395T Visual Recognition: Outline of lecture for Sept 28, 2012

- I. Generic object categorization
 - a. Window-based models
 - i. Person detection with SVM and HOG (Dalal & Triggs, 2005)
 - 1. Support vector machines
 - 2. HOG descriptor
 - ii. Pros and cons of window-based models
 - b. Part-based models
 - i. Bag-of-words
 - 1. e.g., with Naïve Bayes classifier
 - 2. Local feature sampling strategies for categorization
 - 3. Pyramid match kernel
 - ii. Generalized Hough for category detection
 - 1. Implicit shape model (Leibe et al. 2004)
 - 2. (Class-specific Hough forests Lempitsky et al.)
 - iii. (Deformable part-based model with latent SVM (Felzenszwalb et al. 2008))
- II. Mid-level representations
 - a. Edge detection
 - i. Canny example
 - b. Texture representation
 - i. Filter banks
 - ii. Textons
 - c. Segmentation into regions
 - i. Gestalt properties
 - ii. Segmentation as clustering, grouping
 - d. Ongoing topics in mid-level visual representations

Reminder: Assignment 2 due Oct 5.

Plan for today

- Wrap-up on window- and part-based models
- Introduction to mid-level representations
- Student presentations and paper discussion
- HW1 returned

Mid-level cues

Tokens beyond pixels and filter responses but before object/scene categories

- Edges, contours
- Texture
- Regions
- Surfaces

Gradients -> edges

Primary edge detection steps:

- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization

Determine which local maxima from filter output are actually edges vs. noise

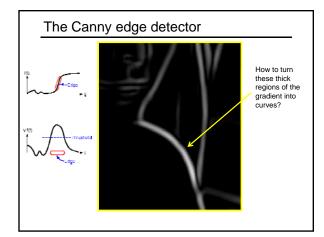
• Threshold, Thin

Kristen Grauman

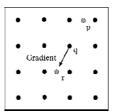
Canny edge detector

- Filter image with derivative of Gaussian
- · Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, 'canny');
- >>help edge

Source: D. Lowe, L. Fei-Fei



Non-maximum suppression



Check if pixel is local maximum along gradient direction, select single max across width of the edge

· requires checking interpolated pixels p and r

The Canny edge detector

Problem: pixels along this edge didn't survive the thresholding

thinning (non-maximum suppression)

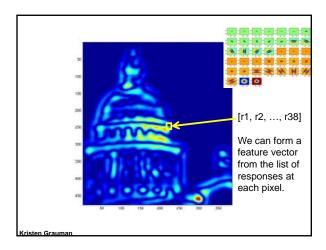
Texture representation

- Textures are made up of repeated local patterns, so:
 - Find the patterns
 - Use filters that look like patterns (spots, bars, raw patches...)
 - Consider magnitude of response
 - Describe their statistics within each local window
 - Mean, standard deviation
 - Histogram
 - Histogram of "prototypical" feature occurrences

Kriston Graumar

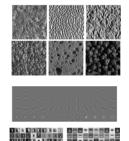
- What filters to put in the bank?
 - Typically we want a combination of scales and orientations, different types of patterns.

Matlab code available for these examples: http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html



Textons

- Texton = cluster center of filter responses over collection of images
- Describe textures and materials based on distribution of prototypical texture elements.



Leung & Malik 1999; Varma & Zisserman, 2002

Materials as textures: example Allows us to summarize an image according to its distribution of textons (prototypical texture patterns). Filter Filter responses Warma & Zisserman, 2002 Manik Varma http://www.robots.ox.ac.uk/~vgg/research/texclass/with.html

Gestalt

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

The goals of segmentation

Separate image into coherent "objects"

image

human segmentation

Source: Lana Lazebni

The goals of segmentation

Separate image into coherent "objects"

Group together similar-looking pixels for efficiency of further processing

"superpixels"

X. Ren and J. Malik. Learning a classification model for segmentation, ICCV 200

Source: Lana Lazebn

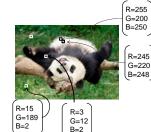
Segmentation as clustering

- · Families of clustering algorithms
 - K-means
 - Mean shift
 - Graph cuts: normalized cuts, min-cut,...
 - Hierarchical agglomerative

Segmentation as clustering pixels

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **color** similarity



lua (2 d)

Feature space: color value (3-d)

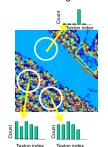
Segmentation as clustering pixels

• Color, brightness, position alone are not enough to distinguish all regions...

Segmentation with texture features Find "textons" by **clustering** vectors of filter bank outputs

- Describe texture in a window based on texton histogram

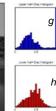




Malik, Belongie, Leung and Shi. IJCV 2001.

Adapted from Lana Lazeb

Representing a texture gradient



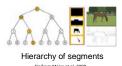
 $\chi^2(g,h) = \frac{1}{2} \sum_i \frac{(g(i) - h(i))^2}{g(i) + h(i)}$

Figure from Arbelaez et al PAMI 2011

Ongoing topics in mid-level region representations

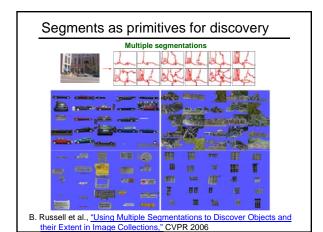
Multiple segmentations

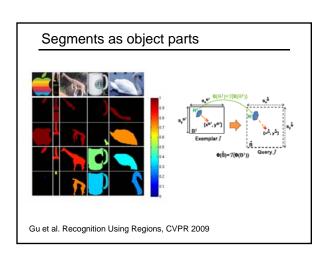
- Acknowledging difficulty of finding object boundaries in single multi-way segmentation, now often employ multiple segmentations as "hypotheses"
- · Input to higher-level processes.



Greedy combinations

Fig from Holem et al. 2005





Top-down segmentation

E. Borenstein and S. Ullman, "Class-specific, top-down segmentation," ECCV 2002 A. Levin and Y. Weiss, "Learning to Combine Bottom-Up and Top-Down Segmentation ECCV 2006.

Slide credit: Lana Lazebnik

Top-down segmentation

E. Borenstein and S. Ullman, "Class-specific, top-down segmentation," ECCV 2002

A. Levin and Y. Weiss, "Learning to Combine Bottom-Up and Top-Down Segmentatic ECCV 2006.

Motion segmentation

A.Barbu, S.C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities, *IEEE Trans. PAMI*, August 2005.

9

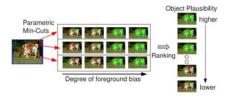
Regions to surfaces

Learn to categorize regions into geometric classes Combining multiple segmentations

Geometric Context from a Single Image. Derek Hoiem, Alexei Efros, Martial Hebert. ICCV 2005

Category-independent ranking

How "object-like" is each candidate region?



Constrained Parametric Min-Cuts for Automatic Object Segmentation. Carreira and Sminchisescu. CVPR 2010

Also see Ferrari et al CVPR 2010, Endres et al ECCV 2010