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Categorizing objects:
global and part based modelsglobal and part-based models 

of appearance
Kristen Grauman

UT‐Austin

Generic categorization problem
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Challenges: robustness

Realistic scenes are crowded, cluttered, 
have overlapping objects.

Generic category recognition:
basic framework

• Build/train object modelBuild/train object model

– Choose a representation

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates
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Generic category recognition:
representation choice

Window‐based Part‐based

Window-based models
Building an object model

Simple holistic descriptions of image content

 grayscale / color histogram

 vector of pixel intensities

Kristen Grauman
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Window-based models
Building an object model

• Pixel-based representations sensitive to small shifts

• Color or grayscale-based appearance description can be 
sensitive to illumination and intra-class appearance 
variation

Kristen Grauman

Window-based models
Building an object model

• Consider edges, contours, and (oriented) intensity 
gradients

Kristen Grauman
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Window-based models
Building an object model

• Consider edges, contours, and (oriented) intensity 
gradients

• Summarize local distribution of gradients with histogram
 Locally orderless: offers invariance to small shifts and rotations
 Contrast-normalization: try to correct for variable illumination

Kristen Grauman

Window-based models
Building an object model

Given the representation, train a binary classifier

Car/non-car 
Classifier

Yes, car.No, not a car.

Kristen Grauman
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Discriminative classifier construction

Nearest neighbor Neural networks

106 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random FieldsBoosting

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 
2001,…

Slide adapted from Antonio Torralba

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…

Kristen Grauman

Generic category recognition:
basic framework

• Build/train object modelBuild/train object model

– Choose a representation

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates
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Window-based models
Generating and scoring candidates

Car/non-car 
Classifier

Kristen Grauman

Window-based object detection: recap

Training:
1. Obtain training data
2. Define features
3 Define classifier

Training examples

3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Car/non-car 
Classifier

Feature 
extraction

Kristen Grauman
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Issues

• What classifier?
– Factors in choosing:

• Generative or discriminative model?

• Data resources – how much training data?  

• How is the labeled data prepared?

• Training time allowance

T t ti i t l ti ?• Test time requirements – real-time?

• Fit with the representation

Kristen Grauman

Issues

• What classifier?

• What features or representations?

• How to make it affordable?

• What categories are amenable?

Kristen Grauman
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Issues

• What categories are amenable?

– Similar to specific object matching, we expect 
spatial layout to be fairly rigidly preserved.

– Unlike specific object matching, by training 
classifiers we attempt to capture intra-class variation 
or determine required discriminative features.

Kristen Grauman

What categories are amenable to 
window-based reps?

Kristen Grauman



9/21/2012

10

Window-based models:
Three case studies

SVM + person 
detection

Boosting + face 
detection

NN + scene Gist 
classification

e.g., Dalal & TriggsViola & Jones e.g., Hays & Efros

Main idea:

Viola-Jones face detector

– Represent local texture with efficiently computable 
“rectangular” features within window of interest

– Select discriminative features to be weak classifiers

– Use boosted combination of them as final classifier

F d f h l ifi j ti l– Form a cascade of such classifiers, rejecting clear 
negatives quickly

Kristen Grauman
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Boosting  intuition

Weak 
Classifier 1

Slide credit: Paul Viola

Boosting  illustration

Weights
Increased
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Boosting  illustration

Weak 
Classifier 2

Boosting  illustration

Weights
Increased
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Boosting  illustration

Weak 
Classifier 3

Boosting  illustration

Final classifier is 
a combination of weak 
classifiers
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Boosting: training

• Initially, weight each training example equally

• In each boosting round:• In each boosting round:
– Find the weak learner that achieves the lowest weighted training error

– Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak 

learners (weight of each learner is directly proportional to 

its accuracy)y)

• Exact formulas for re-weighting and combining weak 

learners depend on the particular boosting scheme (e.g., 

AdaBoost)
Slide credit: Lana Lazebnik

Boosting: pros and cons

• Advantages of boosting
• Integrates classification with feature selection

• Complexity of training is linear in the number of training 
examplesexamples

• Flexibility in the choice of weak learners, boosting scheme

• Testing is fast

• Easy to implement

• Disadvantages
Needs man training e amples• Needs many training examples

• Often found not to work as well as an alternative 
discriminative classifier, support vector machine (SVM)

– especially for many-class problems

Slide credit: Lana Lazebnik
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Viola-Jones detector: features

Feature output is difference between 
“Rectangular” filters

p
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

p
constant time.

Integral image

Kristen Grauman

Computing the integral image

Lana Lazebnik
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Computing the integral image

ii(x, y-1)

s(x-1, y)

i(x, y)

Cumulative row sum: s(x, y) = s(x–1, y) + i(x, y) 

Integral image: ii(x, y) = ii(x, y−1) + s(x, y)

Lana Lazebnik

Computing sum within a rectangle

• Let A,B,C,D be the 
values of the integral 
image at the corners of a 

t l D Brectangle
• Then the sum of original 

image values within the 
rectangle can be 
computed as:

sum = A – B – C + D

D B

C A

• Only 3 additions are 
required for any size of 
rectangle!

Lana Lazebnik
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Viola-Jones detector: features

Feature output is difference between 
“Rectangular” filters

p
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

p
constant time

Avoid scaling images 
scale features directly 
for same cost

Integral image

Kristen Grauman

Considering all 
possible filter 

Viola-Jones detector: features

parameters: position, 
scale, and type: 

180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we 
use to determine if a window has a face?

Use AdaBoost both to select the informative 
features and to form the classifierKristen Grauman



9/21/2012

18

Viola-Jones detector: AdaBoost
• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Resulting weak classifier:

Outputs of a possible 
rectangle feature on 
faces and non-faces.

… For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo.

Kristen Grauman
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• Even if the filters are fast to compute, each new 
image has a lot of possible windows to searchimage has a lot of possible windows to search.

• How to make the detection more efficient?

Cascading classifiers for detection

• Form a cascade with low false negative rates early on

• Apply less accurate but faster classifiers first to immediately 
discard windows that clearly appear to be negative

Kristen Grauman
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Viola-Jones detector: summary

Train cascade of 
classifiers with 

Ad B t

Faces

Non-faces

AdaBoost

Selected features, 
thresholds, and weights

New image

Train with 5K positives, 350M negatives
Real‐time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: 
http://www.intel.com/technology/computing/opencv/] Kristen Grauman

Viola-Jones detector: summary

• A seminal approach to real-time object detection 

• Training is slow but detection is very fast• Training is slow, but detection is very fast

• Key ideas

 Integral images for fast feature evaluation

 Boosting for feature selection

 Attentional cascade of classifiers for fast rejection of non-
face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
CVPR 2001. 

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 
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Detecting profile faces?

Can we use the same detector?
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Paul Viola, ICCV tutorial

Example using Viola‐Jones detector

Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Frontal faces detected and then tracked,  character 
names inferred with alignment of script and subtitles.
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Consumer application: iPhoto

http://www.apple.com/ilife/iphoto/

Slide credit: Lana Lazebnik
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Consumer application: iPhoto

Things iPhoto thinks are faces

Slide credit: Lana Lazebnik

Consumer application: iPhoto

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Slide credit: Lana Lazebnik
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Window-based models:
Three case studies

SVM + person 
detection

Boosting + face 
detection

NN + scene Gist 
classification

e.g., Dalal & TriggsViola & Jones e.g., Hays & Efros

Nearest Neighbor classification

• Assign label of nearest training data point to each 
test data point 

Black = negative
Red = positive

Novel test example

Closest to a 
positive example 
from the training 

t l if it

Voronoi partitioning of feature space 
for 2-category 2D data

from Duda et al.

set, so classify it 
as positive.
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K-Nearest Neighbors classification

• For a new point, find the k closest points from training data

• Labels of the k points “vote” to classify

k = 5

If query lands here, the 5 
NN consist of 3 negatives 
and 2 positives, so we 
classify it as negative.

Black = negative
Red = positive

Source: D. Lowe

A nearest neighbor
recognition example



9/21/2012

28

Where in the World?

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. 
CVPR 2008.]

Where in the World?
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Where in the World?

6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users
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6+ million geotagged photos
by 109,788 photographers

Annotated by Flickr users

Which scene properties are relevant?
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Spatial Envelope Theory of Scene Representation
Oliva & Torralba (2001)

A scene is a single surface that can be
represented by global (statistical) descriptors

Slide Credit: Aude Olivia

Global texture: 
capturing the “Gist” of the scene

Capture global image properties while keeping some spatial 
i f tiinformation

Oliva & Torralba IJCV 2001, Torralba et al. CVPR 2003

Gist 
descriptor
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Which scene properties are relevant?

• Gist scene descriptor

• Color Histograms  ‐ L*A*B* 4x14x14 histograms

• Texton Histograms – 512 entry, filter bank based

• Line Features – Histograms of straight line stats

Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]
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Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]
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[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]

Scene Matches

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]
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[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]

Quantitative Evaluation Test Set

…
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The Importance of Data

[Hays and Efros. im2gps: Estimating  Geographic Information from a Single Image. CVPR 2008.]

Nearest neighbors: pros and cons

• Pros: 

Si l t i l t– Simple to implement

– Flexible to feature / distance choices

– Naturally handles multi-class cases

– Can do well in practice with enough representative data

• Cons:

– Large search problem to find nearest neighbors

– Storage of data

– Must know we have a meaningful distance function

Kristen Grauman
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Window-based models:
Three case studies

SVM + person 
detection

Boosting + face 
detection

NN + scene Gist 
classification

e.g., Dalal & TriggsViola & Jones e.g., Hays & Efros

Linear classifiers
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Linear classifiers

• Find linear function to separate positive and 
negative examples

0:negative

0:positive




b

b

ii

ii

wxx

wxx

Which line
is best?

Support Vector Machines (SVMs)

• DiscriminativeDiscriminative 
classifier based on 
optimal separating 
line (for 2d case)

• Maximize the marginMaximize the margin
between the positive 
and negative training 
examples
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Support vector machines
• Want line that maximizes the margin.

1:1)(positive  by wxx

1:1)(negative

1:1)(positive




by

by

iii

iii

wxx

wxx

For support, vectors, 1 bi wx

MarginSupport vectors

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining 
and Knowledge Discovery, 1998 

Support vector machines
• Want line that maximizes the margin.

1:1)(positive  by wxx

1:1)(negative

1:1)(positive




by

by

iii

iii

wxx

wxx

For support, vectors, 1 bi wx

Distance between point 
and line: ||||

||

w

wx bi 

Margin MSupport vectors

||||

www

211



M

ww

xw 1


 bΤ

For support vectors:
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Support vector machines
• Want line that maximizes the margin.

1:1)(positive  by wxx

1:1)(negative

1:1)(positive




by

by

iii

iii

wxx

wxx

For support, vectors, 1 bi wx

Distance between point 
and line: ||||

||

w

wx bi 

Support vectors

||||

Therefore, the margin is  2 / ||w||

Margin M

Finding the maximum margin line

1. Maximize margin 2/||w||

2. Correctly classify all training data points:

1:1)(positive  by wxx

Quadratic optimization problem:

Minimize wwT1

1:1)(negative

1:1)( positive




by

by

iii

iii

wxx

wxx

Minimize

Subject to  yi(w·xi+b) ≥ 1

ww
2



9/21/2012

41

Finding the maximum margin line

• Solution:  i iii y xw 

Support 
vector

learned
weight

Finding the maximum margin line

• Solution:

b = yi – w·xi (for any support vector)
 i iii y xw 

byb   xxxw 
• Classification function:

byb
i iii   xxxw 

 b

xf

i 



 xx

xw

i isign         

b)(sign   )(



If f(x) < 0, classify 
as negative, 
if f(x) > 0, classify 
as positive

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition,  Data Mining and Knowledge Discovery, 1
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• Map each grid cell in the

Person detection
with HoG’s & linear SVM’s

• Map each grid cell in the 
input window to a histogram 
counting the gradients per 
orientation.

• Train a linear SVM using 
training set of pedestrian vs

Dalal & Triggs, CVPR 
2005

training set of pedestrian vs. 
non-pedestrian windows.

Code available: 
http://pascal.inrialpes.fr/soft/olt/
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HoG descriptor

Code available:  http://pascal.inrialpes.fr/soft/olt/Dalal & Triggs, CVPR 2005 

Person detection
with HoGs & linear SVMs

• Histograms of Oriented Gradients for Human Detection, Navneet Dalal, Bill Triggs, 
International Conference on Computer Vision & Pattern Recognition - June 2005 

• http://lear.inrialpes.fr/pubs/2005/DT05/
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Questions

• What if the data is not linearly separable?

• What if we have more than just two 
categories?

Non‐linear SVMs

 Datasets that are linearly separable with some noise 
work out great:

x

 But what are we going to do if the dataset is just too hard? 

 How about… mapping data to a higher-dimensional 
space:

0 x

0 x

x2

0 x
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Non‐linear SVMs: feature spaces

 General idea: the original input space can be mapped to 
some higher-dimensional feature space where the 
training set is separable:

Φ:  x→ φ(x)

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

The “Kernel Trick”
 The linear classifier relies on dot product between 

vectors K(xi,xj)=xi
Txj

 If every data point is mapped into high-dimensional 
space via some transformation Φ:  x→ φ(x), the dot 
product becomes:

K(xi,xj)= φ(xi) Tφ(xj)

 A kernel function is similarity function that 
corresponds to an inner product in some expanded 
feature space.

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html
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Example

2-dimensional vectors x=[x1   x2]; 

let K(xi,xj)=(1 + xi
Txj)2

i j i j

Need to show that K(xi,xj)= φ(xi) Tφ(xj):

K(xi,xj)=(1 + xi
Txj)2

,

= 1+ xi1
2xj1

2 + 2 xi1xj1 xi2xj2+ xi2
2xj2

2 + 2xi1xj1 + 2xi2xj2

= [1 x 2  √2 x x x 2  √2x √2x ]T = [1  xi1 √2 xi1xi2  xi2 √2xi1  √2xi2]

[1  xj1
2  √2 xj1xj2  xj2

2  √2xj1  √2xj2] 

= φ(xi) Tφ(xj),   

where φ(x) = [1  x1
2  √2 x1x2  x2

2   √2x1  √2x2]

Nonlinear SVMs

• The kernel trick: instead of explicitly computing 
the lifting transformation φ(x), define a kernel 
function K such that

K(xi,xjj) = φ(xi ) · φ(xj)

• This gives a nonlinear decision boundary in the 
original feature space:

bKy
i

iii  ),( xx
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Examples of kernel functions

 Linear:

2

j
T

iji xxxxK ),(

 Gaussian RBF:

 Histogram intersection:

)
2

exp()(
2

2


ji

ji

xx
,xxK




g


k

jiji kxkxxxK ))(),(min(),(

SVMs for recognition
1. Define your representation for each 

example.

2 Select a kernel function2. Select a kernel function.

3. Compute pairwise kernel values 
between labeled examples

4. Use this “kernel matrix” to solve for 
SVM support vectors & weights.

5 To classify a new example: compute5. To classify a new example: compute 
kernel values between new input 
and support vectors, apply weights, 
check sign of output.

Kristen Grauman
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Questions

• What if the data is not linearly separable?

• What if we have more than just two 
categories?

Multi-class SVMs
• Achieve multi-class classifier by combining a number of 

binary classifiers

• One vs. all

– Training: learn an SVM for each class vs. the rest

– Testing: apply each SVM to test example and assign 
to it the class of the SVM that returns the highest 
decision value

• One vs. one

– Training: learn an SVM for each pair of classes

– Testing: each learned SVM “votes” for a class to 
assign to the test example

Kristen Grauman
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SVMs: Pros and cons

• Pros
• Kernel-based framework is very powerful, flexible

• Often a sparse set of support vectors – compact at test time

W k ll i ti ith ll t i i• Work very well in practice, even with very small training 
sample sizes

• Cons
• No “direct” multi-class SVM, must combine two-class SVMs

• Can be tricky to select best kernel function for a problemy p

• Computation, memory 
– During training time, must compute matrix of kernel values for 

every pair of examples

– Learning can take a very long time for large-scale problems

Adapted from Lana Lazebnik

Scoring a sliding window detector

If prediction and ground truth are bounding boxes, 
when do we have a correct detection?

Kristen Grauman
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Scoring a sliding window detector

B

gtB

pB
correctao  5.0

We’ll say the detection is correct (a “true positive”) if 
the intersection of the bounding boxes, divided by 
their union, is > 50%.

Kristen Grauman

Scoring an object detector

If the detector can produce a 
confidence score on theconfidence score on the 
detections, then we can plot 
the rate of true vs. false 
positives as a threshold on the 
confidence is varied.

f fTPR= fraction of positive examples 
that are correctly labeled.

FPR=fraction of negative examples 
that are misclassified as positive.

Kristen Grauman



9/21/2012

51

n
g

Window-based detection: strengths

• Sliding window detection and global appearance 
descriptors:
 Simple detection protocol to implement
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 Simple detection protocol to implement
 Good feature choices critical
 Past successes for certain classes
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Window-based detection: Limitations

• High computational complexity 
 For example: 250,000 locations x 30 orientations x 4 scales = 

30,000,000 evaluations!
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 If training binary detectors independently, means cost increases 
linearly with number of classes

• With so many windows, false positive rate better be low

Pe
rc

ep
tu

al
 a

n
d
 S

en
s

V
is

u
al

 O
b

je
ct

 R
ec

o
g

V
is

u
al

 O
b

je
ct

 R
ec

o
g

Kristen Grauman



9/21/2012

52

n
g

Limitations (continued)

• Not all objects are “box” shaped
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Limitations (continued)

• Non-rigid, deformable objects not captured well with 
representations assuming a fixed 2d structure; or must 
assume fixed viewpoint
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assume fixed viewpoint

• Objects with less-regular textures not captured well 
with holistic appearance-based descriptions
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Limitations (continued)

• If considering windows in isolation, context is lost
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Sliding window Detector’s view
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Figure credit: Derek Hoiem Kristen Grauman
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Limitations (continued)

• In practice, often entails large, cropped training set 
(expensive) 

• Requiring good match to a global appearance description 
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• Requiring good match to a global appearance description 
can lead to sensitivity to partial occlusions
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Image credit: Adam, Rivlin, & Shimshoni Kristen Grauman
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Summary

• Basic pipeline for window-based detection

– Model/representation/classifier choice
Sliding window and classifier scoring– Sliding window and classifier scoring

• Discriminative classifiers for window-based 
representations 
– Boosting

• Viola-Jones face detector example
– Nearest neighbors

• Scene recognition example
– Support vector machines

• HOG person detection example 

• Pros and cons of window-based detection


