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Problem Overview
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Motivation
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The Idea
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Error Rate for Bluebirds dataset 



  

Estimating Image Difficulty

Complex Images



  

1D clusters from learned Xi values
Dataset: Bluebirds



  

1D clusters from learned Xi values
Dataset: Bluebirds



  

How do these learned image complexities compare with 
vision-based techniques?

Vision-based measure:
Predicted time* to label an image as a measure of image complexity

*What’s It Going to Cost You? : Predicting Effort vs. Informativeness for Multi-Label Image Annotations.  S. Vijayanarasimhan and 
K. Grauman.  CVPR 2009

Approach:
Extract 2804-d feature vectors for MSRC dataset

● Pyramid of HoG
● Color histogram
● Grayscale histogram
● Spatial pyramid of edge density (Canny edge)

Train a regressor on top 200 features selected using ReliefF
Predict time to label images for bluebirds dataset



  

Vision-based complexity (vs) Learned Image 
Complexity
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Vision-based complexity (vs) Learned Image 
Complexity

Learned image complexity
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center



  

Qualitative Comparison



  

Complex Images – Examples
False negatives
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Complex Images – Examples
False positive
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Easy Images – Examples
True negatives
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Easy Images – Examples
True positives
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Task: Finding ducks
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2D clusters from learned Xi values
Dataset: Ducks

Recreated in MATLAB



  

Vision-based complexity (vs) Learned Image 
Complexity

Recreated in MATLAB: Size of point is proportional to the predicted time needed to label it



  

Vision-based complexity (vs) Learned Image 
Complexity
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Vision-based complexity (vs) Learned Image 
Complexity
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Vision-based complexity (vs) Learned Image 
Complexity
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Vision-based complexity (vs) Learned Image 
Complexity

Recreated in MATLAB: Size of point is proportional to the predicted time needed to label it

Images at the 
center can also 
take longer to 
label. Why? 



  

Discussion

Is vision-based image complexity a good indicator of difficulty in labeling an image?

 

What are the other factors?



  

Discussion

Is vision-based image complexity a good indicator of difficulty in labeling an image?

 

What are the other factors?

Bird pose
Occlusions
Lighting



  

Discussion

1. The authors experiment only with a 2-dimensional model of human expertise

How would this model perform by increasing the number of intrinsic 
dimensions?

 



  

Extending this approach 
to a video dataset
YouTube corpus



  

Example YouTube video with descriptions

A french bulldog is playing with a big ball
A small dog chases a big ball.
A French bulldog is running fast and playing with a blue yoga ball all by himself in a 
field.
The little dog pushed a big blue ball.
A dog is playing with a very large ball.
A dog chases a giant rubber ball around
A dog is playing with ball

 http://youtu.be/FYyqIJ36dSU

file:///home/niveda/Documents/Presentation/%20http:%2F%2Fyoutu.be%2FFYyqIJ36dSU


  

Approach
YouTube corpus is not cut out for this task.

Consider predicting the presence of the activity “run”

1. Selected 50 videos where “run” was the predicted activity using majority voting
2. Selected 30 videos where “play” was the predicted activity using majority voting
3. Selected 20 videos where “walk” was the predicted activity using majority voting

Ground Truth Labels were assigned accordingly

Each video had variable number of annotators. Picked the 20 most frequent annotators.



  

Results

Subsampled “RUN” data



  

1D clusters from learned Xi values
Dataset: YouTube videos



  

How do these learned video complexities compare with 
vision-based techniques?

Vision-based measure:
Number of STIPS in the video
STIP density

*Learning Realistic Human Actions from Movies.  I. Laptev, M. Marszałek, C. Schmid and B. Rozenfeld.  CVPR 2008.



  

Vision-based complexity (vs) Learned Image 
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Vision-based complexity (vs) Learned Image 
Complexity

Learned image complexity
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Not much 
correlation 
but false 
negatives 
seem to have 
a higher STIP 
density



  

Discussion

How can we quantify the complexity of a video?

STIP density?
Video length?
Variety in STIPS?
Confusion amongst multiple annotators?

How can we quantify the effort involved in labeling a video? 

How do these relate to video ambiguity?



  

Qualitative Comparison – True positive

Learned image 
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Qualitative Comparison – True negative

Learned image 
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http://youtu.be/abiezv1p7SY
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Qualitative Comparison – False positive

Learned image 
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Qualitative Comparison – False negative

Learned image 
complexity
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http://youtu.be/8miosT-Fs1k


  

Strengths

1. Each annotator is modeled as a multi-dimensional entity – competence, 
expertise, bias

2. Can be extended to any domain to estimate the ground truth with least error

3. Models image complexities without even seeing the image

4. The model discovers groups of annotators with varying skill sets.



  

1. Image difficulties are learned from human annotations only, which is great!

But would the model perform better if image difficulty was incorporated 
as a known parameter (using some vision-based technique) into the 
graphical model?

Discussion
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