms can be categorized
into three groups: mandatory access control (MAC) [11],
discretionary access control (DAC) [18, 28], and role-based
access control (RBAC) [13, 27]. In MAC, an administrative
mechanism enforces centralized access control on every ob-
ject. Systems implementing DAC require the owner of an
object to dictate policy. Under RBAC, a user’s role in an
organization inherently dictates their ability to access and
manipulate data. Each role in an RBAC system is associ-
ated with a set of permissions required to carry out that role.
While these mechanisms are highly effective at controlling
access for systems under a single administrative authority,

they have been largely unsuccessful at providing the same
for unconnected and distributed environments.

ABE can enforce access control policy in such environ-
ments because it cryptographically binds objects to their
policies. Only users possessing the requisite set of attributes
are able to view and/or manipulate data. The ability to
make policy portable through cryptography is not new. Sev-
eral works have attempted to use a public key infrastructure
(PKI) [15] or secure group communications mechanisms [7,
20] to provide similar access control mechanisms. The dif-
ficulty with applying standard cryptographic techniques is
they are designed to control access to single groups. In
real systems, however, users are often members of multiple
groups. Unique keys must therefore be assigned or negoti-
ated for each of the subgroups for which a user is a member.
Such solutions do not scale for complex organizations with
significant communication across groups. In contrast, users
in ABE-based systems automatically belong to every possi-
ble attribute subset group without the need for additional
keying.

By using cryptographic mechanisms that are in and of
themselves able to express complex policies, ABE-based sys-
tems become a highly practical means of ensuring the effi-
cient and secure exchange of information between groups.

8. CONCLUSION
This paper has presented a novel secure information man-

agement architecture and implementation. We extended ex-
isting constructions for attribute-based encryption (ABE)
and promoted them as a practical systems building block.
The needs of complex attribute applications were met via
the introduction of a policy system and an associated im-
plementation for its enforcement. We illustrated the infras-
tructure through the creation and performance evaluation
of two applications: a HIPAA compliant distributed file sys-
tem and a social network. A further empirical study shows
that a careful selection of parameters and use of construc-
tion optimizations can lead to significant cost savings. These
analyses demonstrate that our attribute approach is an at-
tractive solution for securely managing information in large,
loosely-coupled, distributed systems.
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APPENDIX
A. ABE SYSTEMS DESIGN & ISSUES

Figure 12 illustrates the architecture of ABE systems built
using our ABE API. Specifically there are two main compo-
nents: the ABE API and the application code.

Figure 12: Components of attribute-based cryp-
tosystem API.

ABE API – We have created the ABE API to enable
rapid development of systems and applications which use
attribute-based cryptography. Our API uses the PBC li-
brary [19] to implement our attribute-based cryptography.
This C language API has been specifically designed to enable
a programmer with no knowledge of ABE to quickly write
applications; the complex cryptography inherent to ABE is
entirely handled by the API.

For didactic purposes we present the API as four distinct
modules: attribute-based cryptography, standard cryptog-
raphy, serialization, and utility functions.
Attribute-based Cryptography – The majority of ap-
plication level code interacts with the API through the
attribute-based cryptography component. This module was
specifically designed for ease of use, consisting of seven sim-
ple functions: Setup System, Create User, New Attribute,
Give Attribute, Key Generation, Encryption, and
Decryption.

The Setup System function creates and initializes a
new attribute-based cryptosystem. Specifically, this
instantiates two key structures: global params and
authority priv. global params contains global parameters
required to perform encryption and decryption operations.
authority priv contains the master secret, from which all
attribute keys are defined. authority priv must be kept
secret in order to ensure the security of the system.
Setup System must be given pbc param file name, the

name of an XML file defining an elliptic curve from which
all of the API’s ABE cryptography is formulated. Included
with the API are two such parameter files, a param.xml

(Supersingular curve) and c159 param.xml (MNT curve).
Supersingular curves are optimized for fast cryptographic
pairings, and MNT curves are optimized to result in small
cryptographic group elements.

The nature of ABE cryptography is such that every ci-
phertext in a given cryptosystem is of a fixed length n. The
user can specify what this length is by providing the API
with ct len.

To increase the flexibility of the API, Setup System cre-
ates several “default” attributes. The default attributes can
be included in a ciphertext to take the place of non-default



attributes, enabling the user to create ciphertexts with less
than ct len attributes.

The New Attribute function is used to add a new at-
tribute, whose name is specified by att name, to the universe
of attributes in the system. Upon completion of this func-
tion the new attribute’s name and the hash of its name can
be made publicly available. At this point the new attribute
can be used for encryption operations.

The Create User function adds a user named user id to
the system. This function instantiates user id, a struc-
ture which stores the user’s name, the user’s default and
non-default attribute information, and a polynomial. Each
user is given a unique polynomial. Tieing each user’s per-
attribute keying information to their polynomial prevents
users from colluding in order to attain more attributes.

The Give Attribute function is used to give a user a new
attribute. Specifically this function is used to update the
user’s attribute data structures and does not generate any
keying information. The Key Generation function is used to
create a user’s keying information based on the attributes
that they possess. Keeping key generation separate enables
the Give Attribute function to be executed with fewer trust
assumptions than is needed to perform the Key Generation

function.
The Encryption function is used by a user to create a

new ciphertext, ciphertext. The user specifies, message, a
string they would like to encrypt and, uid, a list of attributes
that they would like to encrypt to. The user can encrypt
with at most ct len attributes. The API will pad the ci-
phertext with as many default attributes as is necessary to
make the ciphertext contain a total of ct len attributes. A
list of the attributes used to perform encryption are included
in each ciphertext in order for the party performing decryp-
tion to know which attributes are required to decrypt the
message.

Encryption is significantly more complicated than the
API’s function calls would seem to indicate. Specifically,
the ABE constructions mandate that a ciphertext’s pay-
load must be a group element. To enable ABE to carry
non-group element payloads we use the Key Encapsulation
Mechanism(KEM). In our API, KEM takes a group element
payload and uses SHA-1 to convert it into a HMAC key
and an AES key. The AES key is then used to encrypt the
user’s message.
Decryption decrypts a ciphertext encrypted by the

Encryption. This process begins with the decrypting party
verifying that they have the required attributes. The party
performing decryption will then use their attributes to de-
crypt the decrypt the ciphertext in order to obtain the AES
and HMAC key. The party will then use the HMAC key to
verify the ciphertext. If the ciphertext can be verified, then
the AES key will be used to decrypt the actual payload.
Standard Cryptography – In addition to the attribute-
based cryptography we have also used standard cryp-
tographic tools. The implementation of these tools are
contained in the crypto utility and KEM code. The
crypto utility code implements some of the low level
cryptographic operations required by ABE. KEM implements
all of the operations required to enable ABE to encrypt
non-group member payloads.
Serialization – The serialization routines enable the API
data structures to be written out to disk for long term
storage. There are two different implementations of this

functionality. Serialization stores API data structures
into byte-encoded files. XMLSerialization stores API data
structures into XML files. XMLSerialization is human
readable, has better platform independence, and is more
fault tolerant. Serialization results in slightly less disk
space.
Utility Functions – The utility functions are a group of
functions that increase the ease of programming with the
attribute-based cryptography API. Included in the utility

routines are functions that print API data structures and
conversion routines.

B. ATTRIBUTE-BASED ENCRYPTION
For our system we use a variant of the Sahai-Waters Large

Universe system [26](Section 6) which we now describe.
In this construction we will make use of a bilinear group

G of prime order p. The group will have an efficiently com-
putable bilinear map e : G × G → GT that maps two ele-
ments from the bilinear group into an element of the “tar-
get group”. The salient feature of these groups is that if
g is a generator of G then for all a, b ∈ Zp we have that
e(ga, gb) = e(g, g)ab. We refer the reader to the IBE paper
of Boneh-Franklin [5] for more details on bilinear groups.

The Sahai-Waters construction works by computing a bi-
linear map between k components of the ciphertext with
corresponding pieces of the private key. The result of these
are interpolated using the secret sharing method of Shamir
(in the exponent). We first define the following Lagrangian
coefficients, which we will use in our construction, as the
following function over Zp:

∆i,S(X) =
Y

j∈S,j 6=i

x− j

i− j
.

Additionally, we will assume all systems will work in some
predetermined bilinear group G of appropriate size.

The cryptosystem follows:
Setup(k): The setup algorithms first chooses a random

exponent y ∈ Zp and lets the public parameter be Y =
e(g, g)y and the threshold value k. It keeps the public key
and the secret exponent y as the master key.

Key-Gen(S, MK): Let H : {0, 1}∗ → Zp be a collision-
resistant hash function and let T : Zp → G be a function
that we will model as a random oracle [4].

First let Γ be the set defined as Γ =
S

s∈S H(s). The set Γ
is essentially the set of the hash of all attributes. (Note that
since H is collision-resistant Γ should contain |S| unique ele-
ments of Zp.) Then the authority will choose a new random
degree k−1 polynomial q(x) over Zp such that q(0) = y and
for all i ∈ Γ the authority chooses a random ri. Then for all
i ∈ Γ the private keys components are:

Di = gq(i)T (i)ri , di = gri

Encrypt(M, S′, PK): The encryption algorithm first
computes the set Γ′ =

S
s∈S′ H(s). Next, it chooses a

random exponent t ∈ Zp. The ciphertext is output as:

C =
`
C′ = MY t, C′′ = gt, {Ci = T (i)t : i ∈ Γ′}

´
.

Notice that both the size of the ciphertext and the en-
cryption time grows linearly with the size of the set S.

Decrypt(C, S′, S, SK): The decryption algorithm first
computes the sets Γ and Γ′ as before. If the size of the



intersection |Γ ∩ Γ′| < k the algorithm aborts, this will oc-
cur if the overlap between the private key attribute set S and
the ciphertext set S′ is below the threshold k. Otherwise it
chooses an arbitrary set U such that |U | = k and U ⊆ Γ∩Γ′.
For each i ∈ U the decryptor computes a temporary value

Ai =
e(Di, C

′′)

e(di, Ci)
=

e(gq(i)T (i)ri , gt)

e(gri , T (i)t)
= e(g, g)tq(i).

This computation gives k shares of the polynomial tq(i) in
the exponent. Using polynomial interpolation the algorithm
recovers the blinding value e(g, g)yt and divides it out by
computing:

M = C′/
“
A

∆i,U (0)

i

”
= C′/e(g, g)tq(0) = C′/e(g, g)ty = M.

The decryption algorithm interpolates a polynomial in the
exponent using Shamir’s [29] secret sharing method. How-
ever, since a new random polynomial is chosen for each pri-
vate key, the system is secure against collusion attacks such
that different users are unable to combine their separate at-
tributes.

The difference between the construction given here and
that of Sahai and Waters is in the computation of the func-
tion T (i). In their construction there is a upper bound, n, on
the number of attributes that can label a ciphertext which is
set at setup. The setup function publishes values t1, . . . , tn.
The function T (i) is computed as:

T (i) = gxi
n+1Y
j=1

t
∆j,N (i)

j

where N is the set {1, . . . , n + 1}.
It is easily seen that the number of exponentiations re-

quired to compute T (i) is equal to n + 1 in the original
Sahai and Waters construction. We drastically reduce the
computation overhead replacing the computation of T with
a hash function as a random oracle. A simple argument
shows that the random oracle can be “programmed” such
that the simulation in the security proof of Sahai and Wa-
ters goes through. We refer the reader to the literature [4,8]
for further discussion on the random oracle model. In Sec-
tion 6 we experimentally compare implementations of the
original Sahai and Waters construction with our variant.


