Multiclass Recognition and Part Localization with Humans in the Loop

Heath Vinicombe

Department of Computer Science The University of Texas at Austin 30th November 2012

Outline

- Motivation
- System Overview
- Features
- Probabilistic Model
- Prediction
- Results
- Conclusions

Motivation

• Humans vs. Computers

Easy for humans but Harder for Computers

Chair? Airplane? ...

Motivation

• Leveraging abilities of Humans and Computers

Difficult for Humans and Computers

Visipedia

- <u>http://www.vision.caltech.edu/visipedia/</u>
- Visual encyclopedia of images

Online Crowdsourcing

2 25 22 26

(A) Easy for Humans

Chair? Airplane? ...

Finch? Bunting?...

Yellow Belly? Blue Belly? ...

Visual Recognition with Humans in the Loop

g Scalable Structure Learning and Annotation

System Overview

- Features: Attributes and Parts
- Initial probabilities from Computer Vision
- Answers to questions used to update p(c|x)

Increasing confidence

Outline

- Motivation
- System Overview
- Features
- Probabilistic Model
- Prediction
- Results
- Conclusions

Features - Attributes

- Binary vector of length 312
 - Attribute vector **a**^c is property of **class**
 - p(a^c | x) is property of **image**

Features – Example Attributes

- has_crown_color::yellow
- has_bill_shape::hooked
- has_head_pattern::striped
- has_size::very large (32 72 in)

Features - Parts

- 13 body parts
 - 12 aspects

x position y position $\theta_p = \{x_p, y_p, s_p, v_p\}$ aspect binary visibility

$$\Theta = \{\theta_1, \dots \theta_P, \}$$

Features – User Questions

- Attribute queries
- Part location queries

IMAGE CLASS: Sooty Albatross

Predicted Part Locations

Outline

- Motivation
- System Overview
- Features
- Probabilistic Model
- Prediction
- Results
- Conclusions

Probability Model

•
$$p(c|U^t, x) = \frac{p(a^c, U^t|x)}{\sum_c p(a^c, U^t|x)}$$

•
$$p(\boldsymbol{a}^{c}, U^{t}|x) = \int_{\Theta} p(\boldsymbol{a}^{c}, U^{t}, \Theta|x) d\Theta$$

• $p(a^{c}, U^{t}, \Theta | x) = p(a^{c} | \Theta, x) p(\Theta | x) p(U^{t} | a^{c}, \Theta, x)$ Attributes Parts User's answers detector detector to questions

Attribute Detection

- Linear classifier for each $a_i^c \in a^c$
 - SIFT and RGB quantized to 128 codewords
 - Independence assumption

•
$$p(\mathbf{a}^{c}|\Theta, x) = \prod_{a^{c}_{i} \in \mathbf{a}^{c}} p(a^{c}_{i}|\theta_{part(a_{i})}, x)$$

Single Full Attribute output of linear
Attribute Vector classifier

Discussion

- Why such a simple choice of attribute detector?
 - Is the independence assumption in calculating *a^c* appropriate?

Part Detection

Discussion

• In this case are the pairwise potential terms useful or not?

User Model

 Models likelihood of user's answers based on current hypothesis

Outline

- Motivation
- System Overview
- Features
- Probabilistic Model
- Inference
- Results
- Conclusions

Inference

 Inference updates probabilities after each question

1.11	the state	

Pose	body	breast	tail	head	throat
Facing_ right				200	
Facing_ left					

Inference

• We need to evaluate:

$$\int_{\Theta} p(\boldsymbol{a}^{c}|\Theta, x) p(\Theta|x) p(U^{t}|\boldsymbol{a}^{c}, \Theta, x) \, \mathrm{d}\Theta$$

For all possible combinations of:

- Classes: 200 in total
- Part Locations: ~1000's of windows per part
- Exponential in number of parts

Inference

Choice of Questions

 Minimize user input by asking "best" questions

Two candidate classes

Bad question: Is the head white? Good question: ???

Information Gain

- Expected change in Entropy
 - Entropy:

$$H = -\sum_{i=1}^{n} P(x_i) \ln P(x_i)$$

High Entropy RV: H = 1.38

Low Entropy RV: H = 0.71

Discussion

• What other factors should be taken into consideration when choosing a question?

Selection by Time

- Want to minimize time rather than number of questions required
 - Expected time of questions vary

$$Maximize \quad \frac{IG(q_j)}{\mathbb{E}[time(q_j)]}$$

Outline

- Motivation
- System Overview
- Features
- Probabilistic Model
- Prediction
- Results
- Conclusions

Dataset

- Caltech-UCSD Birds 200 (CUB-200)
- 11,800 images of birds
- 200 classes
- 312 binary attributes
- 15 part labels
- Part labels obtained through MTurk

Dataset

Expected change in I

H -

n.

• Entropy:

Results

• Time to classify using IG criterion

Results

• Comparison of criterion

Results Analysis

- Computer Vision reduces time to classify
- Time criterion reduces time to classify
- Part localization improves performance (attribute detectors 17.3% on ground truth locations vs. 10.3% on predicted)
- Part localization questions are quicker to answer (3s vs. 7.6s)

Future Work

• Visipedia iPad App

Is your bird the Blue headed Vireo?

Interactive Part Labeling

• <u>Video</u>

Conclusion

- Better performance by combining strengths of humans and computers
- Using two types of questions and simple computer vision, bird species are classified in ~ 60s
- Human input can "guide" computer vision algorithms to produce better results

References

- Multiclass Recognition and Part Localization with Humans in the Loop. C. Wah et al. ICCV 2011
- <u>http://www.vision.caltech.edu/visipedia/index.html</u>
- A Discriminatively Trained, Multiscale, Deformable Part Model, by P. Felzenszwalb, D. McAllester and D. Ramanan