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Abstract

A system for private stream searching allows a client

to retrieve documents matching some search criteria

from a remote server while the server evaluating the re-

quest remains provably oblivious to the search criteria.

In this extended abstract, we give a high level outline

of a new scheme for this problem and an experimental

analysis of its scalability. The new scheme is highly

efficient in practice. We demonstrate the practical ap-

plicability of the scheme by considering its performance

in the demanding scenario of providing a privacy pre-

serving version of the Google News Alerts service.

1 Introduction

Sources of information on the Internet include con-
ventional websites, time sensitive web pages such as
news articles and blog posts, newsgroup posts, online
auctions, and web based forums or classified ads. To
make use of these resources we need search mechanisms
that distill the information relevant to each user. Nor-
mally, such mechanisms require the user to provide a
server with a query such as a textual keyword that
the server will compare against the documents in some
large data set. This model becomes problematic for
applications in which the user would like to hide the
search criteria. A user might want to protect the pri-
vacy of his search queries for a variety of reasons, in-
cluding protection of commercial interests and personal
privacy. Such privacy issues were brought into the
spotlight in 2005 when the U.S. Department of Jus-
tice subpoenaed records of search terms from popular
web search engines.

Trivially, search privacy may be obtained by down-
loading the entire remote resource to the client machine
and performing the search locally. However, this is typ-
ically infeasible due to the large size of the data to be
searched, the limited bandwidth between the client and
a remote entity, or the unwillingness of a remote entity
to disclose the entire resource to the client.

Many of the listed information sources may be con-

sidered streams of documents which are being contin-
ually generated and processed one-by-one by remote
servers. In these cases, it would be advantageous to
allow clients to establish persistent searches with the
servers, where the data can be efficiently processed.
Content matching the search criteria can then be re-
turned to the clients. For example, the Google News
Alerts system [1] emails users whenever web news ar-
ticles crawled by Google match their registered search
keywords.

In this extended abstract, we present initial results
on an efficient new cryptographic system which allows
services of this type while maintaining the secrecy of
the search criteria. The new scheme improves on both
the asymptotic complexity and practical performance
of the previous best solution, making realistic appli-
cations feasible. In Section 4, we demonstrate this
through the concrete example of Google News Alerts,
providing a description of how to apply our scheme in
that context along with an analysis based on actual ap-
plication data. A full treatment of the proposed scheme
including detailed algorithms, complexity and correct-
ness analysis, security proofs, and several extensions is
now available in a technical report [2].

Related Work There are several problems related
to private searching, including searching on encrypted
data (in this case the data is encrypted and the query
is unencrypted) [3, 4], single-database private infor-
mation retrieval (PIR) [5, 6], and oblivious trans-
fer [7, 8, 9], with the most closely related problem be-
ing PIR. The recent work of Ostrovsky and Skeith [10]
was the first to directly address the private searching
problem as defined above and only requires commu-
nication dependent on the number of matching docu-
ments (unlike previous PIR schemes). A drawback of
their scheme is that it has steep resource requirements
that limit its practical application for many of the sce-
narios described above. Additionally, their scheme a
the keywords of each query to be selected from a pub-
lic, unencrypted dictionary. In many applications, in-
cluding a user’s search keywords in the public dictio-
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Figure 1. Model for the private searching problem.

nary will already reveal too much information about
the client’s interests.

2 Problem Definition

In this section we review the problem of private
searching. In a private searching scheme a client will
create an encrypted query for the set of keywords
that he is interested in. The client will give this
encrypted query to the server. The server will then
run a search algorithm on a stream of files while
keeping an encrypted buffer storing information
about files for which there is a keyword match. The
encrypted buffer will then be returned to the client
(periodically) to enable the client to reconstruct the
files that have matched his query keywords. We call a
file a matching file if it matches at least one keyword
in the set of keywords that the client is interested
in. The key aspect of a private searching scheme is
that a server is capable of conducting the search even
though it does not know which set of keywords the
client is interested in. We now formally describe a
private search scheme. A scheme for private stream
search consists of the following three algorithms; their
relationship is depicted in Figure 1.

QueryConstruction (λ, ε, m, K): This algorithm
is run by a client to prepare an encrypted list of
keywords that he would like the server to search for.
The algorithm takes as input a security parameter
λ, a correctness parameter ε, an upper bound on
the number of files expected to match m, and an
unencrypted set of strings K that are to be used as
the search keywords. The algorithm outputs a public
key Kpub, a private key Kpriv, and an encrypted
query Q. The client then sends Kpub, Q to the server.
The correctness parameter ε may be used to select
various algorithm parameters to ensure that up to m

files will be correctly retrieved with high probability.
These additional parameters are also sent to the server.

StreamSearch (Kpub,Q, f1, . . . , ft, W1, . . . , Wt): This
algorithm is run by a server to perform a private key-
word search on behalf of the client on a stream of files.
The algorithm takes as input an encrypted query Q,
a public key, Kpub, and a stream of files f1, f2, . . . , ft

and corresponding sets of keywords that describe each

file W1, W2, . . . , Wt. For each i ∈ {1, . . . , t}, the set Wi

is normally derived from the corresponding file fi as a
preprocessing step. The algorithm produces a buffer
of encrypted results R, which is sent back to the client.
Note that each pair (fi, Wi) is processed indepen-
dently when it becomes available, updating the buffer
R with the results so far. It is not necessary to have
the entire stream available before beginning processing.

FileReconstruction (Kpriv ,R): This is used to ex-
tract the set of matching files from the returned en-
crypted buffer. The algorithm takes as input the pri-
vate key Kpriv and a buffer of encrypted results R. It
outputs the set of matching files { fi

∣

∣ |K ∩ Wi| > 0 }.

3 New Construction (Outline)

Here we provide an outline of the proposed construc-
tion; for the full description refer to [2]. The imple-
mentation is built around the homomorphism of the
Paillier cryptosystem [11, 12], namely, the fact that for
any plaintexts a, b, it is the case that D (E (a) · E (b)) =
a + b, where E denotes encryption and D denotes de-
cryption. That is, multiplying ciphertexts has the ef-
fect of adding the corresponding plaintexts. Our sys-
tem could use any other semantically secure, asymmet-
ric, additively homomorphic cryptosystem, but for con-
creteness we consider the use of Paillier in our perfor-
mance analysis.

First we describe the QueryConstruction algo-
rithm, which takes a set of strings K as search keywords
and produces an encrypted query Q. First, the client
produces an array of ciphertexts Q = (q1, q2, . . . , q`Q

)
of length `Q initialized to encryptions of zero E (0).
Then for each w ∈ K, we replace qh(w) with E (1),
where h : {0, 1}∗ → {1, . . . , `Q} is a hash function used
to map each keyword to a location in the array Q.

Now the server may use Q to process its file stream
according to the StreamSearch algorithm. To process
the file fi containing keywords Wi, the server computes
∏

w∈Wi
qh(w) = E (c), where c is defined to be |Wi∩K|.

The server then computes the modular exponentiation
E (c)

fi = E (cfi). Note that if the file does not match
the query c = 0, then E (cfi) is an encryption of zero.
We consider the possibility of “spurious matches” when
c 6= 0 for a non-matching file due to hash collisions



in Section 4.1. In order to accumulate files matching
the query, the server keeps a results buffer which is
an array of ciphertexts, all initialized to encryptions
of zero. The value E (cfi) is multiplied into random
locations in the array, effectively adding the value cfi to
the plaintext already stored in each of the locations. If
the file does not match, this does not affect the contents
of the buffer. In this way, the locations in the buffer
accumulate linear combinations of matching files. The
server also uses the value E (c) to update two small
auxiliary encrypted buffers containing metadata about
which files have matched. This process is described
in [2] and omitted from this high level overview. Upon
completing a period of searching, the server returns the
main data buffer and the auxiliary buffers to the client.

Possessing the private key, the client is able to use
the FileReconstruction algorithm to reconstruct the
files that matched their query. First, they decrypt the
main data buffer to obtain the plaintext of each entry,
which is a linear combination of some of the matching
files. With the help of some information from the two
metadata buffers, the client is then able to establish a
system of linear equations which may be be solved for
the content of the matching files. If the number of files
that matched the query exceeds the number of places
in the main data buffer, however, the buffer has “over-
flowed” and the files cannot be recovered. Thus the
user must establish an upper bound m on the number
of files they expect to match and specify the size of the
main data buffer accordingly, perhaps allowing some
extra space if the number of files which will match is
uncertain. This is done in the QueryConstruction al-
gorithm, with the client passing the desired parameters
to the server for use in StreamSearch.

Apart from the possibility of too many files match-
ing the query, there are a couple of other scenarios in
which the files may be unrecoverable. In [2] we give
a detailed analysis of these cases, demonstrating that
their probability diminishes exponentially with linear
increases to the buffer size and giving upper bounds on
the buffer size necessary to bound the failure probabil-
ity below some ε. In practice the new system requires
near minimal overhead to achieve a high probability of
success. This is in contrast to the scheme of Ostrovsky
and Skeith, which is quite demanding; this is consid-
ered in Section 4. One additional difference between
our proposed scheme and that of Ostrovsky and Skeith
is the absence of a predetermined keyword dictionary
D. In most situations, providing a dictionary of all
keywords one could possibly be searching for is a seri-
ous security limitation. Many of the strings a user may
want to search for are obscure (e.g., names of particu-
lar people or other proper nouns) and including them

r sq optimized sq

0.1 1.3 MB 0.3 MB
0.01 13.1 MB 3.6 MB
0.001 132.8 MB 36.6 MB

Table 1. Size of the encrypted query neces-
sary to achieve a given spurious match rate
before and after optimizations.

in D would already reveal too much information. Since
the size of encrypted queries is proportional to |D|, it
is not feasible to fill D with, say, every person’s name,
much less all proper nouns.

4 Practical Performance Analysis

We now consider the case of making a private ver-
sion of Google’s News Alerts service [1] using the new
construction. According to the Google News website,
their web crawlers continuously monitor approximately
4,500 news websites. These include major news portals
such as CNN along with many websites of newspapers,
local television stations, and magazines. In this setting,
we analyze four aspects of the resources necessary for a
private search: the size of the query sent to the server
(sq), the size of the storage buffers kept by the server
while running the search and eventually transmitted
back to the client (sb), the time for the server to pro-
cess a single file in its stream (tp), and the time for the
client to decrypt and recover the original matching files
from the information he receives from the server (tr).

4.1 Query Space

If we assume a 1024-bit Paillier key, then the en-
crypted query Q is 256`Q bytes, since each element

from the set of ciphertexts Z
∗
n2 is dlog

2
ne

4 bytes, where
n is the public modulus. The smaller `Q is, the more
files will spuriously match the query. Specifically, we
obtain the following formula for the the probability r

that a non-matching file fi will nevertheless result in a
non-zero corresponding E (c) (rearranged on the right
to solve for `Q).

r = 1 −

(

1 −
|K|

`Q

)|Wi|

`Q =
|K|

1 − (1 − r)
1

|Wi|

We performed a sampling of the news articles linked
by Google News and found that the average distinct
word count is about 540 per article. This produces
the false positive rates for several query sizes listed in
Table 1. The first column specifies a rate of spurious
matches r and the second column gives the size sq of
the minimal Q necessary to achieve that rate for a sin-
gle keyword search. Additional keywords increase sq
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Figure 2. Server to client communication af-
ter a period of searching in the new system.

proportionally (e.g., |K| = 2 would double the value
of sq). It should be apparent that this is a significant
cost; in fact, it turns out that sq is the most significant
component in the total resource usage of the system
under typical circumstances.

Two measures may be taken to reduce this cost.
First, note that the majority of distinct words occur-
ring in the text of a news article are common English
words that are not likely to be useful search terms.
Given this observation, the client may specify that
the server should ignore the most commonly occurring
words when processing each file. A cursory review of
the 3000 most common English words (based on data
from the British National Corpus [13]) confirms that
none are likely to be useful search terms. Ignoring
those words reduces the average distinct word count
in a news article to about 200.

The second consideration in reducing sq is that a
smaller Paillier key may be acceptable. While 1024 bits
is generally accepted to be the minimum public modu-
lus secure for a moderate time frame (e.g., as required
by the standards ANSI X9.30, X9.31, X9.42, and X9.44
and FIPS 186-2) [14], it is important to realize that a
compromise of the Paillier key would not immediately
result in the revelation of K. Instead, it would allow
the adversary to mount a dictionary attack, checking
potential members of K against Q. Since a string not
in K that is checked against Q will match anyway with

probability |K|
`Q

, an attacker may also need some prior

knowledge about potential search terms if they are to
gain useful information about K. Without any such
knowledge, checking a very large set of potential words
against Q would result in too many false positives to be
useful. Given this consideration, if the client decides
a smaller key length is acceptable, sq will be reduced.
The third column in Table 1 gives the size of the en-
crypted query using a 768-bit key and pruning out the
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Figure 3. Server to client communication af-
ter a period of searching in Ostrovsky-Skeith.

3000 most common English words from those searched.
Despite the significant cost of sq in our system, the

cost to obtain a comparable level of security is likely
much greater in the system of Ostrovsky and Skeith.
In that case sq = 256|D|, where |D| is the set of all
possible keywords that could be searched. In order to
reasonably hide K ⊆ D, |D| may have to be quite large.
For example, if we wish to include names of persons in
K, in order to keep them sufficiently hidden we must
include many names with them in D. If D consists of
names from the U.S. population alone, sq will be over
70 GB.

4.2 Storage Buffers Space

We now turn to the size of the buffers maintained by
the server during the search and then sent back to the
client. This cost, sb, is both a storage requirement of
the server conducting the search and a communication
requirement at the end of the search. Let the length of
the main data buffer maintained by the server be `D,
the length of the two metadata buffers (taken together)
be `M , and the length of a file be `f (measured as the
required number of plaintexts from Zn). The server
then stores sb = 256 `D`f +256 `M bytes (using a 1024-
bit key).

The client will specify `D and `M based on the num-
ber of documents they expect their search to match in
one period and the desired correctness guarantees. In
the case of Google news, we may estimate that each
of the 4,500 crawled news sources produces an aver-
age of 30 articles per day [1]. If the client retrieves
the current search results four times per day, then the
number of files processed in each period is t = 33, 750.
Now the client cannot know ahead of time how many
articles will match their query, so they must make an
estimate of m. Based on this estimate, they may try
increasing `D and `M until the probability of an over-



time to time to
multiply exponentiate

768-bit key 3.9 µs 6.2 ms
1024-bit key 6.3 µs 14.7 ms

Table 2. Benchmarks for arithmetic in Z
∗
n2 .

flow is bounded by some small ε. A detailed analysis
demonstrating values of `D and `M that achieve this
appears in [2]. In this extended abstract we instead
consider empirical results on the necessary `D and `M

in a particular application.
A range of desired values of m were considered and

the results are displayed in Figure 2. In each case,
`D and `M were selected so that the probability of an
overflow is less than 0.01. Also, the spurious match
rate r was taken to be 0.001, and the news articles were
considered to be 5 KB in size (text only, compressed).
Note that sb is linear with respect to the size of the
matching files. More specifically, the data displayed in
Figure 2 reveals that it is about 2.4 times the size of the
matching files. For comparison, the space stored by the
server and returned to the client using the Ostrovsky-
Skeith scheme for private searching in this scenario is
shown in Figure 3.1 Note that the graph differs in scale
from Figure 2.

To summarize, in the proposed system sb ranges
from about 564 KB to about 6.63 MB when the ex-
pected number of matching files ranges from 2 to
512 and the overflow rate is held below 0.01. In the
Ostrovsky-Skeith scheme, sb would range from about
282 KB to 110 MB.

4.3 File Stream Processing Time

Next we consider the time tp necessary for the server
to process each file in its stream. This is essentially
determined by the time necessary for modular multi-
plications in Z

∗
n2 and modular exponentiations in Z

∗
n2

with exponents in Zn. To roughly estimate these times,
benchmarks were run on a modern workstation. The
processor was a 64-bit, 3.2 Ghz Pentium 4. We used the
GNU Multiple Precision Arithmetic Library (GMP), a
library for arbitrary precision arithmetic that is suit-
able for cryptographic applications. The results are
given in Table 2.

The first step carried out for in processing the ith
file in the StreamSearch procedure is computing E (c);
this takes |Wi| − 1 multiplications. We again use

1The paper describing this system did not explicitly state a

minimum buffer length for a given number of files expected to be

retrieved and a desired probability of success, but instead gave a

loose upper bound on the length. Rather than using the bound,

we ran a series of simulations to determine exactly how small the

buffer could be made while maintaining an overflow rate below

0.05.

tp with tp with
m 768-bit key 1024-bit key

2 359 ms 600 ms
8 362 ms 600 ms

32 373 ms 603 ms
128 420 ms 617 ms
512 593 ms 669 ms

Table 3. The time necessary for the server to
process a file.

|Wi| = 540 as described in Section 4.1. Computing
E (cfi) requires `f modular exponentiations. The next
step is updating the main data buffer and metadata
buffers with these values. Although we have not given
the details of this algorithm, it requires approximately
`D`f

2 modular multiplications. The time necessary for
both these steps is given for several values of m in Ta-
ble 3. The majority of tp is due to the `f modular
exponentiations. Since the Ostrovsky-Skeith scheme
requires the same number of modular exponentiations,
the processing time for each file would be similar.

4.4 File Recovery Time

Finally, we consider the time necessary for the client
to recover the original matching files after a period
of searching, tr. This time is composed of the time
to decrypt the returned buffers and the time to setup
and solve a system of linear equations, producing the
matching documents. A decryption requires 1536 mod-
ular multiplications with a 1024-bit key and 1152 with
a 768-bit key [12]. The times necessary to decrypt the
buffers are given in Table 4. This time is typically less
than a minute, but can take as long as five with many
files.

The time to setup and solve the system of linear
equations is dominated by the time necessary to invert
two matrices of size `D. Inverting an n × n matrix
through Gaussian elimination requires 1

3n3 + n2 − 1
3n

multiplications; this could likely be improved with
sparse matrix techniques. As shown in Table 5, the
time for matrix inversions is small for all but the largest
cases.

Although the time spent in matrix inversions is
a significant additional cost of the new scheme over
Ostrovsky-Skeith, it is more than offset by the re-
duced buffer size. In Ostrovsky-Skeith, the times to
decrypt the buffer returned to the client in this scenario
range from 6.79 seconds for m = 2 to 45.5 minutes for
m = 512, using a 768-bit key. With a 1024-bit key,
the buffer decryption times range from 10.8 seconds to
1.21 hours.



decryption time decryption time
m with 768-bit key with 1024-bit key

2 14s 23s
8 15s 26s

32 23s 38s
128 51s 1.4m
512 2.7m 4.4m

Table 4. Time (in seconds and minutes) nec-
essary to decrypt the buffers.

5 Conclusion

Our system for private stream searching allows a
range of applications not previously practical. In par-
ticular, we have considered the case of conducting a
private search on essentially all news articles on the
web as they are generated, estimating this number to
be 135,000 articles per day. In order to establish the
private search, the client has a one time cost of ap-
proximately 10 MB to 100 MB in upload bandwidth,
based on various tradeoffs. Several times per day they
download about 500 KB to 7 MB of new search results,
allowing up to about 500 articles per time interval. Af-
ter receiving the encrypted results, the client spends
under a minute recovering the original files, or up to
about 15 minutes if many files were retrieved. This per-
formance would be typical of a desktop PC; a mobile
device would be capable of handling a somewhat less
demanding scenario. To provide the searching service,
the server keeps about 10 MB to 100 MB of storage for
the client and spends roughly 500 ms processing each
new article it encounters. These costs are comparable
to many free services currently available on the web
(e.g., email and webhosting), so it is likely the private
searching service could be provided for free. With high
probability, the client will successfully obtain all arti-
cles matching their query, and in any case the server
will remain provably oblivious to nature of their search.

Most of the parameters of this scenario (e.g., the
number of distinct articles generated per day, the num-
ber of distinct words per file, the size of a file, etc.)
are probably less than one or two orders of magnitude
different than for the other online searching situations
mentioned in Section 1 (such as blog posts, USENET,
online auctions). We expect our techniques to be ap-
plicable to many of these searching applications. The
complete algorithms for the private searching scheme
are presented along with complexity analysis and for-
mal security proofs in [2].
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