What's It Going to Cost You?: Predicting Effort vs. Informativeness for Multi-Label Image Annotations

Sudheendra Vijayanarasimhan and Kristen Grauman

Deepti Ghadiyaram

Active Learning

Active selection is particularly complex for visual category learning.

1) Real world images contain multiple objects

Active learner must assess the value of an image containing some Unknown combination of categories.

VS.

Source : http://vision.cs.utexas.edu/projects/active-prediction/

2) Different levels of information

Active learner must specify what type of annotation is currently most Helpful.

3) Manual Effort dependent on annotation type and image content.

Low effort

High effort

Active learner should take into account the actual manual effort required to label the images.

Source : http://vision.cs.utexas.edu/projects/active-prediction/

PROBLEM STATEMENT

How do we effectively learn from a mixture of strong and weak labels and select the most promising **{image + annotation type}** by balancing the **value of a new annotation** against the **time taken to receive it**.

PROPOSED APPROACH

Contains flowers

Flower

Flower, Flower Contains flower

Dog Contains book (a) Labeled (and partially labeled) examples to build models

Most regions are understood, but this region is unclear.

This looks expensive to annotate, but it seems very informative.

This looks expensive to annotate, and it does not seem informative.

This looks easy to annotate, but its content is already understood.

(b) Unlabeled and partially labeled examples to survey

Label the object(s) in this region

Completely segment and label this image. (c) Actively chosen queries sent to annotators

3 types of annotations

Name an object

What class is this region?

Segment this image

Source : http://vision.cs.utexas.edu/projects/active-prediction/

Key Ideas of the approach

1. Multi-Label multiple-instance learning.

Multi-label Set Kernel based classifier

2. Predicting the cost of annotation based on image content.

3. Predicting the informativeness of an annotation (z)

Change in the *Total Misclassification Risk* resulted from z- Cost for obtaining that annotation

$$VOI(\mathbf{z}) = T(\mathcal{X}_L, \mathcal{X}_U, \mathcal{X}_P) - T\left(\hat{\mathcal{X}}_L, \hat{\mathcal{X}}_U, \hat{\mathcal{X}}_P\right)$$
(6)
$$= \mathcal{R}(\mathcal{X}_L) + \mathcal{R}(\mathcal{X}_U) + \mathcal{R}(\mathcal{X}_P) - \left(\mathcal{R}(\hat{\mathcal{X}}_L) + \mathcal{R}(\hat{\mathcal{X}}_U) + \mathcal{R}(\hat{\mathcal{X}}_P)\right) - \mathcal{C}(\mathbf{z}),$$

EXPERIMENTS

Label 3: Building, Sky

Label 4: Aeroplane, Grass, Sky

Label 5: Cow, Grass, Mountain

1. ACTIVE V/S RANDOM SELECTION

Experimental Setup

Active Learner

Random Selection

Task	Actively choose between tags, regions and complete
	segmentation
Training & Validation Data	Super pixel segments
Test Data	Ground Truth Segments
Number of iterations(number of samples added to classifier)	30
Initial Training set size	3 (1 bag/image per class)
Unlabeled Data	87

Task	Randomly choose between
	tags, regions and complete
	segmentation
Training & Validation	Super pixel segments
Data	
Test Data	Ground Truth Segments
Number of	30
iterations(number	
of samples added to	
classifier)	
Initial Training set size	3 (1 bag/image per class)
Unlabeled Data	87

Risk /Cost prediction is not a part of random selection

ACTIVE LEARNER IN ACTION

Learner: What class is this region? Oracle: Sky

Learner: Name a

Learner: What class is this region? Oracle: Grass

Learner: Name an object Oracle: Grass

Learner: What class is this region? Oracle: Sky

Learner: What class is this region? Oracle: Sky

RANDOM SELECTION

Random: What class is this region? Oracle: Sky

Random: Segment this image

Random: Name an object Oracle: Sky

Random: Segment this image

Random: What class is this region? Oracle: Grass

Random: What class is this region? Oracle: Sky

Random: Segment this image

Random: Name an object Oracle: Sky

Random: Segment this image

Random: What class is this region? Oracle: Grass

(At the end of 30 iterations)

Observation: Requesting for complete segmentation of few images doesn't *necessarily* yield to better classification performance or reduction in risk.

Active Learning v/s Random sampling

At the end of 30 iterations...

	Active	Random (average of 5 runs).
Execution time (in secs)	261	0
Cost	288	326.967
Avg AUROI	0.979867	0.966164
Risk	42.4003	44.07574

Information as a function of iterations

Steep gain from the first few picks.

The most informative selections are made in the first few iterations.

Consistent gain in information in active selection.

For a given number of instances, active learner ensures the best possibile system.

2) WHAT TYPE OF ANNOTATION TO REQUEST?

1) Name an object

2) What class is this region? 3) Segment this image

4) Any of the above

Source : http://vision.cs.utexas.edu/projects/active-prediction/

Experimental Setup

Task	Actively choose between
	Case#1 Only tags
	Case#2 : Only regions
	Case#3 Only Complete segmentation
	Case#4 Any of the above
Training & Validation Data	Super pixel segments
Test Data	Ground Truth Segments
Number of iterations (number	Variable (Ranges between 6-100 for each of the
of samples added to the training	above cases)
data)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

Comparing different annotation types

Observation

• A combination of annotation types is more beneficial than a fixed annotation type.

At the end of 30 iterations..

	Active-ALL	Active-bag	Active-instance	Complete
				segmentation
Execution time	261	121	23	49
(11 3003)				
Cost	288	84	331.667	789
Global Mean Accuracy	89.6774	88.3871	87.7419	87.0968
Avg AUROI	0.979867	0.965411	0.973077	0.9723
Risk	42.4003	39.7979	45.003	46.8725

Execution time is proportional to the number of instances/bags to be considered. Better accuracy can be achieved by combining different types of annotations.

3. Ground Truth Segments v/s Super pixel Segments

Key Idea: Use ground truth segments instead of super pixel segments while training and testing MIML classifier.

Aim: To understand the upper bound of the active learner (limitations from using super pixel segments)

How noisy are the super pixel segments?

For 90 images		Number of instances.
	Ground truth Segments	152
	Super pixel segments	272

Segment Type	Image		Inst	ance L	abels			
Super pixel	11	5	5	3	5	5	5	
True	11	3	5					
Super pixel	12	3	5	5	5	4	5	
True	12	3	4	5				

True Learner

Task	Actively choose between
	tags, regions and complete
	segmentation
Training & Validation	Ground Truth segments
Data	
Test Data	Super pixel Segments
Number of iterations	30
(number of complex	50
added to classifier)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

Noisy Learner

Task	Actively choose between
	tags, regions and complete
	segmentation
Training & Validation	Super pixel segments
Data	
Test Data	Super pixel Segments
Number of iterations	30
(number of samples	
added to classifier)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

Per class mean accuracy: 76.2958

(At the end of 30 iterations)

True Learner

Per class mean accuracy: 77.0973

True Learner v/s Noisy Learner : Case1

At the end of 30 iterations...

	True Learner	Noisy Learner
Total Execution time (in secs)	53	195
Cost	128.000000	194.166667
Global Mean Accuracy	78.8235	75.2941
Avg AUROI	0.960086	0.936850
Risk	84.6304	98.0278

Lesser number of instances to process during training and validation for the true learner

True Learner

Task	Actively choose between
	tags, regions and complete
	segmentation
Training & Validation	Ground Truth segments
Data	
Test Data	Ground Truth segments
Number of iterations	30
(number of samples	
added to classifier)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

Noisy Learner

Task	Actively choose between
	tags, regions and complete
	segmentation
Training & Validation	Super pixel segments
Data	
Test Data	Ground Truth segments
Number of iterations	30
(number of samples	
added to classifier)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

True Learner v/s Noisy Learner : Case2

True Learner

Per class mean accuracy: 90.012

Noisy Learner

Per class mean accuracy: 88.1252

Initial misclassification with true segments

The first four iterations have always misclassified the images with class label=5, this is changed when the above image is added.

True Learner v/s Noisy Learner : Case2

True Learner v/s Noisy Learner : Case2

At the end of 30 iterations...

	True Learner	Noisy Learner
Execution time (secs)	136	261
Cost	128.	288
Total Mean Accuracy	91.6129	89.6774
Avg AUROI	0.987389	0.979867
Risk	38.1211	42.4003

True Learner

Task	Actively choose between
	tags, regions and complete
	segmentation
Training & Validation	Ground Truth segments
Data	
Test Data	Ground Truth segments
Number of iterations	30
(number of samples	
added to classifier)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

Noisy Learner

Task	Actively choose between
	tags, regions and complete
	segmentation
Training & Validation	Super pixel segments
Data	
Test Data	Super pixel segments
Number of iterations	30
(number of samples	
added to classifier)	
Initial Training set size	3 (1 bag per class)
Unlabeled Data	87

- Noisy Learner reaches the cost of that of a true learner is in 30 iterations, in only 18 iterations of learning.
- True learner outperforms noisy learner by a very high margin.
- This test case demonstrates the upper bound of the active learner

Per class mean accuracy: 90.012

(At the end of 30 iterations)

Per class mean accuracy: 76.2958

Active Learning: True v/s Noisy Learner

At the end of 30 iterations...

True

	True Learner	Noisy Learner	
Execution time (secs)	53	195	
Cost	128	194.167	
Total Mean Accuracy	91.6129	75.2941	
Avg AUROI	0.987389	0.936850	
Risk	38.1211	98.0278	
arner is faster, mor	accurate an	d has lesser tota	al risk.

Test Cases	Risk	
Train: Ground Truth Segments Test: Ground Truth Segments	38.1211	> Best case
Train: Super Pixel Segments Test: Super Pixel Segments	98.0278	──> Real System
Train: Ground Truth Segments Test: Super Pixel Segments	84.6304	
Train: Super Pixel Segments Test: Ground Truth Segments	42.4003	

- Super pixel segmentation imposes limitations on the performance of the active learner.
- The total risk of the system is lesser when ground truth segments are used.
- The computational cost of the system also varies with the correctness of the segments.

4) The contribution of each variable to the VOI for an annotation

$$VOI(\mathbf{z}) = T(\mathcal{X}_L, \mathcal{X}_U, \mathcal{X}_P) - T(\hat{\mathcal{X}}_L, \hat{\mathcal{X}}_U, \hat{\mathcal{X}}_P) \quad (6)$$

= $\mathcal{R}(\mathcal{X}_L) + \mathcal{R}(\mathcal{X}_U) + \mathcal{R}(\mathcal{X}_P)$
 $- (\mathcal{R}(\hat{\mathcal{X}}_L) + \mathcal{R}(\hat{\mathcal{X}}_U) + \mathcal{R}(\hat{\mathcal{X}}_P)) - \mathcal{C}(\mathbf{z}),$

- Importance of cost prediction : C(z)
- Effect of the risk parameter : r_L
- VOI from Labeled data
- VOI from Partially labeled data.
- VOI from Unlabeled data.

Importance of cost prediction.

Effect of the risk parameter. VOI from Labeled data. VOI from Partially labeled data. VOI from Unlabeled data.

$$VOI(\mathbf{z}) = T(\mathcal{X}_L, \mathcal{X}_U, \mathcal{X}_P) - T(\hat{\mathcal{X}}_L, \hat{\mathcal{X}}_U, \hat{\mathcal{X}}_P) \quad (6)$$

$$= \mathcal{R}(\mathcal{X}_L) + \mathcal{R}(\mathcal{X}_U) + \mathcal{R}(\mathcal{X}_P)$$

$$- \left(\mathcal{R}(\hat{\mathcal{X}}_L) + \mathcal{R}(\hat{\mathcal{X}}_U) + \mathcal{R}(\hat{\mathcal{X}}_P)\right) - \mathcal{C}(\mathbf{z}).$$

Experimental Setup

Task	Actively choose between tags, regions and complete	
	segmentations.	
	Case#1 – Without Annotation Cost.	
	Case#2 - With Annotation Cost.	
Training & Validation Data	Super pixel segments	
Test Data	Ground Truth Segments	
Number of iterations (number	Variable (Ranges between 6-100 for each of the	
of samples added to the training	above cases)	
data)		
Initial Training set size	3 (1 bag per class)	
Unlabeled Data	87	

VOI only in terms of the estimate of misclassification

Iterations=30	Without Annotation Cost	With Annotation Cost
Total Cost	756	288
Global Mean		
Accuracy	86.4516	89.6774

- Without C(z), VOI is measured only in terms of estimate risk of misclassification.
- Having the penalty on cost is useful in making better choices.

Importance of cost prediction.

Effect of the risk parameter.

VOI from Labeled data. VOI from Partially labeled data. VOI from Unlabeled data.

The effect of the risk parameter (r_L)

$$\mathcal{R}(\mathcal{X}_L) = \sum_{X_i \in \mathcal{X}_L} \sum_{l \in L_i} r_l (1 - p(l|X_i))$$

$$\mathcal{R}(\mathcal{X}_U) = \sum_{X_i \in \mathcal{X}_U} \sum_{l=1}^C r_l (1 - p(l|X_i)) \Pr(l|X_i),$$

$$\mathcal{R}(\mathcal{X}_P) = \sum_{X_i \in \mathcal{X}_P} \sum_{l \in L_i} r_l (1 - p(l|X_i)) + \sum_{l \in U_i} r_l (1 - p(l|X_i)) p(l|X_i),$$

100

30

Observations:

- Without r $_L$, the effect of the risk estimations is negligible and choice of instances is dominated by C(z)
- We get better accuracy with lesser number of instances when risk estimation is also included.
- Thus, an equal contribution of both cost estimation and risk estimation leads to more informative learning.

Importance of cost prediction. Effect of the risk parameter. VOI from Labeled data R(X L) VOI from Partially labeled data R(X P) VOI from Unlabeled data R(X J)

$$VOI(\mathbf{z}) = T(\mathcal{X}_L, \mathcal{X}_U, \mathcal{X}_P) - T\left(\hat{\mathcal{X}}_L, \hat{\mathcal{X}}_U, \hat{\mathcal{X}}_P\right)$$
(6)
$$= \mathcal{R}(\mathcal{X}_L) + \mathcal{R}(\mathcal{X}_U) + \mathcal{R}(\mathcal{X}_P) - \left(\mathcal{R}(\hat{\mathcal{X}}_L) + \mathcal{R}(\hat{\mathcal{X}}_U) + \mathcal{R}(\hat{\mathcal{X}}_P)\right) - \mathcal{C}(\mathbf{z}),$$

Iterations=30	Without R(L)	Without R(P)	Without R(U)
Total Cost	394	84	288

- Exclusion of R(L) leads to high risk and high total cost.
- This result shows the real contribution of each pool to the decision making.
- Since most changes are happening to the labeled pool of data, with every iteration, it has the highest contribution to the VOI.

5) ANNOTATION DATA

Images	240
Users	~70

Source : http://vision.cs.utexas.edu/projects/active-prediction/

Most picked v/s Least picked Images (Avg=22)

13

31

Least v/s most agreed upon Images (Avg= ~27)

3.3545

149.32