Novelty Detection from an Ego-Centric Perspective

Omid Aghazadeh, Josephine Sullivan, and Stefan Carlsson
Presented by Randall Smith
Outline

• Introduction
• Sequence Alignment
• Appearance Based Cues
• Geometric Similarity
• Example
• Dynamic Time Warping
• Algorithm
• Evaluation of Similarity Matching
• Results
• Conclusion
Introduction

• Problem: Select relevant visual input from worn, mobile camera.

• Motivation:

 • Routine Recognition [Blanke & Schiele 2009]

 • Life Logging [Doherty & Smeaton 2010]

 [Schiele et. al. 2007]

 • Memory assistance [Hodges et. al. 2006]
Introduction: Memory Selection

• We must decide what visual inputs to remember.

• How should this be done?
 • Novelty detection.

• What is novelty detection?
Introduction: Novelty Detection

- **Novelty** = All Inputs - Known Inputs

- **Novelty detection**: identification of inputs that differ from previously seen inputs.

- Novelty detection can help decide on what is worth remembering.
Introduction: Setup

- Heuristic: detect novelty as deviation from background.
- Context: collect video sequences from daily commute to work.
- Equipment: 4cm camera + memory stick.
Introduction : Dataset

Dataset

- 31 videos of on average 5 minutes of a subject walking to work
- Each frame is manually labeled with a virtual location
- 4 sequences were manually identified to contain novelties
- Significant illumination/viewpoint variations
- Non-static environment

Image: CVPR 2011, Aghazadeh et. al.
Sequence Alignment

- Novelty is defined as a failure to register a sequence with a set of stored reference sequences (25 Hz videos sampled at 1 Hz.)

- Accomplished by sequence alignment, via Dynamic Time Warping (DTW).

[Image: CVPR 2011, Aghazadeh et. al.][link]
Sequence Alignment : Discussion

• Could we define or detect novelty in some other way?
Sequence Alignment : Dynamic Time Warping
Sequence Alignment: Similarity

• In order to use DTW, need to define some cost function

• This can by defining a measure of similarity between each pair of frames.

• Can use appearance based cues (SIFT, VLAD) to do this.
Appearance Based Cues

• Can compute a fixed length vector each frame and use a kernel in order to compare similarity.

• Use SIFT or VLAD/SIFT to compute Bag of Features (BoF).

• VLAD: Vector of Locally Aggregated Descriptors:

 • (1) get k-means code book, and

 • (2) for each codeword C

 • take the L2-normalized sum of all the vectors assigned to it.
Geometric Similarity

• Appearance based cues alone are not accurate enough.

• Need to match local structures in a geometrically consistent way.

• Need a transformation that will do this: fundamental matrix.

• The measure of similarity will be the percentage of inliers in an initial set of putative matches, w.r.t to estimated fundamental matrix.

• Match against homography mapping to assess correctness of hypothetical fundamental matrix
Geometric Similarity : Discussion

• Could we supplement or substitute some other measure of similarity?

• How could different similarity measures affect novelty?
Example

250 putative matches

inliers wrt H

inliers wrt H and E

(meeting a friend)
Example

(ice cream shopping)
Dynamic Time Warping

- Define a path:
 \[p = \{(i_1, j_1), \ldots, (i_K, j_K)\} \]
- s.t. (1) \((i_1, j_1) = (1, 1)\), and
 \((i_K, j_K) = (M, N)\)
- (2) \(p_{k+1} - p_k \in \{(0, 1), (1, 0), (1, 1)\}\)

- Define a cost function \(c(i, j) \geq 0\)

- Let \(C_p = \sum_{k=1}^{K_p} c(i_k, j_k)\)

- Want \(p^* = \text{argmin}_p C_p\).

- Solved via dynamic programming.
Algorithm

- compute features $\mathcal{F}_1, \mathcal{F}_2$ and nearest neighbor distance ratio

- keep best N matches P based on this ordering

- compute loose homography H_L and inliers P_H

- compute 5 point fundamental matrix E from P_H and inliers P_{HE}

- compute similarity $f_s = \min(1, \alpha \max(0, \frac{|P_{HR}|}{|P|} - \beta))$
Algorithm : Cost Matrix

- Need to compute similarity matrix for sequences \(s_1 \) and \(s_2 \).
- Convert to cost matrix via zero-mean Gaussian with standard deviation \(\sigma_c \).
 - Why? Noise?
- Use DTW to find optimal alignment!
- Problem: this is expensive.
Algorithm: Optimization

- Optimization: for each frame in s_1 find the k nearest neighbors in s_2.

- Evaluate only the k nearest neighbors instead.

Sparse similarity matrix: evaluate it on V.S.-based KNNs of each frame

dense V.S., sparse V.S., sparse G.S. and the resulting alignments
vertical axis: query frames, horizontal axis: reference frames
Algorithm : Match Cost

• Let \(i \) correspond to frame indices in \(s_1 \) and \(j \) to frame indices in \(s_2 \).

• Let \(\delta_{s_1,s_2} \) be the minimum cost path from DTW.

• The match cost \(\lambda(i, \delta_{s_1,s_2}) \) for a frame \(i \) in \(s_1 \) to \(s_2 \) is

\[
\lambda(i, \delta_{s_1,s_2}) = \begin{cases}
C_{i_k,j_k} & \text{if } \exists (i_k, j_k) \in \delta_{s_1,s_2} \text{ s.t. } i = i_k \\
1 & \text{otherwise}
\end{cases}
\]

• where \(C_{i_k,j_k} \) is the value of the cost matrix at \((i_k, j_k) \).
Algorithm : Novelty Detection

• Compute the minimum match cost for each frame in the query sequence:

\[E(s_t^{(i)}) = \min_{s_r \in S} \lambda(i, \delta_{s_q, s_r}) \]

• where \(S \) contains all reference sequences.

• Threshold the minimum match cost to find novelties.

• Smoothing: Gaussian mask applied to prior to matching with \(\sigma_N \) and using threshold \(\Theta_N = e^{-\frac{1}{23\sigma_N^2}} \).
Algorithm : Discussion

• How else could we implement memory selection or novelty detection?

 • How does this scale with the number of stored sequences?
Evaluation of Similarity Matching

- minimum intersection kernel for BoF and degree one polynomial kernel for VLAD/SIFT

- VLAD + BoF + Dense (gray + color) -> 88% = best
Results: Detecting Novelty

aligning reference sequences with a query sequence

match cost, minimum match cost and smoothed minimum match cost
Results: Precision Recall Curves and Matches

Evaluation of G.S. and novelty detection

Evaluation on the 4 sequences which contained novelty (400 frames)

ground truth, smoothed minimum match cost, a constant threshold

dense V.S. sparse V.S. sparse G.S.

PR curves using 1, 6 and 10 reference sequences
Conclusion

• The scalability of this algorithm seems to be an issue.

• It would be interesting to explore alternative measures of similarity or novelty.

• Could this be converted to purely use clustering and only store clips for reference (by the user).

• The dataset is quite small, which is understandable given their technique, but perhaps an improved technique could make this work better?
References

• Novelty Detection from an Egocentric Perspective. O. Aghazadeh, J. Sullivan, and S. Carlsson. CVPR 2011