Categorizing objects:
global and part-based models
of appearance

Kristen Grauman
UT-Austin

LN

9/21/2012



Challenges: robustness

Realistic scenes are crowded, cluttered,
have overlapping objects.

Generic category recognition:
basic framework

* Build/train object model
— Choose a representation

— Learn or fit parameters of model / classifier
* Generate candidates in new image

» Score the candidates

9/21/2012
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Generic category recognition:
representation choice

Window-based Part-based

Window-based models
Building an object model

Simple holistic descriptions of image content
> grayscale / color histogram

> vector of pixel intensities

Kristen Grauman




Window-based models
Building an object model

* Pixel-based representations sensitive to small shifts

- |

H
1

e Color or grayscale-based appearance description can be
sensitive to illumination and intra-class appearance
variation

Kristen Grauman

Window-based models
Building an object model

e Consider edges, contours, and (oriented) intensity
gradients

Kristen Grauman
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Window-based models
Building an object model

e Consider edges, contours, and (oriented) intensity
gradients

» Contrast-normalization: try to correct for variable illumination

Kristen Grauman

e Summarize local distribution of gradients with histogram
» Locally orderless: offers invariance to small shifts and rotations

Window-based models
Building an object model

Given the representation, train a binary classifier

Car/non-car
Classifier

!

NoYem)tcalcar.

Kristen Grauman
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Discriminative classifier construction

Nearest neighbor Neural netw_o_rks
9 . ; ”W”wwq%ﬁ:~--u
A ez | AREEN
| [212] 7 - ST | e
10° examples
Shakhnarovich, Viola, Darrell 2003 LeCun, Bottou, Bengio, Haffner 1998
Berg, Berg, Malik 2005... Rowley, Baluja, Kanade 1998
Support Vector Machines Boosting Conditional Random Fields
@) O O . _.L...... ?_?
'._'.!‘.'.; ® ©
GU_VOTL Vapnik . Viola, Jones 2001, McCallum, Freitag, Pereira
Heisele, Serre, Poggio, Torralba et al. 2004, 2000; Kumar, Hebert 2003
2001, ... Opelt et al. 2006, ...

Kristen Grauman Slide adapted from Antonio Torralba

Generic category recognition:
basic framework

+ Build/train object model
— Choose a representation

— Learn or fit parameters of model / classifier
» Generate candidates in new image

» Score the candidates

9/21/2012



Window-based models
Generating and scoring candidates

Kristen Grauman

_>E — Car/no_n_—car
k al'f Classifier

Window-based object detection: recap

Training:

1. Obtain training data
2. Define features

3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Kristen Grauman

Training examples

\
©)
—»| Car/non-car
Classifier
Feature
\ extraction |
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Issues

 What classifier?

— Factors in choosing:
» Generative or discriminative model?
 Data resources — how much training data?
» How is the labeled data prepared?
* Training time allowance
» Test time requirements — real-time?
* Fit with the representation

Kristen Grauman

Issues

What classifier?

What features or representations?
How to make it affordable?

What categories are amenable?

Kristen Grauman
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Issues

» What categories are amenable?

— Similar to specific object matching, we expect
spatial layout to be fairly rigidly preserved.

— Unlike specific object matching, by training
classifiers we attempt to capture intra-class variation
or determine required discriminative features.

Kristen Grauman

What categories are amenable to
window-based reps?

S

tall building™

. forest”
Kristen Grauman
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Window-based models:
Three case studies

Boosting + face NN + scene Gist
detection classification detection
Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs

Viola-Jones face detector

Main idea:

— Represent local texture with efficiently computable
‘rectangular” features within window of interest

— Select discriminative features to be weak classifiers
— Use boosted combination of them as final classifier

— Form a cascade of such classifiers, rejecting clear
negatives quickly

Kristen Grauman

9/21/2012
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Boosting intuition

Weak .
Classifier 1 \ . ‘

Slide credit: Paul Viola

Boosting illustration

Weights
Increased .

9/21/2012
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Boosting illustration

Weak _—
Classifier 2
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Boosting illustration

Weights

Increased \

9/21/2012
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Boosting illustration

Weak
Classifier 3

Boosting illustration

Final classifier is
a combination of weak
classifiers

13



Boosting: training

Initially, weight each training example equally
In each boosting round:

— Find the weak learner that achieves the lowest weighted training error

— Raise weights of training examples misclassified by current weak learner
Compute final classifier as linear combination of all weak
learners (weight of each learner is directly proportional to
its accuracy)

Exact formulas for re-weighting and combining weak
learners depend on the particular boosting scheme (e.g.,
AdaBoost)

Slide credit: Lana Lazebnik

Boosting: pros and cons

» Advantages of boosting
* Integrates classification with feature selection

» Complexity of training is linear in the number of training
examples

+ Flexibility in the choice of weak learners, boosting scheme
» Testing is fast
+ Easy to implement

» Disadvantages
* Needs many training examples

» Often found not to work as well as an alternative
discriminative classifier, support vector machine (SVM)
— especially for many-class problems

Slide credit: Lana Lazebnik

9/21/2012
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Viola-Jones detector: features

u m | p— |l]| “‘Rectangular” filters

Efficiently computable
with integral image: any
sum can be computed in
constant time.

Kristen Grauman

Feature output is difference between

adjacent regions

Value at (x,y) is

~ sum of pixels
above and to the
left of (X,y)

1x.y)

Integral image

Computing the integral image

Lana Lazebnik

9/21/2012
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Computing the integral image

i(x, y-1)
S(X-l, y) N

i(x,y)

Cumulative row sum: s(x, y) = s(x=1, y) +i(x, y)
Integral image: ii(x, y) = ii(x, y=1) + s(X, y)

Lana Lazebnik

Computing sum within a rectangle

* Let A,B,C,D be the
values of the integral
image at the corners of a
rectangle

* Then the sum of original
image values within the
rectangle can be C
computed as:

sum=A-B-C+D

+ Only 3 additions are
required for any size of
rectangle!

D B

IIIIIIIIIIIAA

Lana Lazebnik

9/21/2012
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Viola-Jones detector: features

| [ 1] | “‘Rectangular” filters

IHEEI

I,

Efficiently computable
with integral image: any
sum can be computed in

constant time

Avoid scaling images -
scale features directly

for same cost

Kristen Grauman

Feature output is difference between
adjacent regions

~ sum of pixels

Tx

Integral image

Value at (x,y) is

above and to the
left of (x,y)

¥)

Viola-Jones detector: features

Considering all
possible filter

parameters: position,

scale, and type:

180,000+ possible
features associated

=N L -
e L} I
IIEi um

with each 24 x 24
window

Which subset of these features should we
use to determine if a window has a face?

Use AdaBoost both to select the informative

Kristen Gr:

features and to form the classifier

9/21/2012
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Viola-Jones detector: AdaBoost

e \Want to select the single rectangle feature and threshold
that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

t Resulting weak classifier:

| | o looe o0oe o h%:}{ﬂ if £(x)> 6,

-1 otherwise

For next round, reweight the
examples according to errors,

Outputs of a possible choose another filter/threshold
rectangle feature on combo

faces and non-faces.

[ r(X)H

Kristen Grauman

Viola-Jones Face Detector: Results

= .] First two features

selected
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» Even if the filters are fast to compute, each new

image has a |

* How to make

ot of possible windows to search.

the detection more efficient?

Cascading classifiers for detection

All sub-windows,
multiple scales

More features,

Stage 1
classifier

lower false positive rates

Detection at a
sub-window

Stage 2
classifier

Stage 3
classifier

lNon—face lNon-face lNon-face

Rejected sub-windows

* Form a cascade with low false negative rates early on

* Apply less accurate but faster classifiers first to immediately

discard windows

Kristen Grauman

that clearly appear to be negative

9/21/2012
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Viola-Jones detector: summary

4 -
Train cascade of - ﬁ
classifiers with a
AdaBoost — 5
]
New image
= o =" =
e T
=y, =
Selected features,
Non-faces thresholds, and weights
Train with 5K positives, 350M negatives
Real-time detector using 38 layer cascade
6061 features in all layers
[Implementation available in OpenCV:
http://www.intel.com/technology/computing/opencv/] Kristen Grauman

Viola-Jones detector: summary

* A seminal approach to real-time object detection
* Training is slow, but detection is very fast
* Key ideas

> Integral images for fast feature evaluation

> Boosting for feature selection

> Attentional cascade of classifiers for fast rejection of non-
face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
CVPR 2001.

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004.

9/21/2012
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Viola-Jones Face Detector: Results

Visual Object Recognition Tutorial

Visual Object Recognition Tutorial

21
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Viola-Jones Face Detector: Results

Visual Object Recognition Tutorial

Detecting profile faces?

Can we use the same detector?
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Viola-Jones Face Detector: Results
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Example using Viola-Jones detector

838296

Frontal faces detected and then tracked, character
names inferred with alignment of script and subtitles.

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html
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Where Technology Means Business
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Mews = Internet

Google now erases faces, license plates on Map Street
View

By Elinor Wils, C
Friday, August

2007 01:37 PM

Google has gotten a lot of flack from privacy advocates for photographing faces and

license plate numbers and displaying them on the Street View in Google Maps. Originally,

the company said only people who identified themselves could ask the company to
remove their image.

But Google has quietly changed that pelicy, partly in response ta criticism, and now anyone
can alertthe company and have an image of a license plate or a recognizable face
removed, not just the owner of the face or car, says Marissa Mayer, vice president of search
products and user experience at Google

It's a good policy for users and also clarifies the intent of the product” she said in an
interview following her keynote atthe Search Engine Strategies conference in San Jose
Calif, Wednesday.

The policy change was made about 10 days after the launch of the product in Iate May, but
was not publicly announced, according te Mayer. The company is removing images only
when someone notifies them and not preactively, she said. "It was definitely a big policy
change inside
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Search ZDNet Asia
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= Is eBay facing seller revolt?
= Report: Amazon may again be mulling Netflix bu
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http://www.apple.com/ilife/iphoto/

Slide credit: Lana Lazebnilf
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Consumer application: iPhoto

Things iPhoto thinks are faces

Slide credit: Lana Lazebnilf

Consumer application: iPhoto

Can be trained to recognize pets!

(1
I

il

bi
i

{1
i

http://www.maclife.com/article/news/iphotos faces recoqgnizes cats

Slide credit: Lana Lazebnik
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Window-based models:
Three case studies

sm B¢

Boosting + face NN + scene Gist SVM + person
detection classification detection
Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs

Nearest Neighbor classification

» Assign label of nearest training data point to each
test data point

Black = negative
Red = positive

Novel test example

Closest to a
positive example
from the training
set, so classify it
as positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data

9/21/2012
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K-Nearest Neighbors classification

+ For a new point, find the k closest points from training data

+ Labels of the k points “vote” to classify

4 L k=5
Black = negative e e . .. ** Ifquery lands here, the 5
Red = positive I

.+ * NN consist of 3 negatives
1, ' . and 2 positives, so we
st * «°  classify it as negative.

Source: D. Lowe

A nearest neighbor
recognition example

9/21/2012
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Where in the quld?

<K

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image.

CVPR 2008.]

Where in the World?

9/21/2012
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Where in the World?

6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users

9/21/2012
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6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users

Which scene properties are relevant?

9/21/2012
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Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be
represented by global (statistical) descriptors

Slide Credit: Aude Olivia

Global texture:
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial
information

Steerable
pyramid

W = {energy at each orientation and
scale} = 6 x 4 dimensions

7 80 feafures

I

— | V[~ PCA— ¢
G
Gist
descriptor

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

9/21/2012
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Which scene properties are relevant?

Gist scene descriptor

Color Histograms - L*A*B* 4x14x14 histograms

Texton Histograms — 512 entry, filter bank based

Line Features — Histograms of straight line stats

Scene Matches

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

9/21/2012
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[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

9/21/2012
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B=Geographic Information from a Single Image. CVP

[Hays and Efros. im2g

Scene Matches

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

9/21/2012
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[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

Quantitative Evaluation Test Set

9/21/2012
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The Importance of Data

16+
= First Nearest Neighbor Scene Match
47 mmm Chance- Random Scenes
12 .

10

Percentage of Geolocations within 200km

8
6
4
2
0

| | | | | | |
.09 0.38 1.54 6.16 246 98.5 394 1,576 6,304
Database size (thousands of images, log scale)

[Hays and Efros. im2gps: Estimating Geographic Information from a Single Image. CVPR 2008.]

Nearest neighbors: pros and cons

* Pros:

— Simple to implement

— Flexible to feature / distance choices

— Naturally handles multi-class cases

— Can do well in practice with enough representative data
+ Cons:

— Large search problem to find nearest neighbors

— Storage of data

— Must know we have a meaningful distance function

Kristen Grauman

9/21/2012
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Window-based models:
Three case studies

h e

Boosting + face NN + scene Gist SVM + person
detection classification detection
Viola & Jones e.g., Hays & Efros e.g., Dalal & Triggs

Linear classifiers

9/21/2012
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Linear classifiers

» Find linear function to separate positive and
negative examples

® X, positive: X, w+b2>0

X, negative: X,-w+b<0

Which line
is best?

Support Vector Machines (SVMs)

* Discriminative
classifier based on
optimal separating
line (for 2d case)

« Maximize the margin
between the positive
and negative training
examples

9/21/2012
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Support vector machines

+  Want line that maximizes the margin.

% o Y. e X, positive (y, =1):  x,-w+b>1
X, negative(y, =-1): x,-w+b=<-1

® For support, vectors, X, -W+b =21

Support vectors Margin

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining
and Knowledge Discovery, 1998

Support vector machines

+ Want line that maximizes the margin.

X, positive (y, =1): X, W+b21
X, negative(y, =-1): x,-w+b<-1

For support, vectors, X, - W+b==1

e Distance between point | X, W+D|
and line: || w|

For support vectors:
wix+b *1

Margin M HWH _M

1 -1
[l Iwl

2
Wl

Support vectors

9/21/2012
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Support vector machines

+  Want line that maximizes the margin.

X, positive (y, =1): X, wW+b2>1
X, negative(y, =-1): x,-w+b=<-1

For support, vectors, X, -W+b =21

Distance between point |X, - W+D|
and line: || w|

Therefore, the marginis 2 / ||w||

Finding the maximum margin line

1. Maximize margin 2/||w||
2. Correctly classify all training data points:

X; positive (y, =1): X, W+b2=>1

X, negative(y, =—-1): X, -w+b<-1

Quadratic optimization problem:

1
Minimize EWTW

Subjectto y(w-x+b)>1

40



Finding the maximum margin line

- Solution: wW=) a,yx,

/

learned Support
weight vector

Finding the maximum margin line

» Solution: W=Zl_a,.y,.xi
b=y,—w-x, (forany supportvector)
W-X+b= Zi o, yX X +b

» Classification function:
. If f(x) < O, classify
f(x) =S1gn (W "X+ b) as negative,

. if f(x) > 0, classify
= sign E X X+ b) as positive

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery,

9/21/2012
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Histograms of Oriented Gradients for Human Detection

Navneet Dalal and Bill Triggs
INRIA Rhone-Alps, 655 avenue de 1I'Europe, Montbonnot 38334, France
{Navneet.Dalal. Bill Triggs } @inrialpes.fr, http:/lear.inrialpes.fr

Abstract

We study the question of feature sets for robust visual ob-
Ject recognition, adopring linear SVM based human detec-
tion as a test case. After reviewing existing edge and gra-
dient based descriprors, we show experimentally that grids
of Histegrams of Oriented Gradient (HOG) descriptors sig-
nificantly outperform existing feature sets for human detec-
tion. We study the influence of each stage of the computation
on performance, concluding thar fine-scale gradients, fine
orientation binning, relatively coarse spmia? binning, and
high-quality local contrast normalization in overlapping de-
scriptor blocks are all important for good results. The new
approach gives near-perfect separation on the original MIT
pedestrian database, so we introduce a more challenging
dataset containing over 1800 annotated human images with
a large range of pose variations and back grounds.

1 Introduction

‘We briefly discuss previous work on human detection in
2, give an overview of our method §3, describe our data
sets in §4 and give a detailed description and experimental
evaluation of each stage of the process in §5-6. The main
conclusions are summarized in §7.

2 Previous Work

There is an exiensive lilerature on object detection, but
here we mention just a few relevant papers on human deftec-
tion [18,17,22,16,20]. See [6] for a survey. Papageorgiou er
al [18] describe a pedestrian detector based on a polynomial
SVM using rectified Haar wavelets as input descriptors, with
a parts (subwindow) based variant in [17]. Depoortere et al
give an optimized version of this [2]. Gavrila & Philomen
[8] take a more direct approach, extracting edge images and
matching them to a set of learned exemplars using chamfer
distance. This has been used in a practical real-time pedes-
trian detection system [7]. Viola er i [22] build an efficient

Person detection
with HoG’s & linear SVM’s

*Map each grid cell in the
input window to a histogram
counting the gradients per
orientation.

* Train a linear SVM using
training set of pedestrian vs.

non-pedestrian windows.

Dalal & Triggs, CVPR
2005

Code available:

http://pascal.inrialpes.fr/soft/olt/

9/21/2012
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HoG descriptor

Orientation Voting

—— Overlapping Blocks

Input Image Gradient Image

-

e L
—_—
. . .

R T

Dalal & Triggs, CVPR 2005 Code available: http://pascal.inrialpes.fr/soft/olt/

Person detection
with HoGs & linear SVMs

» Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs,
International Conference on Computer Vision & Pattern Recognition - June 2005

« hito/llearinrialpes fr/oubs/2005/DTO5/

9/21/2012
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Questions

 What if the data is not linearly separable?

* What if we have more than just two
categories?

Non-linear SVMs

Datasets that are linearly separable with some noise

work out great:
0 X

But what are we going to do if the dataset is just too hard?

0 X
How about... mapping data to a higher-dimensional

space:

44



Non-linear SVMs: feature spaces

General idea: the original input space can be mapped to
some higher-dimensional feature space where the
training set is separable:

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

The “Kernel Trick”

The linear classifier relies on dot product between
vectors K(x;,X;)=x;"x;

If every data point is mapped into high-dimensional
space via some transformation ®: x — @(x), the dot
product becomes:

K(X;, %)= @(x;) T(P(Xj)

A kernel function is similarity function that
corresponds to an inner product in some expanded
feature space.

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

9/21/2012
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Example

2-dimensional vectors x=[x; x,];
let K(x;,%,)=(1 + x;Tx;)?
Need to show that K(x;,x;)= ¢(x;) 'o(x;):

K(Xian):(l T XiTXj)z,

=1+ xilzlez +2 XX XipXjp T xizzszz T 2xi1xj1 T 2xi2xj2

= [1 x;2 2 x5 x,,7 V2x,; V2]

[0 257 N2 x5 %57 V225, N2
= 0(x;) To(xy),
where ¢(x) = [1 x> V2x,x, x> V2x, V2x,]

Nonlinear SVMs

» The kernel trick: instead of explicitly computing
the lifting transformation ¢(x), define a kernel
function K such that

K(x;, Xj) =o(x;)" (o(xj)

» This gives a nonlinear decision boundary in the
original feature space:

Y a,yK(X,,X) +b

9/21/2012
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Examples of kernel functions

Linear:

Gaussian RBF: K(x,,x,) = exp(-

Histogram intersection:

T
K(x,x;)=xx,

2
x|

207 )

K(x,,x,) = Y min(x, (K),x, (k)

SVMs for recognition

. Define your representation for each
example.

. Select a kernel function.

. Compute pairwise kernel values
between labeled examples

. Use this “kernel matrix” to solve for
SVM support vectors & weights.

. To classify a new example: compute
kernel values between new input
and support vectors, apply weights,
check sign of output.

NON-FACES

FACES

" |

w

L |

=
L]

B |
Tl

Kristen Grauman
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Questions

 What if the data is not linearly separable?

* What if we have more than just two
categories?

Multi-class SVMs

» Achieve multi-class classifier by combining a number of
binary classifiers

* Onevs. all

— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign
to it the class of the SVM that returns the highest
decision value

« Onevs. one

— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to
assign to the test example

Kristen Grauman

9/21/2012

48



SVMs: Pros and cons

* Pros
» Kernel-based framework is very powerful, flexible
+ Often a sparse set of support vectors — compact at test time

» Work very well in practice, even with very small training
sample sizes

« Cons
* No “direct” multi-class SVM, must combine two-class SVMs
» Can be tricky to select best kernel function for a problem

+ Computation, memory
— During training time, must compute matrix of kernel values for
every pair of examples
— Learning can take a very long time for large-scale problems

Adapted from | ana | azehnik

Scoring a sliding window detector

If prediction and ground truth are bounding boxes,
when do we have a correct detection?

Kristen Grauman

9/21/2012
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Scoring a sliding window detector

area(By, N Bgt)
area(B, U Bgt)

o =

a, > 0.5 = correct

We’'ll say the detection is correct (a “true positive”) if
the intersection of the bounding boxes, divided by
their union, is > 50%.

Kristen Grauman

True Positive Rate

Scoring an object detector

If the detector can produce a

/ /'*“ﬁ confidence score on the
v / | detections, then we can plot
et 1 the rate of true vs. false
0.2 | positives as a threshold on the
02 | confidence is varied.
Algorithm 1
Rlgorithm 2 -

o2 oa os o: 1 TPR= fraction of positive examples
False Positive Rate
that are correctly labeled.

FPR=fraction of negative examples
that are misclassified as positive.

Kristen Grauman

9/21/2012
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Visual Object Recognition Tutorial
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Window-based detection: strengths

= Sliding window detection and global appearance
descriptors:
» Simple detection protocol to implement
» Good feature choices critical
» Past successes for certain classes

Kristen Grauman

Window-based detection: Limitations

* High computational complexity

» For example: 250,000 locations x 30 orientations x 4 scales =
30,000,000 evaluations!

> If training binary detectors independently, means cost increases
linearly with number of classes

= With so many windows, false positive rate better be low

Kristen Grauman
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Limitations (continued)

* Not all objects are “box’ shaped

Visual Object Recognition Tutorial

Kristen Grauman

Limitations (continued)

= Non-rigid, deformable objects not captured well with
representations assuming a fixed 2d structure; or must
assume fixed viewpoint

* Objects with less-regular textures not captured well
with holistic appearance-based descriptions

E

Visual Object Recognition Tutorial

Kristen Grauman
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Limitations (continued)

e If considering windows in isolation, context is lost
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Figure credit: Derek Hoiem Kristen Grauman

Limitations (continued)

* |n practice, often entails large, cropped training set
(expensive)

e Requiring good match to a global appearance description
can lead to sensitivity to partial occlusions

Visual Object Recognition Tutorial

Image credit: Adam, Rivlin, & Shimshoni Kristen Grauman
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Summary

» Basic pipeline for window-based detection

— Model/representation/classifier choice
— Sliding window and classifier scoring

» Discriminative classifiers for window-based
representations

— Boosting
» Viola-Jones face detector example

— Nearest neighbors
+ Scene recognition example

— Support vector machines
» HOG person detection example

* Pros and cons of window-based detection

9/21/2012
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