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Motivation

* Humans vs. Computers

Easy for humans but Harder for Computers
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Motivation

* Leveraging abilities of Humans and Computers

Difficult for Humans and Computers

Easy for Humans

F

Finch? Bunting?... Easy for Computers
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Yellow Belly? Blue Belly? ...



Visipedia

e http://www.vision.caltech.edu/visipedia/

* Visual encyclopedia of images

Online Crowdsourcing  Scalable Structure Learning and Annotation

(A) Easy for Humans (B) Hard for Humans (C) Easy for Humans
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Chair? Airplane? ... Finch? Bunting?... Yellow Belly? Blue Belly? ...

Visual Recognition with
Humans in the Loop



http://www.vision.caltech.edu/visipedia/
http://www.vision.caltech.edu/visipedia/

System Overview

* Features: Attributes and Parts
* |nitial probabilities from Computer Vision

* Answers to questions used to update p(c|x)

Question 1: Question 2:
-’ [ R ] -’ [ Is the belly black? ] -’ [ Is the bill hooked? ]
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Increasing confidence



Outline

e Features



Features - Attributes

*e Binary vector of length 312
* Attribute vector acis property of class
* p(ac|x)is property of image

Class: Big Bird aC — [O 1 O 1 O O ]
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Features — Example Attributes

nas_crown_color::yellow
nas_bill_shape::hooked

nas_head pattern::striped

nas_size::very large (32 - 72 in)
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Features - Parts

*e 13 body parts
* 12 aspects

X position vy position

\ /
Op = {Xp, Yp» Sps Vp}

(AN

aspect binary visibility

® = {01, ...Hp,}



Features — User Questions

e Attribute queries

* Part location queries

IMAGE CLASS: Sooty Albatross Predicted Pa Locations

f/l‘rJI: Click on the head
(3.656 s)

Forster's Tern? no

\_ : ‘.., -
Ground Truth Part Locations Pf Q2: Click on the body '
1 ss (3.033 s)

Bohemian Waxwing? no
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3: Is the bill black? Black=footed Albatross? no
yes (4.274 s5)
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* Probabilistic Model



Probability Model

p(aC,Ut|x)

t p—
p(c|U*, x) SRYCHIGE

p(ac,Ut|x) = [, pac,U*,0lx)do

p(a‘, Ut 0|x) = p(a|0,x)p(®]|x)p(Ut|a‘, o, x)
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Attributes Parts User’s answers

detector detector  to questions




Attribute Detection

Linear classifier for each a% € a“
SIFT and RGB quantized to 128 codewords
Independence assumption

p(al0,x) = l_[aC € a¢ p(a |6part(a )»x)

)

Single Full Attribute output of linear
Attribute Vector classifier




Discussion

* Why such a simple choice of attribute
detector?

* |s the independence assumption in calculating
a‘ appropriate?



Part Detection




Discussion

* |n this case are the pairwise potential terms
useful or not?



User Model

* Models likelihood of user’s answers based on
current hypothesis

p(Ut|a‘,0,x) =

[ [ »@len) || pata)

p €U, djeU",
\ J \ J
| |

Part Locations: Attribute Values:
Normal distribution Binomial distribution
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 Inference



Inference

* |Inference updates probabilities after each
guestion

Initial
predicted
part locations




Inference

*s \We need to evaluate:

f p (@10, )p(O1)p(Ut|ac, 0, x) dO
®

For all possible combinations of:

 C(Classes: 200 in total ]

e Part Locations: ~1000’s of windows per part

e Exponential in number of parts problem?



Inference




Choice of Questions

* Minimize user input by asking “best”
guestions

Two candidate classes

Bad question: Is the head white?

Good question: ???



Information Gain

* Expected change in Entropy
* Entropy:

H=— ;P(xi)lnP(xi)

High Entropy RV: H = 1.38 Low Entropy RV: H=0.71



Discussion

 What other factors should be taken into
consideration when choosing a question?



Selection by Time

*s \Want to minimize time rather than number of
questions required

* Expected time of questions vary

IG(q;)
E[time(q;)]

Maximize
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e Results



Dataset

Caltech-UCSD Birds 200 (CUB-200)
11,800 images of birds

200 classes

312 binary attributes

15 part labels

Part labels obtained through MTurk



Dataset

* Expected change in |
* Entropy:

1o N



Results

e Time to classify using IG criterion
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Results Analysis

Computer Vision reduces time to classify
Time criterion reduces time to classify

Part localization improves performance
(attribute detectors 17.3% on ground truth
locations vs. 10.3% on predicted)

Part localization questions are quicker to
answer (3s vs. 7.6s)



Future Work

 Visipedia iPad App




Interactive Part Labeling

e Video



http://www.vision.caltech.edu/visipedia/video/FLVPlayer.swf?video=example02.flv&autoplay=false

Conclusion

* Better performance by combining strengths of
humans and computers

e Using two types of questions and simple
computer vision, bird species are classified in
~ 60s

* Human input can “guide” computer vision
algorithms to produce better results
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