Announcements

Coordinating with other presenters
Presentation length: ~20 minutes
HW1 questions?

Today:

— Wrap-up on instance recognition
— Large-scale visual search

— Paper discussion

Wrap-up from last time:

instance recognition

Visual words

* quantization, index, bags of words
Spatial verification

« affine; RANSAC, Hough

Other text retrieval tools

« tf-idf, query expansion

Example applications

9/19/2012



Visual words
b dbdbdh bbb dhdh g

* Example: each
group of patches
belongs to the
same visual word

Kristen Grauman
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Figure from Sivic & Zisserman, ICCV 2003

-

Inverted file index and
bags of words similarity

1. Extract words in query
2. Inverted file index to find Lempmmmmmmpmmmel

relevant frames

3. Compare word counts

New query image

w
1 3

Kristen Grauman
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Visual words/bags of words

flexible to geometry / deformations / viewpoint
compact summary of image content

provides vector representation for sets

very good results in practice

+ + + +

- background and foreground mixed when bag
covers whole image

- optimal vocabulary formation remains unclear

- basic model ignores geometry — must verify
afterwards, or encode via features

Kristen Grauman

Spatial Verification

DB image with high Bow ’ =
similarity DB image with high Bow
similarity

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

9/19/2012



Spatial Verification

DB image with high BowW .
similarity DB image with high Bow
similarity

Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

Spatial Verification: two basic strategies

* RANSAC

* Generalized Hough Transform

Kristen Grauman
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RANSAC: General form

RANSAC loop:

Randomly select a seed group of points on which to
base transformation estimate

Compute model from seed group
Find inliers to this transformation

If the number of inliers is sufficiently large, re-compute
estimate of model on all of the inliers

Keep the model with the largest number of inliers

RANSAC example: Translation

Putative matches

Source: Rick Szeliski
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RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Ew’i

e

w0

Find “average” translation vector

RANSAC verification

For matching specific scenes/objects, common to
use an affine transformation for spatial verification




Fitting an affine transformation

(X.Y) o

Approximates viewpoint

¥ changes for roughly
© . ' planar objects and
° roughly orthographic
y y cameras.
[} [}
m L
Yi m; my Y t,
RANSAC verification
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Spatial Verification: two basic strategies

« RANSAC
— Typically sort by BoW similarity as initial filter
— Verify by checking support (inliers) for possible affine
transformations

* e.g., “success” if find an affine transformation with > N inlier
correspondences

* Generalized Hough Transform

— Let each matched feature cast a vote on location,
scale, orientation of the model object

— Verify parameters with enough votes

Kristen Grauman

Spatial Verification: two basic strategies

* RANSAC
— Typically sort by BoW similarity as initial filter
— Verify by checking support (inliers) for possible affine
transformations

* e.g., “success’ if find an affine transformation with > N inlier
correspondences

» Generalized Hough Transform

— Let each matched feature cast a vote on location,
scale, orientation of the model object

— Verify parameters with enough votes

Kristen Grauman
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Voting

+ It's not feasible to check all combinations of features by
fitting a model to each possible subset.

» Voting is a general technique where we let the features
vote for all models that are compatible with it.

— Cycle through features, cast votes for model parameters.

— Look for model parameters that receive a lot of votes.

* Noise & clutter features will cast votes too, but typically
their votes should be inconsistent with the majority of
“good” features.

Kristen Grauman

Difficulty of line fitting

Kristen Grauman

9/19/2012
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Hough Transform for line fitting

» Given points that belong to a line, what
is the line?

* How many lines are there?
» Which points belong to which lines?

* Hough Transform is a voting
technique that can be used to answer
all of these questions.

Main idea:

1. Record vote for each possible line
on which each edge point lies.

2. Look for lines that get many votes.

Kristen Grauman

Finding lines in an image: Hough space

y b
y = mor + bo
ﬁ
bo| e
X My m
image space Hough (parameter) space

Connection between image (x,y) and Hough (m,b) spaces
* Aline in the image corresponds to a point in Hough space

» To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty =mx + b

Slide credit: Steve Seitz

9/19/2012
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Finding lines in an image: Hough space

y b
Yo ° b= —xzogm <+ yo
—
Xo X m
image space Hough (parameter) space

Connection between image (x,y) and Hough (m,b) spaces
+ Aline in the image corresponds to a point in Hough space
+ To go from image space to Hough space:
— given a set of points (x,y), find all (m,b) such thaty = mx + b
* What does a point (x,, y,) in the image space map to?
— Answer: the solutions of b = -x;m + y,

— this is a line in Hough space
Slide credit: Steve Seitz

Finding lines in an image: Hough space

y b
Yo ° (xr, 1) b= —zom—+ yo
(Xos Yo) —l
b=-xm+y,
X X m
image space Hough (parameter) space

What are the line parameters for the line that contains both

(Xo» Yo) @nd (x4, y4)?
* ltis the intersection of the lines b = —x,m + y,and
b=—x;m+y,

9/19/2012
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Finding lines in an image: Hough algorithm

y b
o ° ~ /
-_— -~ |
o ™~
X m
image space Hough (parameter) space

How can we use this to find the most likely parameters (m,b)
for the most prominent line in the image space?

» Let each edge point in image space vote for a set of
possible parameters in Hough space

» Accumulate votes in discrete set of bins; parameters with
the most votes indicate line in image space.

Voting: Generalized Hough Transform

 If we use scale, rotation, and translation invariant local
features, then each feature match gives an alignment
hypothesis (for scale, translation, and orientation of
model in image).

Novel image

Slide credit' | ana | azebnik

9/19/2012
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Voting: Generalized Hough Transform

* A hypothesis generated by a single match may be
unreliable,

» So let each match vote for a hypothesis in Hough space

Model Novel image

Gen Hough Transform details (Lowe’s system)

» Training phase: For each model feature, record 2D
location, scale, and orientation of model (relative to
normalized feature frame)

+ Test phase: Let each match btwn a test SIFT feature
and a model feature vote in a 4D Hough space

» Use broad bin sizes of 30 degrees for orientation, a factor of
2 for scale, and 0.25 times image size for location

» Vote for two closest bins in each dimension
» Find all bins with at least three votes and perform
geometric verification
» Estimate least squares affine transformation
» Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

Slide credit' | ana | azebnik

9/19/2012
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Example result

Background subtract Objects recognized,  Recognition in
for model boundaries spite of occlusion

[Lowe]

Difficulties of voting

» Noise/clutter can lead to as many votes as
true target

 Bin size for the accumulator array must be
chosen carefully

* In practice, good idea to make broad bins and
spread votes to nearby bins, since verification
stage can prune bad vote peaks.

9/19/2012
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Gen Hough vs RANSAC
GHT RANSAC
+ Single correspondence -> * Minimal subset of
vote for all consistent correspondences to
parameters estimate model -> count
* Represents uncertainty in the inliers
model parameter space » Represents uncertainty
» Linear complexity in number in image space
of correspondences and « Must search all data
number of voting cells; points to check for inliers
beyond 4D vote space each iteration
impractical + Scales better to high-d
» Can handle high outlier ratio parameter spaces
Kristen Grauman

Video Google System

Query

1. Collect all words within region
query region

2. Inverted file index to find
relevant frames

. Compare word counts
. Spatial verification

w

4

Sivic & Zisserman, ICCV 2003

sallel) panalay

e Demo online at :
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html
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Object retrieval with large vocabularies and fast
spatial matching, Philbin et al., CVPR 2007

Query Results from 5k Flickr images (demo available for 100k set)
[Philbin CVPR’07]

World-scale mining of objects and events from
community photo collections, Quack et al., CIVR 2008
oulin R;ougeﬁ-:_

e
TS

Colosseum

Auto-annotate by connecting to
content on Wikipedia!

9/19/2012
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Visual Object Recognition Tutorial

Example Applications

Mobile tourist guide

= Self-localization

= Object/building recognition
* Photo/video augmentation

B. Leibe [Quack, Leibe, Van Gool, CIVR’08]

precision

I
B

Query

Relevant (total): 5 images I i
precision = #relevant / #returned * ﬁ E
recall = #relevant / #total relevant

-

o
©

Scoring retrieval quality

Results (ordered):

Database size: 10 images

L -

o
o

o
[}

B

°¢>

0.2 0.4 0.6 0.8 1
recall

Slide credit: Ondrej Chum

9/19/2012
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What else can we borrow from
text retrieval?

“Along 175, From Detro to
back

1929 Spanish Tral Roadway;
101:102,104
511 Traffc Information; 83
A1A (Barrlor i) - -85 Access; 86
CAR); 65

AMA National Office; 88

Abbreviations,
Colored 25 mile Maps; covar
Ext Sarvices; 196
Travelogue: 85

Abica; 177

Agriouiurs Inspection Sirs; 126

‘A Tah-Thi-KI Museum; 160

A Coniiorieg, Firsl, 112

Alligator Holo (definition); 157
Aligator, Buddy; 155
Albaiors: 100.135,138,147.156
Anstasia aland; 170
Anhaica; 108100, 146
Aptlacticon Riee 112

Mus of A 136
Rt 102

Bahia Mar Marina: 184
Baker Counly; 39
Barslool Malimen; 182

Bemnard Casire, 136

Big"F"; 1

Bif Gyprass; 155,758
Big Fool Monsier 105

S S
CA (sea
CCC, The; I|I 1 13115135142
Ca d'Zan; 147
Calossahatchen Fiver; 152
Naha; 1.

Canaveral Natnl Sesshors; 173

Epiphies. mzma‘sr 158
Escambia Bay; 119

Biidge (- 10119
Courny; 1

Estoro: \53

Charkotto Hartor; 150
e
Chipiay, 1

Name; s
Chostwaichas, Name; 115

Circus Musgum, Ringing; 147
Citrus; 88.,87,130,136.140,180
GityPlece, W Palm Beach: 180

a5,
P Lauddardale Expays; 194-195
Jacksorwille; 163

Kissimmes 182183
Miami Exprsssways; 194195
lancko Expressways; 192:183

c«umwwm&uzmm
snrveator Marine Aquarkim; 187

Callior 54

Calie, Barron,

I

Combays; 9
Cran Trag 1; 144

Grackar, Ficsida; 88,95,132
Cossma S i3

=
Dud- Bam\wlh

Date, Maj. Frares; \:ﬂumm
Daria Besch Huicane: 164

138-140,154-160
Braining of, 166,181
Widifa M4, 160
Wander Gardéns; 154
Falling Waters 5P 115
Fantasy of Fight; 35
Fayar Dykes SP; 171
Fires, Forest; 166
Fires, Prescribed ; 143
Floarman Vlags 161
Fligher Gounty:
Flaghar, Hesiry. enams: 171
Florida Aquashsm: 1
Florida,
12,000 yoars 8o, 187
Catvern SP; 14
Map of all Exprossways; 2.3
Mus of Naturad History, 134

Sheréfs Boys Carmp 126
Sports Hal of Fame; 130
Sun 'n Fun Mmm\ 7
Suprame Cour;

ks Turphta [rrm 178,189

China is forecasting a trade surplus of $90bn
(£51bn) to $100bn this year, a threefold
increase on 2004's $32bn. The Commerce
Ministry said the surpluswould be created by
a predicted 30% 2. $750bn,

the US wants the yuan to be allowed
freely. However, Beijing has made it c:
it will take its time and tread carefully bé
allowing the yuan to rise further in value.

tf-idf weighting

« Term frequency — inverse document frequency

» Describe frame by frequency of each word within it,
downweight words that appear often in the database

(Standard weighting for text retrieval)

Number of

occurrences of word
i in document d

Number of words in

document d

Kristen Grauman

- Njg
li = —

/

ng

Total number of

N «~ documents in
database

n-i Number of documents
word i occurs in, in
whole database

9/19/2012
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Query expansion

Query: golf green
Results:
- How can the grass on the greens at a golf course be so perfect?

- For example, a skilled golfer expects to reach the green on a par-four hole in ...
- Manufactures and sells synthetic golf putting greens and mats.

Irrelevant result can cause a “topic drift’:
- Volkswagen Golf, 1999, Green, 2000cc, petrol, manual, , hatchback, 94000miles,

2.0 GTi, 2 Registered Keepers, HPI Checked, Air-Conditioning, Front and Rear
Parking Sensors, ABS, Alarm, Alloy

Slide credit: Ondrej Chum

Query Expansion

Results

New query

Chum, Philbin, Sivic, Isard, Zisserman: Total Ig?ic e”E'r’el i(t:'VOZnO r7ei Chum

9/19/2012
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Query Expansion Step by Step

Query Image Retrieved image Originally not retrieved

Slide credit: Ondrej Chum

Query Expansion Step by Step

Slide credit: Ondrej Chum

21



Query Expansion Step by Step

Slide credit: Ondrej Chum

Query Expansion Results

Original results (good)

g e,
LTI s

9/19/2012
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Web Demo: Movie Poster Recognition
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http://www.kooaba.com/en/products engine.html#

Google Goggles

Use pictures to search the web. [> Watch a vides

Get Google Goggles

Android (1.6+ required)
Download from Android Market.

Send Goggles to Android phone

New iPhone (iOS 4.0 required)
Download from the App Store.

Send Goggles to iPhone

Landmarks Contact Info

Lammkoteletts vom Biobauern mit
Schalotten, Tomatencoulis und Basillkum-
Gnocchi

German (auto) » English

Lamb chops from the farmers with the
shallots, tomato sauce and basil gnocchi

23



Recognition via feature
matching+spatial verification

Pros:

» Effective when we are able to find reliable features
within clutter

 Great results for matching specific instances
Cons:

« Scaling with number of models

 Spatial verification as post-processing — not
seamless, expensive for large-scale problems

» Not suited for category recognition.

Kristen Grauman

Summary: instance recognition

* Matching local invariant features

— Useful not only to provide matches for multi-view
geometry, but also to find objects and scenes.

+ Bag of words representation: quantize feature space to
make discrete set of visual words

— Summarize image by distribution of words
— Index individual words

* Inverted index: pre-compute index to enable faster
search at query time

* Recognition of instances via alignment: matching
local features followed by spatial verification

— Robust fitting : RANSAC, GHT

Kristen Grauman

9/19/2012
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Large-scale visual search

* How to efficiently find similar images/features?
— Inverted file indexing schemes

— Low-dimensional descriptors: can use standard
efficient data structures for nearest neighbor search

— High-dimensional descriptors: approximate nearest
neighbor search methods more practical

* How to inject supervision into the search?

* How to summarize large collections?

25



Indexing local features:
KD-trees

» Binary tree data structure to store set of points
from a k-dimensional space.

+ Partition points into axis-aligned boxes:

— Divide the points in half by a hyperplane perpendicular
to one of the axes.

— Recursively construct KD trees for the two sets

[Friedman et al. 1977]

KD-Tree: Construction

e®e ° ° Pt X Y
o0 1 | 0.00 | 0.00
. . 2 [1.00 | 4.31
o0 o d
3 |0.13| 285
[ ] [ ]
[ ] [ ]

We start with a list of k-dimensional points.

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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KD-Tree: Construction

NO/§::)\YES

Pt

X

2

1.00

4.31

% b °
o:.o

° b * L4
oo ® o Pt | X Y
° . . 1 0.0 | 0.0
° .o 0 0
° 01|28
o, .:: ° ° 3 3 5

We can split the points into 2 groups by choosing
a dimension X and value V and separating the

points into X >V and X <= V.

Slide credit Brigham Anderson, Auton Lab

KD-Tree: Construction

% o . )
: NO S YES
®e0 ) :
- AN
0o e o . Pt | X | Y Pt | X Y
[ ] L L 1 0-0 0-0 2 1.00 4-31
L] o [ ] o 0
Jeo e 01|28
[ ° L : L] 3 3 5

We can then consider each group separately and

possibly split again (along same/different

dimension).

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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KD-Tree:

Construction

NO

{X>.5)

NO /v\&’Es

YE

Pt

X Y

2

1.00 | 4.31

Pt

X

Y

Pt

X

Y

3

0.1
3

2.8
5

1

0.0
0

0.0
0

We can then consider e.;e.lchmgro"l-Jp s.épa}éte.l-y and
possibly split again (along same/different
dimension).

Slide credit Brigham Anderson, Auton Lab

KD-Tree: Construction

N N

ST 5‘4}55‘{}%
SR o o 5™ %8

» Keep splitting the points in each set to create a
tree structure.

« Each node with no children (leaf node) contains
a list of points.

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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KD-Tree: Construction

e A

. ST Sbv8b &b

*

Keep track of the (tight) bounds of the points at or
below each node.

Slide credit Brigham Anderson, Auton Lab

KD-Tree: Construction

Heuristics to make splitting decisions:
» Which dimension do we split along?
— Widest — axis with highest variance
» Which value do we split at?
— Median of value of that split dimension for the points.

* When do we stop?

— When there are fewer then m points left OR the box
has hit some minimum width.

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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Nearest Neighbor with KD Trees

N
N I S AN

. PR iRe é/d/\b\b dp’\b\b o1 djb\b

We traverse the tree looking for the nearest
neighbor of the query point.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

S le (@)

e
T ALAS

. oo d*bd’\tj,d\bb ddjb\b

Examine nearby points first: Explore the branch of
the tree that is closest to the query point first.

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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Nearest Neighbor with KD Trees

s AN
T ) ) é/\b o’/\‘o

. PR iRe é/d/\b\b dp’\b\b o1 djb\b

Examine nearby points first: Explore the branch of
the tree that is closest to the query point first.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

°e o .’ ..\. o/ \O
O N OO
Lo L] AR ER

When we reach a leaf node: compute the distance
to each point in the node.

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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Nearest Neighbor with KD Trees

N BN

el fg}w‘{g%
SR o ™ 8 s

When we reach a leaf node: compute the distance
to each point in the node.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

NN e AN
1 | SN N
e AFCE G N

Then we can backtrack and try the other branch at
each node visited.

Slide credit Brigham Anderson, Auton Lab
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Nearest Neighbor with KD Trees

N
N I S AN

. PR déﬂﬁﬁ?c@%

Each time a new closest node is found, we can
update the distance bounds.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

N ICa /\
PN I S AN

) Y AT S

. . Svdv  S[E

Using the distance bounds and the bounds of the
data below each node, we can prune parts of the

Slide credit Brigham Anderson, Auton Lab

tree that could NOT include the nearest neighbor.

9/19/2012
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Nearest Neighbor with KD Trees

AT N
AT N AN

ok mm&b dd;)b

Using the distance bounds and the bounds of the
data below each node, we can prune parts of the
tree that could NOT include the nearest neighbor.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the
data below each node, we can prune parts of the
tree that could NOT include the nearest neighbor.

Slide credit Brigham Anderson, Auton Lab

9/19/2012
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KD-trees: Variants

« Approximate search with priority queue [Arya &
Mount, Beis & Lowe]

» Create multiple randomized trees and search all
at query time with priority queue

— e.g. choose split dimension randomly from first D
dims of greatest variance [Silpa-Anan & Hartley 2008]

« Stop search early when fixed number of leaf
nodes examined (approx result)

« PCA on data first, to align axes with directions of
highest variance

KD-trees: Complexity

« Constructing tree with n points:
— O(n log n) time and O(dn) storage
* Inserting a new point
— O(log n) time
* Querying for neighbors:
— O(n"") time

35



KD-tree limitations
» Poor search time performance with high-
dimensional data
» Sensitive to data distribution, bin shapes

N

|| Example: a "bad”
+parent | .| distribution that forces

_;, L dUR | almost all nodes to be
3 inspected.

[Andrew Moore, PhD thesis]

KD-tree limitations
* Poor search time performance with high-
dimensional data
» Sensitive to data distribution, bin shapes
» Storage requirements

* Purely vector space matching: not exploiting
sparsity of features among images...
ey

9/19/2012
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Large-scale visual search

* How to efficiently find similar images/features?
— Inverted file indexing schemes

— Low-dimensional descriptors: can use standard
efficient data structures for nearest neighbor search

— High-dimensional descriptors: approximate nearest
neighbor search methods more practical

* How to inject supervision into the search?

* How to summarize large collections?

Locality Sensitive Hashing (LSH)

[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

Pr |h(z) = h(y)| = sim(x,;
P [A(x) = h(y)] = sim(r.y)

o ’
. "
111101
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Locality Sensitive Hashing (LSH)

[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

» Formally, ensures “approximate” ©
nearest neighbor search
— With high probability, return a
neighbor within radius (1+€)r, if \
there is one.
— Guarantee to search only O N
of the database
« LSH functions originally for

Hamming metric, Lp norms,
inner product.

3 \ (1 +e)r

/ ©
“x.____ X

LSH function example:

Min-hash for set overlap similarity
[Broder, 1999]

Pr_ [h(x) = h(y)| = sim(x,y)

heF
A NA,
(AR
sim(Ap, As) = :j' mA2: e (0,1)
1 U
ST—A,UA,

9/19/2012
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LSH function example:
Min-hash for set overlap similarity

Vocabulary Set A Set Set C
AWBeCDEF @00 @0 @0®
Random orderings min-Hash

f,: 031 00 022 059 045 0D7 ~Un‘ @ '
f,: 0ho 031 04 035 038 043 ~Un‘ ‘ .
;3 2 1 6 4 5 ‘ @ ‘
i, 3 1 5 6 2 4 ‘ ‘ ‘

overlap (A,B) = 3/4 (1/2) overlap (A,C) = 1/4 (1/5) overlap (2,C) =0 (0)

CIGIC)

Slide credit: Ondrej Chum [Broder, 1999]

LSH function example:
Min-hash for set overlap similarity

0000000 WoEOVW®

Ordering by f,

e 00000V

h1(A) ‘ h1(2) @ AN

P(h(A) = h(%)) =

h2(a) @ h2) © e

| Slide credit: Ondrei Chum [Broder, 1999]

9/19/2012
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LSH function example:

inner product similarity

The probability that a random hyperplane separates two

unit vectors depends on the angle between them:

; T : T 1 o
Pr[sign(zlr) = ygn(:cf r)] =1- =cos ! (zTx;)
: T

Corresponding hash function:

el = 1, Frfez0
i i Y otherwise

\\\s K4 }
High dot product: Lower dot product:

unlikely to split likely to split - ¢
for 7~ N(pu= 0,02 = 1)

[Goemans and Williamson 1995, Charikar 2004]

Locality Sensitive Hashing (LSH)

[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

Pr |h(z) = h(y)| = sim(x,;
P [A(x) = h(y)] = sim(r.y)

o ’
. "
111101

9/19/2012
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Multiple hash functions and tables

» Generate k such hash functions, oot I

concatenate outputs into hash key: [0 " ] |
P(h,..0=h_,(¥)= o

..........

_ ] TABLE
* Toincrease recall, search multiple [ 110101

independently generated hash tables| o1 " [

— Search/rank the union of collisions in 111101 ..
each table, or
TABLE 2

— Require that two examples in at least T | 110100 ..

of the tables to consider them similar. 11111
111001 ..D!

Kernelized LSH (KLSH)

[Kulis & Grauman, ICCV 2009]
Given: an arbitrary kernel function:
- . N\ — A AT ]
k(i :Bj) = ¢(x;) C.D(:EJ)
Goal: compute hash function
hae(0(x)) = sign(r’ o(z))
for some Gaussian random vector 7 .

Key issue: random vectors are also in the implicit feature
space, to which we may only have access via the kernel.

Our result: derive appropriate hash functions of the form:

hp(x)) = sign(>; w(i)s(x, z;))
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K-NN accuracy
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Value of Ensilon

slower search <— faster search

KLSH results with
the Flickr
scenes dataset

» Acceptance of
arbitrary kernels
makes hashing with
popular X2 kernel
feasible.

* € parameter allows
control on speed-
accuracy tradeoff.

Proportion of top hashing nns covered
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o
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50

===20 Hashing nns
==—30 Hashing nns

100 150 200 250
Mumber of linear scan nns

|—10 Hashing nns|

300

KLSH results
with the 80
Million Tiny

Image dataset

« KLSH searches less

than 1% of the
database to find a
query’s approximate
near neighbors.

* How accurate are the
retrievals? For an
average query, 90% of
KLSH’s top 10
retrievals will be within
the top 50 linear scan
neighbors
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Large-scale visual search

* How to efficiently find similar images/features?
— Inverted file indexing schemes

— Low-dimensional descriptors: can use standard
efficient data structures for nearest neighbor search

— High-dimensional descriptors: approximate nearest
neighbor search methods more practical

* How to inject supervision into the search?

* How to summarize large collections?

Learning how to compare images

Choosing a generic distance function ignores
task-specific constraints ...

o e ey ERIEENES

e 7y

P Co0tes inIRER

User feedback Problem-specific Detected video shots,
knowledge

tracked objects

Partially labeled
image databases correspondences

9/19/2012
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Learning how to compare images

» Exploit (dis)similarity
constraints to
construct more
useful distance and
hash functions

» Exploit (dis)similarity
constraints to
construct more
useful distance and
hash functions

similar

[Weinberger et al. 2004,
Hertz et al. 2004, Frome et
al. 2007, Varma & Ray 2007,

Kumar et al. 2007,...]

9/19/2012
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Semi-supervised hash functions
[Jain, Kulis, & Grauman, CVPR 2008]

h(z,) £ h(z)

h(z,) =h(z))
Less likely to split pairs like those  More likely to split pairs like those
with similarity constraint with dissimilarity constraint

Semi-supervised hash functions:
Learned Mahalanobis metrics

« Distance parameterized by p.d.d X d matrix A:
da(z; ;) = (; — 51’5.?)7{114(33-1?- —x;)

» Similarity measure (kernel) is associated generalized
inner product

sa(xi,x;) = xl Az,

» An efficient method to learn the parameters: information
theoretic metric learning [Davis et al. 2007]
mina  Deg(A, Ag)
s.t. (xi —x;)TA(X; — x;) < v if (i,j) € S [similarity constraints]
(xi —x;)TA(x; — x;) = ¢ if (i,j) € D [dissimilarity constraints]

9/19/2012
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Semi-supervised hash functions:
Learned Mahalanobis metrics

« Given learned metric with A = GT'G§

» We generate parameterized hash functions
for sa(xi,x;) = o] Az;:

ha(@) = { 1 if r’ G > 0
r,AWP) =19 0. otherwise

This satisfies the locality-sensitivity condition:

Pr [y, a(2;) = By a(x;)] =1 — = cos™* ( S
™ |Gz;||Gz;|

)

Semi-supervised hash functions:
Learned Mahalanobis metrics

* Image data often high-dimensional, or want to
apply metric learner in kernel space.

- High-d inputs are sparse, but A = GG may
be dense — how to compute 7' G ?

« We derive an implicit update rule that
simultaneously updates metric and hash function

parameters:

T
Gx—fr‘m x; X
‘f‘S %_H

=1

Compare input to
constrained examples

9/19/2012
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Results: Photo Tourism dataset

300,000 patches

Goal: match patches
associated with same
3d object point

@é }lﬁ L « More accurate matches
- — better reconstruction

[Snavely, Seitz, Szeliski, 2006]

Results: Photo Tourism dataset

Search 100%

L . of data
Learned metric A
08 improves recall Search 0.8%
of data
-
0.75!
3 Our technique
& 0.7 maintains
- : . accuracy while
== ML Llnealr Scan searching less
0.65 ’ ML Hashing than 1% of the

-9-L L, Linear Scan

database.
i -l-Lz Hashing

080 200 300 400 500 600 700 800 900 1000
Number of patches retrieved
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Semantic Hashing

[Torralba, Fergus, Weiss, CVPR 2008]

Semantic , Address Space

Hash
Function .Image.s in database

Semantically
similar
images close

| Slide credit- Rob Ferqgus

Semantic Hashing

[Torralba, Fergus, Weiss, CVPR 2008]

« Each image code is a memory address
* Find neighbors by exploring Hamming ball
around query address

» Lookup time depends on radius of ball &
length of code

» Explored with different semantic distances
and learning algorithms (e.g., boosting,
RBMs)

» Learned functions outperform raw LSH functions

9/19/2012
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Semantic Hashing

 Idea: Define target semantic distance to be the
spatial pyramid distance, but where tokens are
object labels.

Dissimilar
scenes

Similar
scenes

» Train with similarity constraints from labeled examples.

Results: example LabelMe retrievals

query groundtruth L2 on pixels L2 on Gist Learned small codes

* Neighbors under different distance metrics, 22K image db

9/19/2012
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Large-scale visual search

* How to efficiently find similar images/features?
— Inverted file indexing schemes

— Low-dimensional descriptors: can use standard
efficient data structures for nearest neighbor search

— High-dimensional descriptors: approximate nearest
neighbor search methods more practical

* How to inject supervision into the search?

* How to summarize large collections?

Mining for common visual patterns
In addition to visual search, want to be able to

summarize, mine, and rank the large
collection as a whole.

What is common?

What is unusual?

* What co-occurs?

* Which exemplars
are most
representative?

9/19/2012
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Mining for common visual patterns

In addition to visual search, want to be able to
summarize, mine, and rank the large
collection as a whole.

We’'ll look briefly at a few recent examples:

+ Connected component clustering via hashing
[Geometric Min-hash, Chum et al. 2009]

» Visual Rank to choose “image authorities” [Jing and
Baluja, 2008]

* Frequent item-set mining with spatial patterns
[Quack et al., 2007]

Connected component clustering
with hashing

1. Detect seed pairs via hash collisions
2.Hash to related images
3. Compute connected components of the graph

Contrast with frequently used quadratic-time clustering algorithms
Slide credit: Ondrej Chum

9/19/2012
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Geometric Min-hash

[Chum, Perdoch, Matas, CVPR 2009]

* Main idea: build spatial relationships into the
hash key construction:

— Select first hash output according to min hash
(“central word”)

— Then append subsequent hash outputs from
within its neighborhood

Figure from Ondrej Chum

Results:
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]
}ﬂ " lﬁ Hertford -.
Ashmelean ME_
il {1 | Keble
B e OG0 8 B ...
iy THC
. % Pitt Rivers i,
Christ Churchu : m h
Cornmarket m £Mﬁ

100 000 Images downloaded from FLICKR
Includes 11 Oxford Landmarks with manually labeled ground truth

All Soul's

Balliol

Radcliffe
Camera

Slide credit: Ondrej Chum
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Results:
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

il Bl

-
1 (|

. ﬂgﬂ J _;_"

Slide credit: Ondrej Chum Discovering small objects

Results:
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

B4 JP30AL R RIEIE AL I
E4L IEARLIIEdeaEa, WAt dhad 4
MPEEL AU T IEEEIRIe

E!ﬂ@lﬁ]@@@ﬁ

= B3EIE3R
’;’ P W |

Slide credit: Ondrej Ghum Discovering small objects

9/19/2012

53



Mining for common visual patterns

In addition to visual search, want to be able to
summarize, mine, and rank the large
collection as a whole.

We’'ll look briefly at a few recent examples:

+ Connected component clustering via hashing
[Geometric Min-hash, Chum et al. 2009]

 Visual Rank to choose “image authorities” [Jing and
Baluja, 2008]

* Frequent item-set mining with spatial patterns
[Quack et al., 2007]

Visual Rank: motivation

-+ Goal: select
small set of
“best” images
to display
among millions
of candidates

Product search Mixed-type search

9/19/2012
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Visual Rank

[Jing and Baluja, PAMI 2008]

« Compute relative “authority” of an image
based on random walk principle.
— Application of PageRank to visual data

* Main ideas:

— Graph weights = number of matched local features
between two images

— Exploit text search to narrow scope of each graph
— Use LSH to make similarity computations efficient

Results: Visual Rank

[Jing and Baluja, PAMI 2008]

&
o Highest visual rank!

(9} mn o a
Original has more matches to rest Similarity graph generated from top .

1,000 text search results of “Mona-Lisa”

9/19/2012
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Results: Visual Rank
[Jing and Baluja, PAMI 2008]

O .

(© . ' _:::E::: .-'.
Similarity graph generated from top 1,000 text search

results of “Lincoln Memorial”.
Note the diversity of the high-ranked images.

Mining for common visual patterns

In addition to visual search, want to be able to
summarize, mine, and rank the large
collection as a whole.

We’'ll look briefly at a few recent examples:

+ Connected component clustering via hashing
[Geometric Min-hash, Chum et al. 2009]

 Visual Rank to choose “image authorities” [Jing and
Baluja, 2008]

* Frequent item-set mining with spatial patterns
[Quack et al., 2007]

9/19/2012
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Frequent item-sets

Frequently Bought Together
Customers buy this book with Learning OpenC\V: Computer Vision with the OpenCV Library by Gary Bradski

Price For Both: $131.77

= | & (&) Add both to Cart_| _Add both to Wish List
w Show availability and shipping details

Customers Who Bought This Item Also Bought

. INRIOE | « 0l

~ | Learning Opency: Computer Vision: A Pattern Recognition and Machine Vision, Third
2 Computer Vision with the Modern Approach by David Machine Learning... by Edition: Theory
Qpency... by Gary Bradski A. Forsyth Christopher M. Blshop Algorithms... by E. R.
A aia A e i it

Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

» What configurations of local

features frequently occur in <1 i
large collection? - s
« Main idea: Identify item-sets e

(visual word layouts) that
often occur in transactions
(images)

- Efficient algorithms from
data mining (e.g., Apriori
algorithm, Agrawal 1993)
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Frequent item-set mining

for spatial visual patterns
[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Frequent item-set mining

for spatial visual patterns
[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Two example itemset clusters

9/19/2012
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Discovering favorite views

Discovering Favorite Views of Popular Places with Iconoid
Shift. T. Weyand and B. Leibe. ICCV 2011.

= A e B

6476 259 317 789 7804 446

Conclusions

» Key considerations in visual search design:
similarity, representation, scalable search
procedures, integrating learning

» Tradeoffs in large-scale data: complexity but
also data richness

 Allowing visual queries and automatic
organization can transform how both visual and
non-visual data are accessed.
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