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Announcements

• Coordinating with other presenters

• Presentation length: ~20 minutes

• HW1 questions?

• Today:

– Wrap‐up on instance recognition

– Large‐scale visual search

– Paper discussion

Wrap-up from last time:
instance recognition

• Visual words

ti ti i d b f d• quantization, index, bags of words

• Spatial verification

• affine; RANSAC, Hough

• Other text retrieval tools

• tf-idf query expansiontf idf, query expansion 

• Example applications
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Visual words
• Example: each 

group of patches 
belongs to the g
same visual word

Figure from  Sivic & Zisserman, ICCV 2003Kristen Grauman

Inverted file index and
bags of words similarity

w91

1. Extract words in query

2. Inverted file index to find 
relevant frames

3. Compare word counts
Kristen Grauman



9/19/2012

3

Visual words/bags of words

+  flexible to geometry / deformations / viewpoint

+  compact summary of image contenty g

+  provides vector representation for sets

+  very good results in practice

- background and foreground mixed when bag 
covers whole imagecovers whole image

- optimal vocabulary formation remains unclear

- basic model ignores geometry – must verify 
afterwards, or encode via features

Kristen Grauman

Spatial Verification

Query Query

Both image pairs have many visual words in common.

Slide credit: Ondrej Chum

DB image with high BoW
similarity DB image with high BoW

similarity
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Spatial Verification

Query Query

Only some of the matches are mutually consistent

Slide credit: Ondrej Chum

DB image with high BoW
similarity DB image with high BoW

similarity

Spatial Verification: two basic strategies

• RANSAC

• Generalized Hough Transform

Kristen Grauman
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RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 
b t f ti ti tbase transformation estimate

2. Compute model from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  
estimate of model on all of the inliers

• Keep the model with the largest number of inliers

RANSAC example: Translation

Putative matches

Source: Rick Szeliski
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RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Find “average” translation vector

RANSAC verification

For matching specific scenes/objects, common to 
use an affine transformation for spatial verification
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Fitting an affine transformation

)( yx 

),( ii yx Approximates viewpoint 
changes for roughly),( ii yx








m1

changes for roughly 
planar objects and 
roughly orthographic 
cameras.
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Spatial Verification: two basic strategies

• RANSAC
Typically sort by BoW similarity as initial filter– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 
transformations 

• e.g., “success” if find an affine transformation with > N inlier 
correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman

Spatial Verification: two basic strategies

• RANSAC
Typically sort by BoW similarity as initial filter– Typically sort by BoW similarity as initial filter

– Verify by checking support (inliers) for possible affine 
transformations 

• e.g., “success” if find an affine transformation with > N inlier 
correspondences

• Generalized Hough Transform
– Let each matched feature cast a vote on location, 

scale, orientation of the model object 

– Verify parameters with enough votes

Kristen Grauman
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Voting
• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset.

• Voting is a general technique where we let the features 
vote for all models that are compatible with it.

– Cycle through features, cast votes for model parameters.

– Look for model parameters that receive a lot of votes.

Noise & clutter features will cast votes too but typically• Noise & clutter features will cast votes too, but typically 
their votes should be inconsistent with the majority of 
“good” features.

Kristen Grauman

Difficulty of line fitting

Kristen Grauman
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Hough Transform for line fitting

• Given points that belong to a line, what 
is the line?

H li th ?• How many lines are there?

• Which points belong to which lines?

• Hough Transform is a voting 
technique that can be used to answer 
all of these questions.

Main idea:Main idea: 

1.  Record vote for each possible line 
on which each edge point lies.

2.  Look for lines that get many votes.

Kristen Grauman

Finding lines in an image: Hough space

y b

Connection between image (x,y) and Hough (m,b) spaces

x mm0

b0

image space Hough (parameter) space

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

Slide credit: Steve Seitz
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Finding lines in an image: Hough space

y b

y0

Connection between image (x,y) and Hough (m,b) spaces

x m

image space Hough (parameter) space
x0

• A line in the image corresponds to a point in Hough space

• To go from image space to Hough space:
– given a set of points (x,y), find all (m,b) such that y = mx + b

• What does a point (x0, y0) in the image space map to?

– Answer:  the solutions of b = -x0m + y0

– this is a line in Hough space
Slide credit: Steve Seitz

Finding lines in an image: Hough space

y b

y0
(x0, y0)

(x1, y1)

What are the line parameters for the line that contains both 

x m

image space Hough (parameter) space
x0

b = –x1m + y1

(x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and 

b = –x1m + y1
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Finding lines in an image: Hough algorithm

y b

How can we use this to find the most likely parameters (m,b) 
for the most prominent line in the image space?

x m

image space Hough (parameter) space

for the most prominent line in the image space?

• Let each edge point in image space vote for a set of 
possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with 
the most votes indicate line in image space.

Voting: Generalized Hough Transform

• If we use scale, rotation, and translation invariant local 
features, then each feature match gives an alignment 
hypothesis (for scale translation and orientation ofhypothesis (for scale, translation, and orientation of 
model in image).

Model Novel image

Slide credit: Lana Lazebnik
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Voting: Generalized Hough Transform

• A hypothesis generated by a single match may be 
unreliable,

So let each match vote for a hypothesis in Hough space• So let each match vote for a hypothesis in Hough space

Model Novel image

Gen Hough Transform details (Lowe’s system)

• Training phase: For each model feature, record 2D 
location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match btwn a test SIFT feature 
and a model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location

• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
i ifi igeometric verification 

• Estimate least squares affine transformation 

• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

Slide credit: Lana Lazebnik
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Example result

Objects recognized, Recognition in 
spite of occlusion

Background subtract 
for model boundaries

[Lowe]

Difficulties of voting

• Noise/clutter can lead to as many votes as 
true targettrue target

• Bin size for the accumulator array must be 
chosen carefully

• In practice, good idea to make broad bins and 
d t t b bi i ifi tispread votes to nearby bins, since verification 

stage can prune bad vote peaks.
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Gen Hough vs RANSAC

GHT

• Single correspondence -> 
RANSAC

• Minimal subset of 
vote for all consistent 
parameters

• Represents uncertainty in the 
model parameter space

• Linear complexity in number 
of correspondences and 

correspondences to 
estimate model -> count 
inliers

• Represents uncertainty 
in image space

• Must search all datap
number of voting cells; 
beyond 4D vote space 
impractical

• Can handle high outlier ratio

Must search all data 
points to check for inliers 
each iteration

• Scales better to high-d 
parameter spaces

Kristen Grauman
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Video Google System

1. Collect all words within 
query region

2 Inverted file index to find 
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or
y 

A
u
gm

en
te

d 
C

om
p
u
ti

g
n

it
io

n
 T

u
to

ri
al

2. Inverted file index to find 
relevant frames

3. Compare word counts
4. Spatial verification

Sivic & Zisserman, ICCV 2003
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• Demo online at : 
http://www.robots.ox.ac.uk/~vgg/r
esearch/vgoogle/index.html
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Object retrieval with large vocabularies and fast 
spatial matching, Philbin et al., CVPR 2007

[Philbin CVPR’07]

Query Results from 5k Flickr images (demo available for 100k set)

World-scale mining of objects and events from 
community photo collections, Quack et al., CIVR 2008

Moulin Rouge Old Town Square (Prague)

Tour Montparnasse Colosseum

Viktualienmarkt
Maypole

Auto-annotate by connecting to 
content on Wikipedia!
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B. Leibe

• Self-localization
• Object/building recognition
• Photo/video augmentation

[Quack, Leibe, Van Gool, CIVR’08]

Scoring retrieval quality

Query
Database size: 10 images
Relevant (total): 5 images 

Results (ordered):

0 6

0.8

1

o
n

y

precision = #relevant / #returned
recall = #relevant / #total relevant

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

recall
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re

c
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io

Slide credit: Ondrej Chum
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China is forecasting a trade surplus of $90bn 
(£51bn) to $100bn this year, a threefold 
increase on 2004's $32bn The Commerce

What else can we borrow from 
text retrieval?

increase on 2004 s $32bn. The Commerce 
Ministry said the surplus would be created by 
a predicted 30% jump in exports to $750bn, 
compared with a 18% rise in imports to 
$660bn. The figures are likely to further 
annoy the US, which has long argued that 
China's exports are unfairly helped by a 
deliberately undervalued yuan.  Beijing 
agrees the surplus is too high, but says the 
yuan is only one factor. Bank of China 
governor Zhou Xiaochuan said the country 
l d d t d t b t d ti

China, trade, 
surplus, commerce, 

exports, imports, US, 
yuan, bank, domestic, 

foreign, increase, 
t d lalso needed to do more to boost domestic 

demand so more goods stayed within the 
country. China increased the value of the 
yuan against the dollar by 2.1% in July and 
permitted it to trade within a narrow band, but 
the US wants the yuan to be allowed to trade 
freely. However, Beijing has made it clear that 
it will take its time and tread carefully before 
allowing the yuan to rise further in value.

trade, value

tf-idf weighting

• Term frequency – inverse document frequency

• Describe frame by frequency of each word within it, 
downweight words that appear often in the databasedownweight words that appear often in the database

• (Standard weighting for text retrieval)

Total number of 
documents in 
database

Number of 
occurrences of word 
i in document d

Number of documents 
word i occurs in, in 
whole database

Number of words in 
document d

Kristen Grauman
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Query expansion

Query: golf green

Results:

‐ How can the grass on the greens at a golf course be so perfect?
‐ For example, a skilled golfer expects to reach the green on a par‐four hole in ...
‐Manufactures and sells synthetic golf putting greens and mats.

Irrelevant result can cause a `topic drift’: 

‐ Volkswagen Golf, 1999, Green, 2000cc, petrol, manual, , hatchback, 94000miles, 
2.0 GTi, 2 Registered Keepers, HPI Checked, Air‐Conditioning, Front and Rear 
Parking Sensors, ABS, Alarm, Alloy 

Slide credit: Ondrej Chum

Query Expansion

…

Results

…

Query image

Spatial verification

New query

New results

Chum, Philbin, Sivic, Isard, Zisserman: Total Recall…, ICCV 2007
Slide credit: Ondrej Chum
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Query Expansion Step by Step

Query Image Retrieved image Originally not retrieved

Slide credit: Ondrej Chum

Query Expansion Step by Step

Slide credit: Ondrej Chum



9/19/2012

22

Query Expansion Step by Step

Slide credit: Ondrej Chum

Query Expansion Results
Original results (good)

Query
image

Expanded results (better)

Slide credit: Ondrej Chum
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http://www.kooaba.com/en/products_engine.html#

p

Query-by-image
from mobile phone
available in Switzer-
land
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Recognition via feature 
matching+spatial verification

Pros: 
Effective when we are able to find reliable features• Effective when we are able to find reliable features 
within clutter

• Great results for matching specific instances

Cons:
• Scaling with number of models

• Spatial verification as post-processing – notSpatial verification as post-processing not 
seamless, expensive for large-scale problems

• Not suited for category recognition.

Kristen Grauman

Summary: instance recognition

• Matching local invariant features

– Useful not only to provide matches for multi-view 
b l fi d bj dgeometry, but also to find objects and scenes.

• Bag of words representation: quantize feature space to 
make discrete set of visual words
– Summarize image by distribution of words
– Index individual words

• Inverted index: pre-compute index to enable fasterInverted index: pre compute index to enable faster 
search at query time

• Recognition of instances via alignment: matching 
local features followed by spatial verification

– Robust fitting : RANSAC, GHT
Kristen Grauman
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• How to efficiently find similar images/features?

– Inverted file indexing schemes

Large-scale visual search

– Low-dimensional descriptors: can use standard 
efficient data structures for nearest neighbor search 

– High-dimensional descriptors: approximate nearest 
neighbor search methods more practical

• How to inject supervision into the search?

• How to summarize large collections?
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• Binary tree data structure to store set of points 
from a k-dimensional space.

Indexing local features: 
KD-trees

p

• Partition points into axis-aligned boxes:
– Divide the points in half by a hyperplane perpendicular 

to one of the axes.

– Recursively construct KD trees for the two sets

[Friedman et al. 1977]

Pt X Y

1 0 00 0 00

KD-Tree: Construction

1 0.00 0.00

2 1.00 4.31

3 0.13 2.85

… … …

We start with a list of  k-dimensional points.

Slide credit Brigham Anderson, Auton Lab
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X>.5
YESNO

KD-Tree: Construction

Pt X Y

1
0.0
0

0.0
0

3
0.1
3

2.8
5

… … …

Pt X Y

2 1.00 4.31

… … …

YESNO

… … …

We can split the points into 2 groups by choosing 
a dimension X and value V and separating the 
points into X > V and X <= V.

Slide credit Brigham Anderson, Auton Lab

X>.5
YESNO

KD-Tree: Construction

Pt X Y

1
0.0
0

0.0
0

3
0.1
3

2.8
5

… … …

Pt X Y

2 1.00 4.31

… … …

YESNO

… … …

We can then consider each group separately and 
possibly split again (along same/different 
dimension).

Slide credit Brigham Anderson, Auton Lab
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X>.5
YESNO

KD-Tree: Construction

Pt X Y

3
0.1
3

2.8
5

Pt X Y

2 1.00 4.31

… … …

Pt X Y

1
0.0
0

0.0
0

Y>.1

NO YES

3 5

… … …

We can then consider each group separately and 
possibly split again (along same/different 
dimension).

0 0

… … …

Slide credit Brigham Anderson, Auton Lab

KD-Tree: Construction

• Keep splitting the points in each set to create a 
tree structure.  

• Each node with no children (leaf node) contains 
a list of points.

Slide credit Brigham Anderson, Auton Lab
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KD-Tree: Construction

Keep track of the (tight) bounds of the points at or 
below each node.

Slide credit Brigham Anderson, Auton Lab

KD-Tree: Construction

Heuristics to make splitting decisions:

• Which dimension do we split along?Which dimension do we split along?  

– Widest – axis with highest variance

• Which value do we split at?  

– Median of value of that split dimension for the points.

• When do we stop?   p

– When there are fewer then m points left OR the box 

has hit some minimum width.

Slide credit Brigham Anderson, Auton Lab
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Nearest Neighbor with KD Trees

We traverse the tree looking for the nearest 
neighbor of the query point.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

Examine nearby points first: Explore the branch of 
the tree that is closest to the query point first.

Slide credit Brigham Anderson, Auton Lab
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Nearest Neighbor with KD Trees

Examine nearby points first: Explore the branch of 
the tree that is closest to the query point first.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

When we reach a leaf node: compute the distance 
to each point in the node.

Slide credit Brigham Anderson, Auton Lab
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Nearest Neighbor with KD Trees

When we reach a leaf node: compute the distance 
to each point in the node.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

Then we can backtrack and try the other branch at 
each node visited.

Slide credit Brigham Anderson, Auton Lab
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Nearest Neighbor with KD Trees

Each time a new closest node is found, we can 
update the distance bounds.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the 
data below each node, we can prune parts of the 
tree that could NOT include the nearest neighbor.

Slide credit Brigham Anderson, Auton Lab
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Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the 
data below each node, we can prune parts of the 
tree that could NOT include the nearest neighbor.

Slide credit Brigham Anderson, Auton Lab

Nearest Neighbor with KD Trees

Using the distance bounds and the bounds of the 
data below each node, we can prune parts of the 
tree that could NOT include the nearest neighbor.

Slide credit Brigham Anderson, Auton Lab
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KD-trees: Variants

• Approximate search with priority queue [Arya & 
Mount, Beis & Lowe]

• Create multiple randomized trees and search all 
at query time with priority queue

– e.g. choose split dimension randomly from first D 
dims of greatest variance [Silpa-Anan & Hartley 2008]

S f f f• Stop search early when fixed number of leaf 
nodes examined (approx result)

• PCA on data first, to align axes with directions of 
highest variance

KD-trees: Complexity

• Constructing tree with n points:
– O(n log n) time and O(dn) storage

• Inserting a new point 
– O(log n) time

• Querying for neighbors:
– O(n1-1/k) time
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KD-tree limitations

• Poor search time performance with high-
dimensional data

• Sensitive to data distribution, bin shapes

Example: a “bad” 
distribution that forces parent

[Andrew Moore, PhD thesis]

almost all nodes to be 
inspected.

query
p

KD-tree limitations

• Poor search time performance with high-
dimensional data

• Sensitive to data distribution, bin shapes

• Storage requirements

• Purely vector space matching: not exploiting 
sparsity of features among images…

…
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• How to efficiently find similar images/features?

– Inverted file indexing schemes

Large-scale visual search

– Low-dimensional descriptors: can use standard 
efficient data structures for nearest neighbor search 

– High-dimensional descriptors: approximate nearest 
neighbor search methods more practical

• How to inject supervision into the search?

• How to summarize large collections?

Locality Sensitive Hashing (LSH)

N

[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

h   r1…rk

<< N

Q

Xi

N

Q
111101

110111

110101

hr1…rk

Q
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Locality Sensitive Hashing (LSH)
[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

• Formally, ensures “approximate” 
nearest neighbor searchnearest neighbor search
– With high probability, return a 

neighbor within radius (1+ϵ)r, if 
there is one.

– Guarantee to search only              
of the database (1+ϵ)r

• LSH functions originally for 
Hamming metric, Lp norms, 
inner product.

LSH function example: 
Min-hash for set overlap similarity

[Broder, 1999]

A1 ∩ A2

A1 A2

A1 U A2



9/19/2012

39

LSH function example: 
Min-hash for set overlap similarity

C

Vocabulary

C C

Set A Set B Set C

145263

0.630.880.550.940.310.19

0.070.750.590.220.900.41

A C D EB F A CB C DB A E F

f1: C C F

f2: 453621 A B A

Random orderings min-Hash

~ Un (0,1)

~ Un (0,1)

f3: 546123 C C A
f4: 426513 B B E

overlap (A,B) = 3/4 (1/2) overlap (A,C) = 1/4 (1/5) overlap (B,C) = 0 (0)

Slide credit: Ondrej Chum [Broder, 1999]

LSH function example: 
Min-hash for set overlap similarity

A E Q R VJ A C Q V ZEYA: B:

A Q VE RJC ZA U B:

Ordering by f1Ordering by f2

Y

P(h(A) = h(B)) =               
|A ∩ B|

|A U B|h2(A) h2(B)Q

h1(A) h1(B)A A

C

Slide credit: Ondrej Chum [Broder, 1999]
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The probability that a random hyperplane separates two 
unit vectors depends on the angle between them:

LSH function example: 
inner product similarity

Corresponding hash function:

[Goemans and Williamson 1995, Charikar 2004]

High dot product:  
unlikely to split

Lower dot product: 
likely to split

for

Locality Sensitive Hashing (LSH)

N

[Indyk and Motwani ‘98, Gionis et al.’99, Charikar ‘02, Andoni et al. ‘04]

h   r1…rk

<< N

Q

Xi

N

Q
111101

110111

110101

hr1…rk

Q



9/19/2012

41

Multiple hash functions and tables

• Generate k such hash functions, 
concatenate outputs into hash key: 110111

110101

p y

• To increase recall, search multiple 
independently generated hash tables

S / f

  k
kk yxsimyhxh ),()()(P ,...,1,...,1  111101

110111

110101
TABLE 1

– Search/rank the union of collisions in 
each table, or

– Require that two examples in at least T
of the tables to consider them similar.

111101

111001

111111

110100
TABLE 2

Given: an arbitrary kernel function:

Kernelized LSH (KLSH)
[Kulis & Grauman, ICCV 2009]

Goal: compute hash function 

for some Gaussian random vector     .

K i d t l i th i li it f tKey issue: random vectors are also in the implicit feature 
space, to which we may only have access via the kernel.

Our result: derive appropriate hash functions of the form:
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KLSH results with 
the Flickr

scenes dataset

• Acceptance of 
arbitrary kernels 
makes hashing with 
popular Χ2 kernel 
feasible.

u
ra

cy

• ϵ parameter allows 
control on speed-
accuracy tradeoff.

slower search                 faster search

K
-N

N
 a

cc
u

KLSH results 
with the 80 
Million Tiny 

Image dataset

• KLSH searches less 
than 1% of the 
database to find a 
query’s approximate 
near neighbors.

• How accurate are the 
retrievals? For an 
average query, 90% of 
KLSH’s top 10 
retrievals will be within 
the top 50 linear scan 
neighbors
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• How to efficiently find similar images/features?

– Inverted file indexing schemes

Large-scale visual search

– Low-dimensional descriptors: can use standard 
efficient data structures for nearest neighbor search 

– High-dimensional descriptors: approximate nearest 
neighbor search methods more practical

• How to inject supervision into the search?

• How to summarize large collections?

Choosing a generic distance function ignores 
task-specific  constraints …

Learning how to compare images

Detected video shots, 
tracked objects

User feedback Problem-specific 
knowledge

Partially labeled 
image databases

Known 
correspondences
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Learning how to compare images

• Exploit (dis)similarity 
constraints to

dissimilar

constraints to 
construct more 
useful distance and
hash functions

similar

• Exploit (dis)similarity 
constraints to

Learning how to compare images

constraints to 
construct more 
useful distance and
hash functions

dissimilar

similar

[Weinberger et al. 2004, 
Hertz et al. 2004, Frome et 
al. 2007, Varma & Ray 2007, 
Kumar et al. 2007,…]
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Semi-supervised hash functions
[Jain, Kulis, & Grauman, CVPR 2008]

Less likely to split pairs like those 
with similarity constraint

More likely to split pairs like those 
with dissimilarity constraint 

h(   ) = h(   ) h(   ) ≠ h(   )

• Distance parameterized by p.d. matrix    :

Semi-supervised hash functions:
Learned Mahalanobis metrics

• Similarity measure (kernel) is associated generalized 
inner product

• An efficient method to learn the parameters: information 
theoretic metric learning [Davis et al. 2007]
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• Given learned metric with 

• We generate parameterized hash functions

Semi-supervised hash functions:
Learned Mahalanobis metrics

• We generate parameterized hash functions            
for                                    :

This satisfies the locality-sensitivity condition:

• Image data often high-dimensional, or want to 
apply metric learner in kernel space.

Semi-supervised hash functions:
Learned Mahalanobis metrics

• High-d inputs are sparse, but                     may 
be dense        how to compute             ?

• We derive an implicit update rule that 
simultaneously updates metric and hash function 
parametersparameters:

Compare input to 
constrained examples
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Results: Photo Tourism dataset

300,000 patches

• Goal: match patches 
associated with same 

[Snavely, Seitz, Szeliski, 2006]

3d object point

• More accurate matches 
→ better reconstruction

Learned metric 
improves recall

Search 100% 
of data

Search 0.8% 
f d t

Results: Photo Tourism dataset

R
ec

al
l

of data

Our technique 
maintains 
accuracy while 
searching less 
than 1% of the

Number of patches retrieved

than 1% of the 
database.
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Semantic Hashing
[Torralba, Fergus, Weiss, CVPR 2008]

Query 
Image

Address SpaceSemantic 
Hash

Function

Binary 
code

Images in database

Semantically 
similar 

images close

Query address

Slide credit: Rob Fergus

Semantic Hashing

• Each image code is a memory address

Fi d i hb b l i H i b ll

[Torralba, Fergus, Weiss, CVPR 2008]

• Find neighbors by exploring Hamming ball 
around query address

• Lookup time depends on radius of ball & 
length of code

• Explored with different semantic distances 
d l i l ith ( b tiand learning algorithms (e.g., boosting, 

RBMs)
• Learned functions outperform raw LSH functions

Slide credit: Rob Fergus
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Semantic Hashing

• Idea: Define target semantic distance to be the 
spatial pyramid distance, but where tokens are 

bj t l b lobject labels.

• Train with similarity constraints from labeled examples.

Similar 
scenes

Dissimilar 
scenes

Results: example LabelMe retrievals
query ground truth L2 on pixels L2 on Gist Learned small codes

• Neighbors under different distance metrics, 22K image db
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• How to efficiently find similar images/features?

– Inverted file indexing schemes

Large-scale visual search

– Low-dimensional descriptors: can use standard 
efficient data structures for nearest neighbor search 

– High-dimensional descriptors: approximate nearest 
neighbor search methods more practical

• How to inject supervision into the search?

• How to summarize large collections?

Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 

ll ti h lcollection as a whole.

• What is common?

• What is unusual?

• What co-occurs?• What co-occurs?

• Which exemplars 
are most 
representative?
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Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 

ll ti h lcollection as a whole.

We’ll look briefly at a few recent examples:
• Connected component clustering via hashing 

[Geometric Min-hash, Chum et al. 2009]

Vi l R k t h “i th iti ” [Ji d• Visual Rank to choose “image authorities” [Jing and 
Baluja, 2008]

• Frequent item-set mining with spatial patterns 
[Quack et al., 2007]

Connected component clustering
with hashing

1.Detect seed pairs via hash collisions
2 Hash to related images2.Hash to related images
3.Compute connected components of the graph

Slide credit: Ondrej Chum

Contrast with frequently used quadratic-time clustering algorithms
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Geometric Min-hash
[Chum, Perdoch, Matas, CVPR 2009]

• Main idea: build spatial relationships into the 
hash key construction:

EBF

hash key construction:
– Select first hash output according to min hash 

(“central word”)

– Then append subsequent hash outputs from 
within its neighborhood 

Figure from Ondrej Chum

Results: 
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

HertfordAll Soul's

Keble

Magdalen

Pitt Rivers

Radcliffe

Ashmolean

Balliol

Bodleian

Christ Church
Radcliffe 
Camera

Cornmarket

100 000 Images downloaded from FLICKR
Includes 11 Oxford Landmarks with manually labeled ground truth

Slide credit: Ondrej Chum
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Results: 
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

Slide credit: Ondrej Chum Discovering small objects

Results: 
Geometric Min-hash clustering

[Chum, Perdoch, Matas, CVPR 2009]

Slide credit: Ondrej Chum Discovering small objects
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Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 

ll ti h lcollection as a whole.

We’ll look briefly at a few recent examples:
• Connected component clustering via hashing 

[Geometric Min-hash, Chum et al. 2009]

Vi l R k t h “i th iti ” [Ji d• Visual Rank to choose “image authorities” [Jing and 
Baluja, 2008]

• Frequent item-set mining with spatial patterns 
[Quack et al., 2007]

Visual Rank: motivation

• Goal: select 
small set ofsmall set of 
“best” images 
to display 
among millions 
of candidates 

Product search Mixed-type search
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Visual Rank

• Compute relative “authority” of an image 
based on random walk principle.  

[Jing and Baluja, PAMI 2008]

p p
– Application of PageRank to visual data

• Main ideas:
– Graph weights = number of matched local features 

between two imagesg

– Exploit text search to narrow scope of each graph

– Use LSH to make similarity computations efficient

Results: Visual Rank
[Jing and Baluja, PAMI 2008]

Highest visual rank!

Original has more matches to rest Similarity graph generated from top 
1,000 text search results of “Mona-Lisa”



9/19/2012

56

Results: Visual Rank
[Jing and Baluja, PAMI 2008]

Similarity graph generated from top 1,000 text search 
results of “Lincoln Memorial”.  
Note the diversity of the high-ranked images.

Mining for common visual patterns

In addition to visual search, want to be able to 
summarize, mine, and rank the large 

ll ti h lcollection as a whole.

We’ll look briefly at a few recent examples:
• Connected component clustering via hashing 

[Geometric Min-hash, Chum et al. 2009]

Vi l R k t h “i th iti ” [Ji d• Visual Rank to choose “image authorities” [Jing and 
Baluja, 2008]

• Frequent item-set mining with spatial patterns 
[Quack et al., 2007]
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Frequent item-sets

• What configurations of local 

Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

features frequently occur in 
large collection?

• Main idea: Identify item-sets
(visual word layouts) that 
often occur in transactions
(i )(images)

• Efficient algorithms from 
data mining (e.g., Apriori
algorithm, Agrawal 1993) 
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Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Frequent item-set mining
for spatial visual patterns

[Quack, Ferrari, Leibe, Van Gool, CIVR 2006, ICCV 2007]

Two example itemset clusters
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Discovering favorite views
Discovering Favorite Views of Popular Places with Iconoid
Shift. T. Weyand and B. Leibe. ICCV 2011.

Conclusions
• Key considerations in visual search design: 

similarity, representation, scalable search 
procedures, integrating learning

• Tradeoffs in large-scale data: complexity but 
also data richness

• Allowing visual queries and automatic 
organization can transform how both visual andorganization can transform how both visual and 
non-visual data are accessed.


