Where's Waldo: Matching People in Images of Crowds

Rahul Garg, Deva Ramanan, Steve Seitz, Noah Snavely

(Presented by Deepti Ghadiyaram)

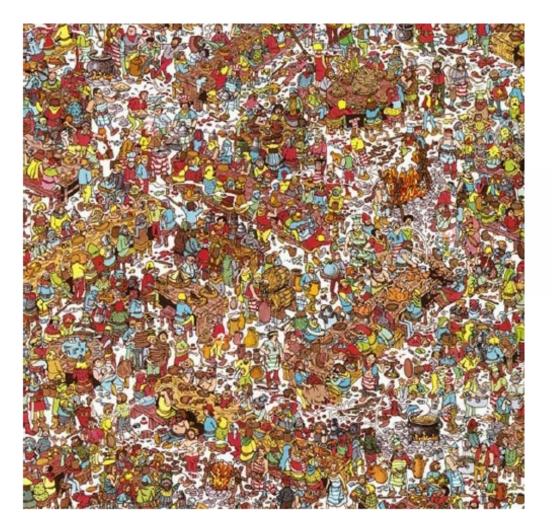
Motivation

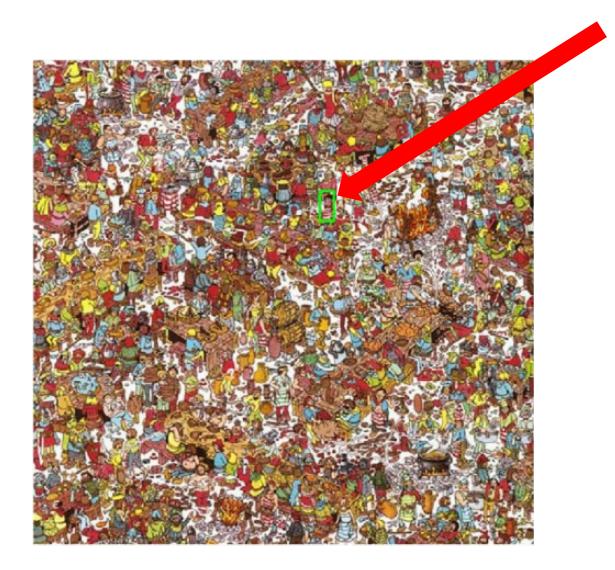
{ all photos }

Motivation

Question – How to browse such a collection and search for someone?

Problem Definition





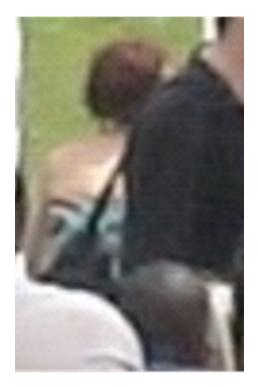
Applications

- 1. Photo browsing
- 2. Surveillance
- 3. Content based querying / search
 - Richer search experience.

CHALLENGES

Challenges

Pose Change



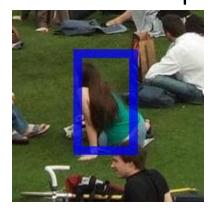
Severe occlusion

Low resolution

Challenges (contd..)

Photos from 100s of users; different viewpoints

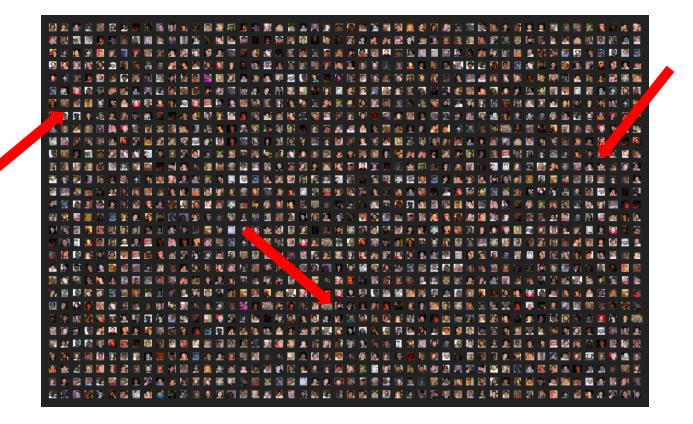
Different capture devices from different people.



Matching 100s of people where even faces are not clearly visible.

Challenges (contd..)

A particular "Waldo" appears in a small fraction of the entire collection.



Solution: Make Realistic Assumptions

- People are relatively stationary over large intervals.
 Advantage? Multi View Stereo is applicable.
- 2. Images contain additional contextual information.
 - GPS tags, time stamps.
 - Social context.

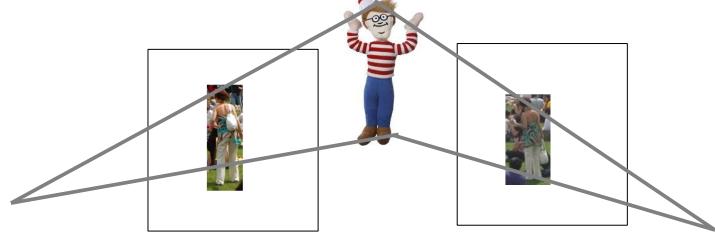
Advantage? Markov Random Field model is applicable.

MAIN CONTRIBUTIONS

Main contributions

1. Generalizing multi-view stereo to people-matching problem

- NOT template matching
- Use of a part-based appearance classifier instead of a window-based classifier



http://homes.cs.washington.edu/~rahul/data/CVPR2011/CVPR11-poster.pdf

1) Generalizing multi-view stereo to people-matching problem.

MVS	Waldo Problem
Photo consistency through NCC etc.	Appearance consistency through a part based classifier
3D Localization	3D Localization with custom priors
Smoothness in space via MRF	"Smoothness" over time and people via MRF

http://homes.cs.washington.edu/~rahul/data/CVPR2011/CVPR11-poster.pdf

Main contributions (contd..)

- 2) Exploiting contextual-cues via MRF
 - Co-occurrence of people
 - Timestamps.

3) Making an extensively labeled dataset available.

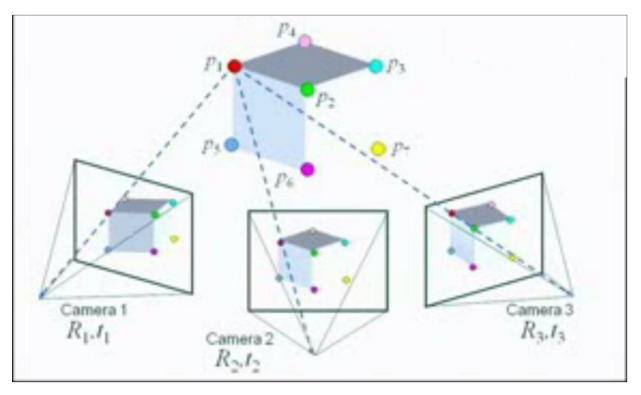
METHOD OVERVIEW

Image Collection of an event

>

Register the Photo Collection using SFM

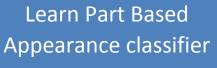
Structure From Motion



http://grail.cs.washington.edu/projects/cpc/

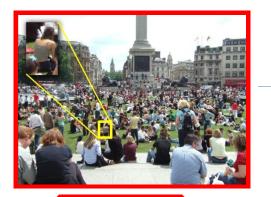
≻

Results



Estimate the 3D Location of the person

Refine search using MRF optimization



 \geq

Results

Learn Part Based

Appearance classifier

Estimate the 3D Location of the persor

Search for the person in the entire image collection

Refine search using MRF optimization

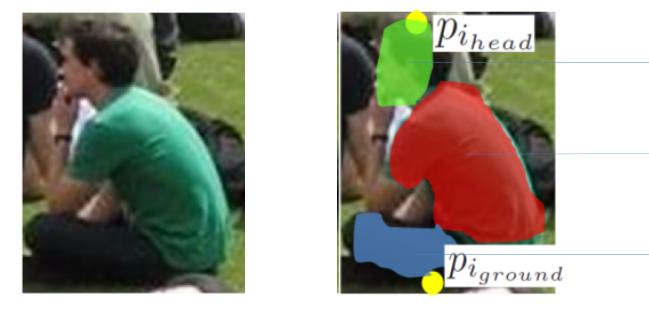
Input – Single instance of each person to be searched (p_i)

> Part₂

 \rightarrow Part₁

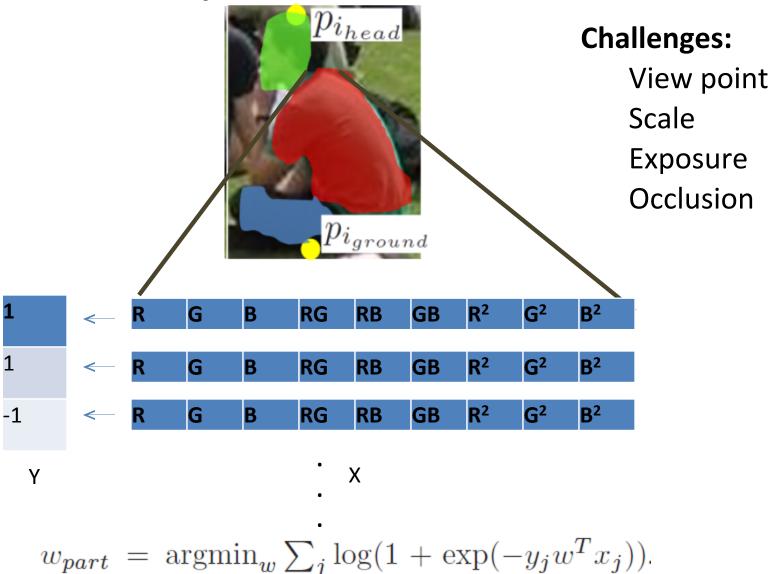
Part₃

 \geq

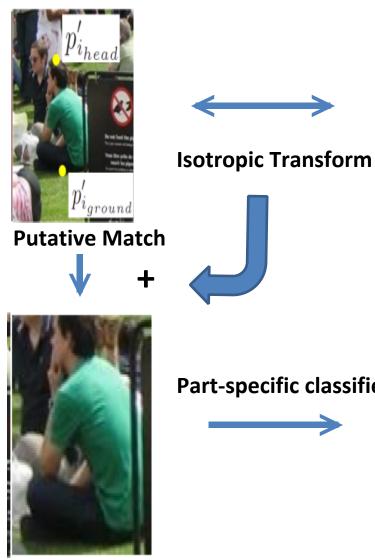


• Effective since the pose variation is implicitly captured.

Part specific Color Model



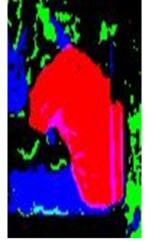
Scoring a candidate match



Training Image

Transformed Image

Part-specific classifier



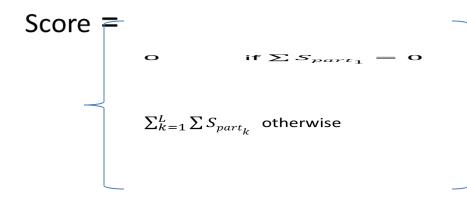
Binary Classification Mask (per part)

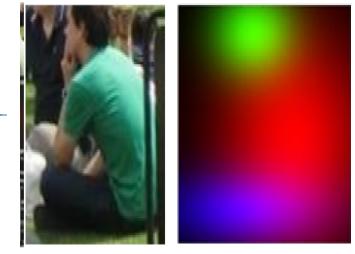
Scoring a candidate match

 $\sum S_{part_k}$ Sum of the number of positively classified pixels inside a specific part ${\pmb k}$

Summation accounts for occlusion.

Some parts are more discriminating than others.





Discussion

- Very high dependence on the lighting conditions.
 - Normalize the RGB values in the appearance model?
 - HSV space or a *different color space*?
- Performance on a similarly dressed crowd images. Eg: Convocation ceremony.
 - Requires additional cues beyond appearance.
- Face detection during appearance modeling (when applicable)
- Soft threshold on the appearance score rather than a hard threshold as it is now.

Results

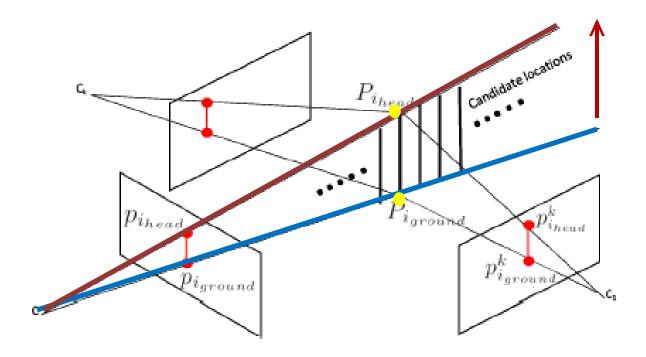
Estimate the 3D Location of the person

Search for the person in the entire image collection

Refine search using MRF optimization

3D Localization

Assumption: Orientation of the person is along the vertical.



• Searching in 1-D for P_{iground}

Results

Refine search using MRF optimization

3D Localization (contd..)

For each candidate pair in ($P_{i_{head}} P_{i_{ground}}$)

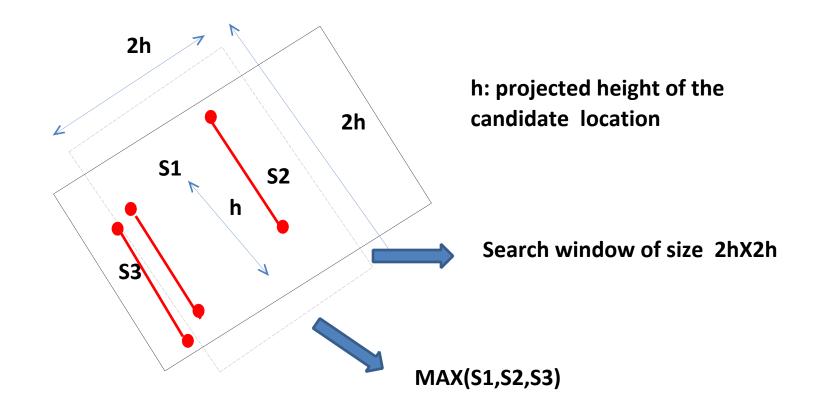
Project it into all the images (timestamp constrained)

• Get
$$(p^{\kappa}_{i_{head}} p^{\kappa}_{i_{ground}})$$

Score the projection using appearance model S_i

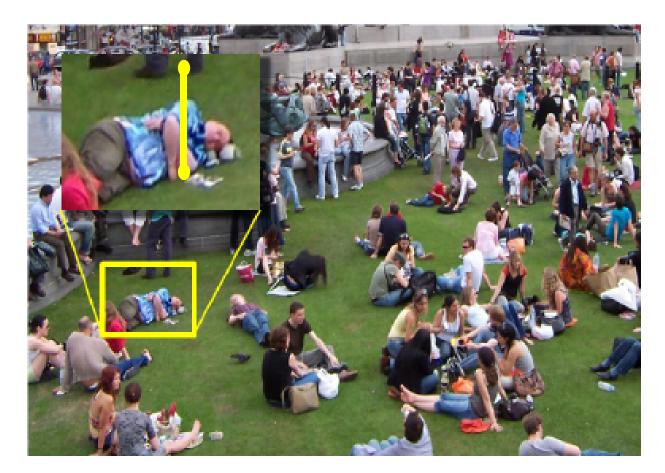
$$\sum_{I_k \in A} \max(S_i(p_{i_{head}}^k, p_{i_{ground}}^k) - thresh, 0)$$

Wiggle search



The score is multiplied by height and ground priors.

When orientation of the person is not vertical.



 $P_{i_{head}}$ should be marked at a sitting height (Sitting prior)

Results

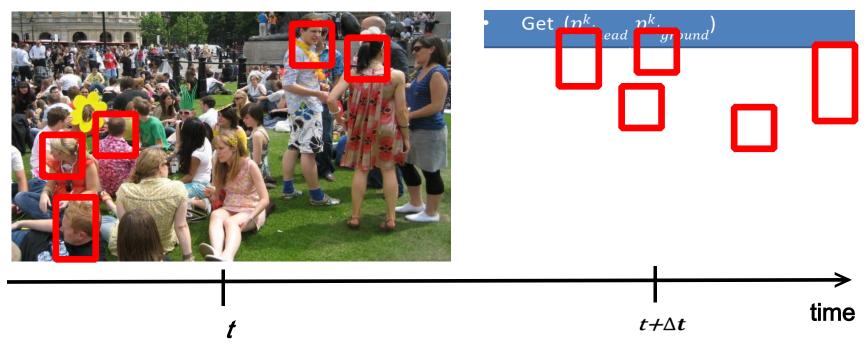
Location of the person

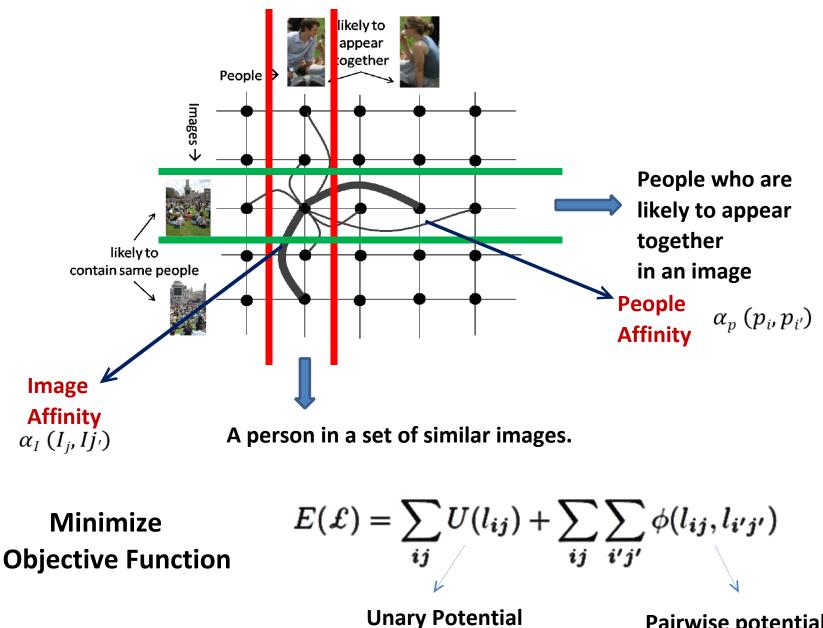
Search for the person in the entire image collection

Refine search using MRF optimization

Contextual Cues

- 1. People appear *together* with the same group of people.
- 2. Images which are *nearby in time* are likely to contain





Pairwise potentials

Discussion

- For the MRF model to be applicable, is every person, in every image, every time?
 - (OR) Is every person in the training image identified?

- Cues hallucinate the person when not present if other people with high affinities with that person are detected in the image.
 - Wont the appearance score be zero for this missing person?

Search for the person in the entire image collection

MRF optimization

Results

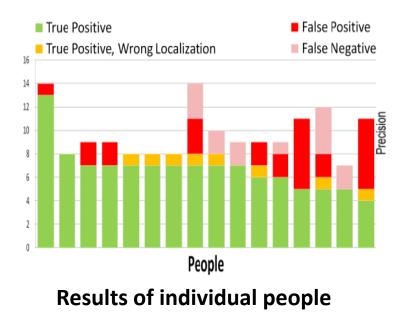
Datasets & Ground Truth Data

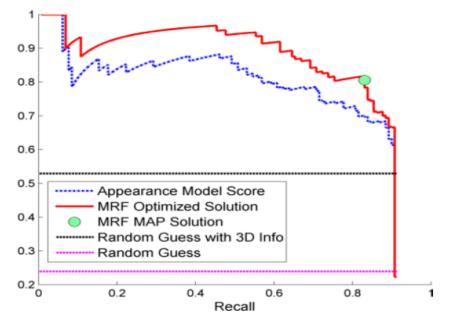
- Dataset#1
 - 34 photos ; single photographer ; Trafalgar Square ; single day.
- Dataset#2
 - 282 photos ; 89 different photographers ; Trafalgar Square ; single day.
- Dataset#3
 - 45 photos from 19 different users taken ; Hackday ; over two days. (Indoor)
- Ground truth labeling
 - Manually labeled with assistance from geometry
 - Does not follow the contextual cues.

Results – Dataset#1



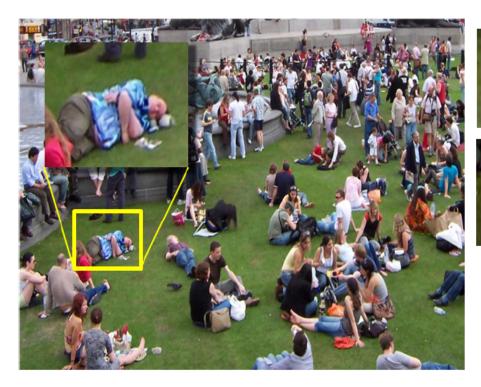
Pose change Occlusion





Precision-Recall curves

Results – Dataset#2

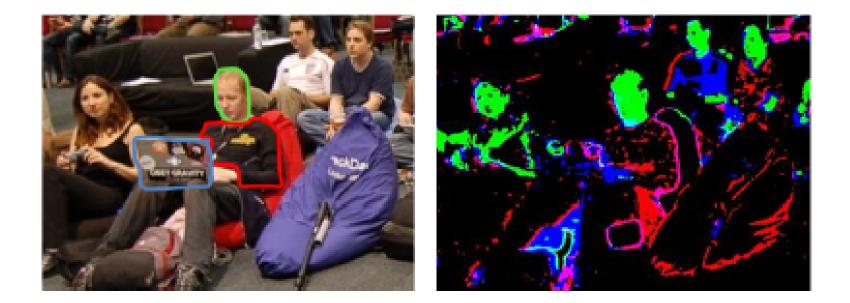


False Negatives

True Positives

False Positive

Illustrating failure to identify matches



- Torso (Red) not distinct from the background.
- Blue too many colors.

Extensions

- Relaxing each of the assumptions made.
 - Allow large motion of people.

- Track people's movement through the scene.
- More powerful and accurate appearance models.

• Larger image datasets.

Understanding Images of Groups of

People

