CS 395T Visual Recognition Learning to Detect a Salient Object

Chao Jia 2012/10/26

Goal of this paper

• Detect the (unique) salient object in an image

- Applications
 - Image resizing
 - Object recognition

Overview

- General steps
- MSRA dataset
- Different salient feature maps
- CRF inference & learning
- Results
- Multiple salient object detection
- Conclusions

MSRA dataset

 20000 images with user labeled bounding boxes of salient objects

image credit: http://research.microsoft.com/en-us/um/people/jiansun/SalientObject/salient_object.htm

MSRA dataset

Ground truth: labeled by 3-9 users

consistent labeling

inconsistent labeling

General steps

saliency feature maps

binary saliency map

search for bounding box

- Multi-scale contrast
 - 6-level Gaussian pyramid

Multi-scale contrast

homogeneous parts in salient object

contrast in background

Center-surround histogram

works better for homogeneous background

- Color spatial distribution
 - 6-component GMM modeling of color

CRF inference & learning

- Binary labeling
- Weighting parameters learned from user labeling (bounding boxes, not binary salient maps)
- Brute force search of bounding box
 - 7 aspect ratios (1:2 to 2:1)
 - 11 window sizes (2% to 60% of the image area)

• Success for easy examples

• Success for harder examples

• Success for harder examples

Three cues perfectly complement each other

head and shoulder

body

legs

• Failure : very complicated scene

• Failure: similar to background

Failure: spatially apart components with similar color

similar color

Not always a problem unless the image is very colorful (More components in GMM needed)

 How much better than just putting a fixed size window in the center?

¼ size; same aspect ratio

Precision =
$$\sum_{x} g_{x} a_{x} / \sum_{x} a_{x}$$

Recall = $\sum_{x} g_{x} a_{x} / \sum_{x} g_{x}$

- PASCAL VOC 2007 dataset
 - Multiple salient objects
 - More complicated scenes

generate the binary mask

score each possible window

Non-maximum suppression: remove a window if it overlaps with another window with a higher score

score = # saliency pixels × (# saliency pixels / window area)

 Different overlap threshold in NMS

threshold = 0.5

threshold = 0.8

- Precision-Recall Curve on PASCAL VOC 2007
 - 1000 images; 3004 objects

This paper

Algorithm that especially designed to detect multiple salient objects

• Still acceptable if there's only one salient object

A few successful results on multi-object detection

The binary masks are correct and separable.

Failure examples

hard to separate

Conclusions

- Works well for single salient object detection.
 - Three cues complement each other
 - Bounding box annotation is very robust to errors in binary saliency labeling.
 - MSRA dataset is relatively simple: Central fixation bias naïve baseline works well too.
- The algorithm is not suitable for multi-object detection.
 - Only one connected components most of the time
 - Binary salient mask fails
 - Spatially wide spread of objects will make the color spatial distribution cue less accurate.