
DARPA TRIPS: Single Chip Teraflop Computing **PCA**

TRIPS Prototype System Implementation TRIPS Chip Floorplan TRIPS Motherboard

IBM CU-11 process (130nm) 18x18 mm chip area 533MHz target clock rate 2 16-wide EDGE processors 16 GFlops/ops peak 1MB on-chip memory

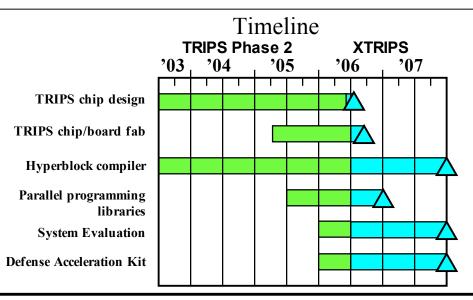
4 daughtercards w/ 1 TRIPS chip and 2GB DRAM On-board FPGA for expansion PowerPC 440GP as controller Chip-to-chip connectors for multiboard system

Impact: High Performance and Adaptivity

Scalable Commercial Performance: 500 GIPS/chip in a 35 nanometer design, 4 GIPS/chip (sustained) in a 130nm prototype. Tiled architecture improves design productivity.

High performance signal processing: 5 Teraflops (peak) per chip in a 35 nanometer implementation, 16 GFLOPS in a 130nm prototype.

Large economies of scale: Merge the desktop, HPC, DSP, and embedded markets into a single family of TRIPS implementations by 2012.


New TRIPS Technologies

EDGE Processor Cores: Technology-scalable, adaptive high performance for signal processing and commercial apps.

Non Uniform Cache Architectures: Automatically adapts to working set of applications, delivering stable performance.

Static-Placement Dynamic Execution Compilation: Techniques for program optimization for scalable architectures.

Application Adaptivity: Library and compiler support for applications to run on multiple platforms and environments.

The University of Texas at Austin/USC-ISI: PIs S. Keckler, D. Burger, and K. McKinley