
ANSI C for Programmers

on UNIX Systems

Tim Love

Cambridge University Engineering Department

tpl@eng.cam.ac.uk

March 21, 1996

This document aims to:-

� Introduce C by providing and explaining examples of common programming

tasks.

� Enable the reader to learn from available source code by clarifying common

causes of incomprehension.

Coverage is not uniform: pedantry will be selective, aimed at describing aspects of

C which are not present in other languages or are di�erent to what a programmer

from another language might expect. For a full description of C refer to one of the

many books in the bibliography.

The �rst part of the document is an informal introduction to C. After the �rst

set of exercises a more comprehensive description of some features is given. Af-

ter the �nal set of exercises selected topics are covered. Note that the exercises

and examples form an integral part of the course, containing information not du-

plicated elsewhere. The current version of this document is available by ftp from

svr-ftp.eng.cam.ac.uk:misc/. See page 64 for details.

Carole Klein and Nick McLaren (CambridgeComputer Lab), Andy Piper, Camp-

bell Middleton and James Matheson (CUED), contributors to comp.lang.c and

various readers have all helped with this document. All suggestions and corrections

should go to Tim Love, CUED (tpl@eng.cam.ac.uk.

Copyright c1996 by T.P. Love. This document may be copied freely for the pur-

poses of education and non-commercial research. Cambridge University Engineering

Department, Cambridge CB2 1PZ, England.

1

CONTENTS CONTENTS

Contents

1 Introduction 4

2 Compilation Stages 5

3 Variables and Literals 6

4 Aggregates 6

5 Constructions 8

6 Exercises 1 10

7 Contractions 11

8 Functions 13

9 Pointers 14

10 Strings 16

11 Exercises 2 19

12 Keywords, Operators and Declarations 24

12.1 Keywords . 24

12.2 Operators . 24

12.3 Declarations . 25

13 Memory Allocation 26

14 Input/Output 28

14.1 File I/O under Unix . 28

14.2 Interactive . 31

14.2.1 Output . 31

14.2.2 Input . 31

15 Source File organisation 32

15.1 Preprocesser Facilities . 32

15.2 Multiple Source Files . 33

15.3 Make . 34

16 Debugging 35

16.1 Utilities and routines . 35

16.2 Some Common mistakes . 36

16.2.1 Miscellaneous . 37

16.2.2 declaration mismatch . 40

16.2.3 malloc . 41

16.2.4 Find the bug . 42

17 Exercises 3 45

18 More information 48

2

LIST OF FIGURES LIST OF FIGURES

A Examples 49

A.1 Command Line arguments . 49

A.2 Using qsort, random numbers and the clock 49

A.3 Calling other programs . 50

A.4 Linked Lists . 50

A.5 Using pointers instead of arrays . 52

A.6 A data �lter . 53

A.7 Reading Directories . 54

A.8 Queens: recursion and bit arithmetic 55

B More on Arrays 55

B.1 Multidimensional Arrays . 55

B.2 realloc . 56

C Signals and error handling 57

D ANSI C 58

D.1 Converting to ANSI C . 59

E Maths 60

E.1 Fortran and C . 63

F Calling Fortran from C 64

G Updating this document 64

H Sample answers to exercises 65

H.1 Exercises 1 . 65

H.2 Exercises 2 . 67

H.3 Exercises 3 . 68

List of Demo Programs
Program Page Description

basics.c 4 basics

strings.c 16 strings

array.c 19 2D arrays

mallocing.c 27 malloc

files.c 29 �le i/o

line nums.c 30 �lter

List of Figures

1 Compilation Stages . 5

2 Linked List . 51

3

LIST OF FIGURES 1. INTRODUCTION

1 Introduction

C's popularity has increased as Unix has become more widespread. It is a exible,

concise and small language, with a mix of low-level assembler-style commands and

high-level commands. It's much used with the X graphics system and increasingly

for numerical analysis. The �rst de facto standard C was as described in [7] and is

often known as K&R C . The current standard is ANSI C [12] in which the source

contained in this document is written. Check your local documentation to see how

to compile the code. In this documentation cc -Aa will be used.

To those who have programmed before, simple C programs shouldn't be too

hard to read. Suppose you call this program basics.c

#include <stdio.h>

#include <stdlib.h>

int mean(int a,int b)

{

return (a + b)/2;

}

int main()

{

int i, j;

int answer;

/* comments are done like this */

i = 7;

j = 9;

answer = mean(i,j);

printf("The mean of %d and %d is %d\n", i, j, answer);

exit (0);

}

Note that the source is free-format and case matters.

All C programs need a main function where execution begins. In this example

some variables local to main are created and assigned (using `=' rather than `:='.

Also note that `;' is a statement terminator rather than a separator as it is in

Pascal). Then a function mean is called that calculates the mean of the arguments

given it. The types of the formal parameters of the function (in this case a and b)

should be compatible with the actual parameters in the call. The initial values of

a and b are copied from the variables mentioned in the call (i and j).

The function mean returns the answer (an integer, hence the `int' before the

function name), which is printed out using printf. The on-line manual page de-

scribes printf fully. For now, just note that the 1st argument to printf is a string

in which is embedded format strings; %d for integers, %f for reals and %s for strings.

The variables that these format strings refer to are added to the argument list of

printf. The `\n' character causes a carriage return.

C programs stop when

� The end of main is reached.

� An exit() call is reached.

� The program is interrupted in some way.

� The program crashes

4

LIST OF FIGURES 2. COMPILATION STAGES

- - - - -

�
�
�
�3

?
?

6

-
File

Compiler Assembler LoaderPreprocessor

include �les

user's user's object �les

include �les

system

system libraries

Source
File ExecutableObject

Figure 1: Compilation Stages

This program can be compiled using `cc -Aa -o basics basics.c'. The `-o'

option renames the resulting �le basics rather than the default a.out. Run it by

typing `basics'. A commonmistake that beginners make is to call their executable

`test'. Typing test is likely to run the test facility built into the shell, producing

no input, rather than the user's program. This can be circumvented by typing

./test but one might just as well avoid program names that might be names of

unix facilities. If you're using the ksh shell then typing `whence program name' will

tell you whether there's already a facility with that name.

2 Compilation Stages

First the Preprocessor cpp is run. This strips out comments and interprets direc-

tives (lines with a `#' character in the �rst column). The `#include' directive read

in the named �le, looking for the �le in the directory /usr/include. Include �les

have a `.h' su�x by convention, and shouldn't contain executable code, only def-

initions and declarations. /usr/include/stdio.h and /usr/include/stdlib.h

should always be included. Other useful include �les are /usr/include/limits.h

and /usr/include/math.h which de�ne characteristics of the machine and the

maths implementation. Further preprocessor directives to do with macros, etc, will

be introduced later. If you want to see how the code looks after pre-processing, try

typing cc -Aa -E basics.c

After the preprocessor comes the compiler, which after a pass or 2 produces

assembler code. This is assembled to produce an object �le, in this case basics.o.

Finally the link-loader produces the executable from the object �le and any

other object you mention. The standard C library is automatically consulted. Any

other libraries that your code needs have to be mentioned on the compile line. E.g.,
ending the line with `-lm' links in the maths library, `-lX11' links in X graphics

functions. Note that it's not su�cient to just have `#include <math.h>' at the

top of the �le if you're doing maths. This just supplies enough information so that

the compiler can do its work correctly. It doesn't tell the link-loader where the

maths routines actually are. You need to have `-lm' on the command line before

an executable can be produced.

The stages of compilation can be seen if a `-v' ag is given to the compiler.

5

LIST OF FIGURES 3. VARIABLES AND LITERALS

3 Variables and Literals

Variable names can't begin with a digit. Nor can they contain operators (like `.'

or `-'). They have to be declared before being used. The available scalar types are

char, short, int, long, float, double and long double. chars and the various

lengths of integers can be signed (the default) or unsigned.

Often you don't explicitly have to convert types. If you operate on variables of

di�erent types, type conversion takes place auomatically. E.g. if you add an int

and a float then the int will be converted to a float and the result will be a

float.

unsigned int i;

float f = 3.14;

i = f;

will automatically set i to 3, truncating the real value. To explicitly convert types

use casting; E.g.

i = (unsigned int) f;

Most conversions preserve the numerical value but occasionally this is not possible

and overow or loss of precision results. C won't warn you if this happens.

The length of an integer isn't the same on all machines. `sizeof (int)' will

return the number of bytes used by an integer.

The scope of a variable is the block (the function, or { } pair) it's declared in,

or the remainder of the �le it's declared in. Variables declared outside of a block

and functions can be accessed from other �les unless they're declared to be static.

Variables declared in functions can preserve their value between calls if they are

de�ned as static, otherwise they're automatic, getting recreated for each call of

the function.

Character values can be written in various ways :- E.g. on machines that use

ASCII

'A' '\101' '\x41'

all represent 65; the �rst using the ASCII A character, the second using octal and

the third hexadecimal. The newline character is '\n'.

Integer and real values can be variously expressed:-

15L long integer 15

015 octal integer 15

0xF7 Hex (base 16) number F7

15.3e3F 15:3� 103, a oat

15.3e3 15:3� 103, a double

15.3e3L 15:3� 103, a long double

4 Aggregates

Variables of the same type can be put into arrays.

char letters[50];

de�nes an array of 50 characters, letter[0] being the 1st and letter[49] being

the last character. C has no subscript checking; if you go o� the end of an array C

won't warn you.

Multidimensional arrays can be de�ned too. E.g.

char values[50][30][10];

6

LIST OF FIGURES 4. AGGREGATES

de�nes a 3D array. Note that you can't access an element using values[3,6,1];

you have to type values[3][6][1].

Variables of di�erent types can be grouped into a structure (like a record in

Pascal).

struct person {

int age;

int height;

char surname[20];

} fred, jane;

de�nes 2 structures of type person each of 3 �elds. Fields are accessed using the `.'

operator. For example, fred.age is an integer which can be used in assignments

just as a simple variable can.

typedef creates a new type. E.g.

typedef struct{

int age;

int height;

char surname[20];

} person;

create a type called person and

typedef struct{

double real;

double imaginary;

} complex;

creates a complex type. Note that typedef creates new variable types but doesn't

create any new variables. These are created just as variables of the prede�ned types

are:-

person fred, jane;

Structure may be assigned, passed to functions and returned, but they cannot

compared, so

person fred, jane;

...

fred = jane;

is possible (the �elds of jane being copied into fred) but you can't then go on to

do

if (fred == jane)

fprint("The copying worked ok\n");

you have to compare �eld by �eld.

As you see, new variable types are easily produced. What you can't do (but can
in C++ and Algol68) is extend the meaning of an existing operator (`overload' it)

so that it works with the new variable type: you have to write a speci�c function

instead.

A union is like a struct except that the �elds occupy the same memory location

with enough memory allocated to hold the largest item. The programmer has to

keep a note of what the union is being used for. What would the following code

print out?

7

LIST OF FIGURES 5. CONSTRUCTIONS

...

union person {

int age;

int height;

char surname[20];

} fred;

fred.age = 23;

fred.height = 163;

printf("Fred is %d years old\n", fred.age);

...

If fred started at memory location 2000, then fred.age, fred.height and fred.surname

would all begin at memory location 2000 too, whereas in a struct the �elds wouldn't

overlap. So setting fred.height to 163 overwrites fred.age (and the 1st 4 char-

acters of fred.surname) making fred 163 years old.

5 Constructions

C has the following loop and selection constructs:-

Selection

...

if (i==3) /* checking for equality; `!=' tests for inequality */

/* no braces needed for a single statement */

j=4;

else{

/*the braces are necessary if the

clause has more than one statement

*/

j=5;

k=6;

}

...

...

/* switch is like the case statement in pascal.

The values that the switching variable is compared with

have to be constants, or `default'.

*/

switch(i){

case 1: printf("i is one\n");

break; /* if break wasn't here, this case will

fall through into the next.

*/

case 2: printf("i is two\n");

break;

default: printf("i is neither one nor two\n");

break;

}

...

8

LIST OF FIGURES 5. CONSTRUCTIONS

Loops

...

while(i<30){ /* test at top of loop */

something();

...

}

...

do {

something();

} while (i<30); /* test at bottom of loop */

...

The `for' construction in C is very general. In its most common form it's much

like for in other languages. The following loop starts with i set to 0 and carries on

while i<5 is true, adding 1 to i each time round.

...

for(i=0; i<5; i=i+1){

something();

}

...

The general form of `for' is

for ([expression1]; [expression2]; [expression3])

something();

where all the expressions are optional. The default value for expression2 (the

while condition) is 1 (true). Essentially, the for loop is a while loop. The above

for loop is equivalent to

...

expression1; /* initialisation */

while (expression2){ /* condition */

something();

expression3; /* code done each iteration */

};

...

E.g. the 2 fragments below are equivalent. `i' is set to 3, the loop is run once

for i=3 and once for i=4, then iteration �nishes when i=5.

for (i = 3; i < 5; i=i+1)

total = total + i;

i = 3;

while(i < 5){

total = total + i;

i=i+1;

}
Within any of the above loop constructions, continue stops the current iteration

and goes to the next and break stops the iterations altogether. E.g. in the following
fragment 0 and 2 will be printed out.

...

i=0;

while (i<5){

if (i==1){

i = i+1;

9

LIST OF FIGURES 6. EXERCISES 1

continue;

}

if (i==3)

break;

printf("i = %d\n", i);

i=i+1;

}

...

If you want a loop which only ends when break is done, you can use `while(1)'

(because 1 being non-zero, counts as being true) or `for(;;)'.

The { } symbols are used to compound statements. You can declare variables

at the start of any compound statement. For instance, if you're worried about the

scope of an index variable in a for loop, you could do the following.

{int i;

for (i=1;i<5;i++)

printf("i is %d\n",i);

}

6 Exercises 1

(Sample solutions are on page 65)

1. pascal has a function called odd, that given an integer returns 1 if the number

is odd, 0 otherwise. Write an odd function for C and write a main routine to

test it. (hint { You can use the fact that in C, if i is an integer then (i/2)*2

equals i only if i is even).

2. Write a routine called binary that when supplied with a decimal number,

prints out that number in binary, so binary(10) would print out 1010

void binary(unsigned int number){

/* print decimal `number' in binary */

...

}

Then write a main routine to test it. Don't worry about leading zeroes too

much at the moment. Note that binary returns a void, i.e. nothing.

3. Write a routine called base that when supplied with a decimal number and a

base, prints out that number to the required base, so base(10,3) would print

out 101

void base(unsigned int number, unsigned int base){

/* print decimal `number' to the given `base' */

...

}

Then write a main routine to test it.

4. Print a table of all the primes less than 1000. Use any method you want. The

sieve method is described here:- aim to create an array `number' such that

if numbers[i] == PRIME then i is a prime number. First mark them all as

being prime. Then repeatedly pick the smallest prime you haven't dealt with

and mark all its multiples as being non prime. Print out the primes at the

end. Here's a skeleton:-

10

LIST OF FIGURES 7. CONTRACTIONS

#include <stdio.h>

#include <stdlib.h>

#define PRIME 1 /* Create aliases for 0 and 1 */

#define NONPRIME 0

int numbers[1000];

void mark_multiples(int num){

/* TODO: Set all elements which represent multiples of num to NONPRIME. */

}

int get_next_prime(int num){

/* find the next prime number after `num' */

int answer;

answer = num+1;

while (numbers[answer] == NONPRIME){

answer= answer +1;

if (answer == 1000)

break;

}

return answer;

}

main(){

int i;

int next_prime;

/* TODO: Set all the elements to PRIME. Remember, the 1st element is

numbers[0] and the last is numbers[999] */

/* TODO: 0 and 1 aren't prime, so set numbers[0] and numbers[1]

to NONPRIME */

next_prime = 2;

do{

mark_multiples(next_prime);

next_prime = get_next_prime(next_prime);

} while(next_prime < 1000);

/* TODO: Print out the indices of elements which are still set to PRIME */

exit(0);

}

The `TODO' lines describe what code you need to add in.

You can speed up this program considerably by replacing 1000 where appro-

priate by something smaller. See page 45 for details.

7 Contractions

C veterans use abbreviated forms for expressions. Some are natural and widely

adopted, others merely lead to obscurity { even if they produce faster code (and

11

LIST OF FIGURES 7. CONTRACTIONS

often they don't) they waste future programmers' time.

� i++ is equivalent to i=i+1. This (and the i-- decrementing operator) is a

common contraction. The operation can be done after the variable is used, or

(by using --i, ++i) before, so

...

i = 4;

printf("i = %d\n", i++)

and

...

i = 4;

printf("i = %d\n", ++i)

will both leave i as 5, but in the 1st fragment 4 will be printed out while in

the 2nd 5 will.

� i+=6 is equivalent to i=i+6. This style of contraction isn't so common, but

can be used with most of the binary operators.

� Assignment statements have a value { the �nal value of the left-hand-side {

so j = (i=3+4) will set i then j to 7, and i = j = k = 0 will set k, then j,

then i to zero. This feature should be used with caution.

� The `,' operator is used between 2 expressions if the value of the 1st expression

can be ignored. It's a way to put 2 or more statements where normally only

one would go. E.g.

for(init(3),i=0,j+0; i<100; i++,j++)

This feature is often over-used too.

� Expressions with comparison operators return 1 if the comparison is true, 0

if false, so while(i!=0) and while(i) are equivalent.

� The `if (cond) exp1; else exp2;' construction can be abbreviated using

`(cond)?exp1:exp2'. The following fragments are equivalent.

...

if (a==6)

j=7;

else

j=5;

...

(a==6)?j=7:j=5;

...

This notation should be used with discretion.

12

LIST OF FIGURES 8. FUNCTIONS

8 Functions

C has no procedures, only functions. Their de�nitions can't be nested but all except

main can be called recursively. In ANSI C the form of a function de�nition is

<function type> <function name> (<formal argument list>)

f
<local variables>
<body>

g

E.g.

int mean(int x, int y)

{

int tmp;

tmp = (x + y)/2;

return tmp;

}

In K&R C the same function would be written as

int mean(x,y)

int x;

int y;

{

int tmp;

tmp = (x + y)/2;

return tmp;

}

Note that the formal argument declarations are di�erently placed. This are

the most visible di�erence between ANSI C and K&R C . Programs (usually called

protoize or protogen) exist to convert to ANSI C style argument declarations.

The default function type is `extern int' and the default type for the formal

arguments is `int' but depending on these defaults is asking for trouble; they should

be explicitly declared.

Functions end when

� execution reaches the closing `g' of the function. If the function is supposed

to return something, the return value will be unde�ned.

� a `return' statement is reached, returning control to the calling function.

� an `exit' statement is reached, ending execution of the whole program.

Just as return can return a value to the calling routine, so exit returns a value

to the Unix environment. By convention, returning a zero means that the program

has run successfully. Better still, return EXIT_SUCCESS or EXIT_FAILURE; they're

de�ned in stdlib.h.

All parameters in C are `passed by value'. To perform the equivalent of Pascal's

`pass by reference' you need to know about pointers.

13

LIST OF FIGURES 9. POINTERS

9 Pointers

Even if you don't use pointers yourself, the code you'll learn from will have them.

Suppose i is an integer. To �nd the address of i the & operator is used (&i).

Setting a pointer to this value lets you refer indirectly to the variable i. If you

have the address of a pointer variable and want to �nd the variable's value, then

the dereferencing operator * is used.

...

int i;

/* The next statement declares i_ptr to be a pointer at

an integer. The declaration says that if i_ptr is

dereferenced, one gets an int.

*/

int *i_ptr;

i_ptr = &i; /* initialise i_ptr to point to i */

/* The following 2 lines each set i to 5 */

i = 5;

iptr = 5; / i.e. set to 5 the int that iptr points to */

Pointers aren't just memory addresses; they have types. A pointer-to-an-int is int*

and is of a di�erent type to a pointer-to-a-char (which is char*). The di�erence

matters especially when the pointer is being incremented; the value of the pointer

is increased by the size of the object it points to. So if we added

iptr=iptr+1;

in the above example, then iptr wouldn't be incremented by 1 (which would make

it point somewhere in the middle of i) but by the length of an int, so that it would

point to the memory location just beyond i. This is useful if i is part of an array.

In the following fragment, the pointer steps through an array.

...

int numbers[10];

int *iptr;

int i;

numbers[0] = 1;

numbers[1] = 2;

numbers[2] = 3;

iptr = &numbers[0]; /* Point iptr to the first element in numbers[] */

/* now increment iptr to point to successive elements */

for (i=0; i<3; i++){

printf("*iptr is %d\n", *iptr);

iptr= iptr+1;

}

...

Pointers are especially useful when functions operate on structures. Using a

pointer avoids copies of potentially big structures being made.

typedef struct {

int age;

14

LIST OF FIGURES 9. POINTERS

int height;

char surname[20];

} person;

person fred, jane;

int sum_of_ages(person *person1, person *person2){

int sum; /* a variable local to this function. */

/* Dereference the pointers, then use the `.' operator to get the

fields */

sum = (*person1).age + (*person2).age;

return sum;

}

Operations like (*person1).age are so common that there's a special, more natural

notation for it: person1->age.

To further illustrate the use of pointers let's suppose that in the �rst example

on page 4 we wanted to pass to the function mean the variable where we wanted

the answer stored. Since we no longer need mean to return a value, we can make it

return void. Let's �rst try:-

#include <stdio.h>

#include <stdlib.h>

void mean(int a, int b, int return_val)

{

return_val = (a + b)/2;

printf("return_val in mean in %d\n",return_val);

}

main()

{

int i, j;

int answer;

i = 7;

j = 9;

mean(i,j, answer);

printf("The mean of %d and %d is %d\n", i, j, answer);

}

This won't work. Although return val is set to the right value in mean, answer

isn't. Remember, return val and answer are separate variables. The value of

answer is copied into return val when mean is called. The mean function doesn't

know where answer is stored, so it can't change it. A pointer to answer has to be

given to mean().

#include <stdio.h>

#include <stdlib.h>

/* Note the form of the ptr_to_answer declaration below. It

says that if you dereference ptr_to_answer you get an

int. i.e. ptr_to_answer is a pointer to an int.

*/

15

LIST OF FIGURES 10. STRINGS

void mean(int a,int b, int *ptr_to_answer)

{

*ptr_to_answer = (a + b)/2;

}

main()

{

int i, j;

int answer;

i = 7;

j = 9;

mean(i,j, &answer); /* Note that now we're passing a pointer

* to 'answer'

*/

printf("The mean of %d and %d is %d\n", i, j, answer);

}

There's a special value for null pointers (NULL) and a special type for generic

pointers (void*). In K&R C , casting a pointer from one type to another didn't

change its value. In ANSI C however, alignment is taken into account. If a long

can only begin at an even memory location, then a pointer of type char* pointing

to an odd location will have its value changed if cast into a long*.

10 Strings

In C a string is just an array of characters. The end of the string is denoted by a zero

byte. The various string manipulation functions are described in the online manual

page called `string', and declared in the string.h include �le. The following piece

of code illustrates their use and highlights some problems

/* strings.c */

#include <stdio.h>

#include <string.h>

char str1[10]; /* This reserves space for 10 characters */

char str2[10];

char str3[]= "initial text"; /* str3 is set to the right size for you

* and automatically terminated with a 0

* byte. You can only initialise

* strings this way when defining.

*/

char *c_ptr; /* declares a pointer, but doesn't initialise it. */

unsigned int len;

main()

{

/* copy "hello" into str1. If str1 isn't big enough, hard luck */

strcpy(str1,"hello");

/* if you looked at memory location str1 you'd see these byte

values: 'h','e','l','l','o','\0'

*/

16

LIST OF FIGURES 10. STRINGS

/* concatenate " sir" onto str1. If str1 is too small, hard luck */

strcat(str1," sir");

/* values at str1 : 'h','e','l','l','o',' ','s','i','r','\0'

*/

len = strlen(str1); /* find the number of characters */

printf("Length of <%s> is %d characters\n", str1, len);

if(strcmp(str1, str3))

printf("<%s> and <%s> are different\n", str1, str3);

else

printf("<%s> and <%s> are the same\n", str1, str3);

if (strstr(str1, "boy") == (char*) NULL)

printf("The string <boy> isn't in <%s>\n", str1);

else

printf("The string <boy> is in <%s>\n", str1);

/* find the first `o' in str1 */

c_ptr = strchr(str1,'o');

if (c_ptr == (char*) NULL)

printf("There is no o in <%s>\n", str1);

else{

printf("<%s> is from the first o in <%s> to the end.\n",

c_ptr, str1);

/* Now copy this part of str1 into str2 */

strcpy(str2, c_ptr);

}

}

Usually `str1' would be used instead of `&str1[0]' to refer to the address of the

�rst element of the character array, since C de�nes the value of an array name to

be the location of the �rst element. In fact, once you've set c ptr to str, the 2

variables behave similarly in most circumstances.

� There is not really any di�erence in the behaviour of the array subscripting
operator [] as it applies to arrays and pointers. The expressions str[i] and

c_ptr[i] are both processed internally using pointers. For instance, str[i]

is equivalent to *((str)+(i)).

� Array and pointer declarations are interchangeable as function formal param-

eters. Since arrays decay immediately into pointers, an array is never actually

passed to a function. Therefore, any parameter declarations which `look like'

arrays, e.g.

int f(char a[])

{

...

}

are treated by the compiler as if they were pointers, so `char a[]' could be

replaced by `char* a'. This conversion holds only within function formal

parameter declarations, nowhere else. If this conversion bothers you, avoid it.

17

LIST OF FIGURES 10. STRINGS

Because the distinction between pointers and arrays often doesn't seem to mat-

ter, programmers get surprised when it does. Arrays are not pointers. The array

declaration `char str1[10];' requests that space for ten characters be set aside.

The pointer declaration `char *c_ptr;' on the other hand, requests a place which

holds a pointer. The pointer is to be known by the name c_ptr, and can point

to any char (or contiguous array of chars) anywhere. str1 can't be changed: it's

where the array begins and where it will always stay.

You can't pass whole arrays to functions, only pointers to them. To declare such

pointers correctly you need to be aware of the di�erent ways that multi-dimensional

arrays can be stored in memory. Suppose you created a 2D array of characters as

follows:-

char fruits[3][10] = {"apple", "banana", "orange"};

This creates space for 3 strings each 10 bytes long. Let's say that `fruits' gets

stored at memory location 6000. Then this will be the layout in memory:

6000 a p p l e \0

6010 b a n a n a \0 . . .

6020 o r a n g e \0 . . .

If you wanted to write a function that printed these strings out so you could do

`list names(fruits)', the following routine will work

void list_names(char names[][10]){

int i;

for (i=0; i<3; i++){

printf("%s\n", names[i]);

}

}

The routine has to be told the size of the things that names points to, otherwise it

won't be able to calculate names[i] correctly. So the `10' needs to be provided in

the declaration. It doesn't care about how many things are in the array, so the �rst

pair of brackets might just as well be empty. An equivalent declaration is

void list_names(char (*names)[10])

saying that `names' is a pointer to an array each of whose elements is 10 chars.

The above method of creating arrays wastes a lot of space if the strings di�er

greatly in length. An alternative way to initialise is as follows:-

char *veg[] = {"artichoke", "beetroot", "carrot"};

Here `veg' is set up as an array of pointer-to-chars. The layout in memory is

di�erent too. A possible layout is:-

Address Value

6000 9000

6004 9600

6008 9700

...

9000 a r t i c h o k e \0

9600 b e e t r o o t \0

9700 c a r r o t \0

18

LIST OF FIGURES 11. EXERCISES 2

Note that `veg' is the start of an array of pointers. The actual characters are

stored elsewhere. If we wanted a function that would print out these strings,

then the `list names()' routine above wouldn't do, since this time the argument

`names' wouldn't be pointing to things that are 10 bytes long, but 4 (the size of a

pointer-to-char). The declaration needs to say that `names' points to a character

pointer.

void list_names(char **names){

int i;

for (i=0; i<3; i++){

printf("%s\n", names[i]);

}

}

The following declaration would also work:-

void list_names(char *names[]){

Using cdecl (see page 36) will help clarify the above declarations.

The program below shows the 2 types of array in action. The functions to print

the names out are like the above except that

� The arrays are endstopped so that the functions needn't know beforehand

how many elements are in the arrays.

� The for loop uses some common contractions.

#include <stdio.h>

#include <stdlib.h>

void list_names(char (*names)[10]){

for (; names[0][0]; names++){

printf("%s\n", *names);

}

}

void list_names2(char *names[]){

for (; *names!=NULL; names++){

printf("%s\n",*names);

}

}

int main(int argc, char *argv[]){

char fruits[4][10] = {"apple", "banana", "orange", ""};

char *veg[] = {"artichoke", "beetroot", "carrot", (char*) NULL};

list_names(fruits);

list_names2(veg);

exit(0);

}

11 Exercises 2

To answer these exercises you'll need to be able to get keyboard input from the

user. For the moment, use the following fragment to get a string from the user. str

needs to point to the start of an existing character array.

19

LIST OF FIGURES 11. EXERCISES 2

char * get_string(char str[])

{

printf("Input a string\n");

return gets(str);

}

Sample answers are on page 67 unless otherwise stated.

1. Write your own strcpy routine. Use a for loop with arrays �rst, then see if

you can use a while loop and pointers.

2. The following code fragment uses many of the contractions mentioned earlier.

It comes from ghostscript. Re-write it to make it more legible.

int ccase = (skew >= 0 ? copy_right :

((bptr += chunk_bytes), copy_left))

+ function;

3. Write a program that invites the user to type in a string and prints the string

out backwards (The answer's in section 17).

4. Write your own version of strchr (see the manual page for a description).

5. Write a program which reads in a string like \20C" or \15F" and outputs the

temperature to the nearest degree using the other scale. The easiest way to

parse the input string is to use sscanf to scan the input string for a number

and a character. It will return the number of items successfully read in.

...

int degrees;

char scale;

int return_value;

...

return_value = sscanf(str,"%d%c",°rees, &scale);

...

6. The following program will be developed later in the handout. Suppose you

have a situation where you need to process a stream of things (they might

be scanned character images, chess positions or as in this example, strings),

some of which might be duplicates. The processing might be CPU-intensive,

so you'd rather use the previously calculated values than re-process duplicate

entries. What's needed is a look-up table.

Each entry in the look-up table needs to have a record of the original string

and the result of the processing. A structure of type Entry

typedef struct {

char str[64];

int value;

} Entry;

will do for now. For our purposes it doesn't matter much what the process-

ing routine is. Let's use the following, multiplying all the characters' values

together.

20

LIST OF FIGURES 11. EXERCISES 2

int process(char *str){

int val = 1;

while (*str){

val = val * (*str);

str++;

}

return val;

}

To get strings into the program you can use the get string function. Now

write a program that reads strings from the keyboard. If the string is new,

then it's processed, otherwise its value is looked up in a table. The program

should stop when `end' is typed. Here's a skeleton program to get you started.

/* hash1.c */

/* TODO include standard include files */

/* The following 2 lines use the preprocessor to create aliases.

Note that these lines DON'T end with a `;'

*/

#define TABLE_SIZE 50

#define MAX_STR_LEN 64

typedef struct {

char str[MAX_STR_LEN];

int value;

} Entry;

char str[MAX_STR_LEN];

/* TODO Create an array of TABLE_SIZE elements of type Entry */

int process(char *str){

int val = 1;

while (*str){

val = val * (*str);

str++;

}

return val;

}

char * get_string(char str[])

{

printf("Input a string\n");

return gets(str);

}

main(){

int num_of_entries = 0;

/* TODO Use get_string repeatedly. For each string:-

If the string says `end', then exit.

If the str is already in the table,

print the associated value

else

21

LIST OF FIGURES 11. EXERCISES 2

calculate the value, add a new

entry to the table, then print the value.

*/

}

7. The method used above can be improved upon. Firstly, it will go wrong if there

are too many strings. By choosing an arbitrarily large value for TABLE SIZE

you could overcome this problem, but the method of searching the table to

see whether an entry is new becomes very ine�cient as the table grows.

A technique called hashing copes with the speed problem. First we need a hash
function which given a string produces a number in the range 0..TABLE SIZE.

The following function just adds up the value of the characters in the string

and gets the remainder after dividing by TABLE SIZE.

int hashfn(char *str){

int total = 0;

int i;

while (i = *str++)

total += i;

return total % TABLE_SIZE;

}

Now, whenever a string is to be processed, its hash value is calculated and

that is used as an index into the table, which is much quicker than searching.

If that entry is empty then the string is new and has to be processed. If the

entry is occupied, then the associated value can be accessed. This method is

awed, but we'll deal with that problem later.

/* hash2.c */

/* TODO include standard include files */

#define TABLE_SIZE 50

#define MAX_STR_LEN 64

#define EMPTY -1

typedef struct {

char str[MAX_STR_LEN];

int value;

} Entry;

char str[MAX_STR_LEN];

/* TODO Create an array of TABLE_SIZE elements of type Entry */

int process(char *str){ /* Same as hash1.c */

int val = 1;

while (*str){

val = val * (*str);

str++;

}

return val;

}

char * get_string(char str[]) /* Same as hash1.c */

{

printf("Input a string\n");

22

LIST OF FIGURES 11. EXERCISES 2

return gets(str);

}

int hashfn(char *str){

int total = 0;

int i;

while (i = *str++)

total += i;

return total % TABLE_SIZE;

}

void set_table_values(void){

/* TODO set all the value entries in the table to EMPTY

(We'll assume that the process() routine doesn't

produce -1)

*/

}

int find_entry(char *str, int bucket){

/* TODO

if the entry in postion 'bucket' is EMPTY then fill

the entry's fields in and return the string's

processed value, else return the value of the entry.

*/

}

main(){

int bucket;

int val;

set_table_values();

/* TODO Use get_a_string repeatedly. For each string:-

use the hash function to find the string's entry

in the table, then do the following

*/

bucket = hashfn(str)

val = find_entry(str,bucket);

printf("Value of <%s> is %d\n",str, val);

}

8. The problem with this method is that the hash function may produce the

same value for di�erent strings (for example, `act' and `cat' will both map

into the same entry). A simple way of coping with such `collisions' is the
following:- If a table entry is occupied, check the string there to see if it's the

one being searched for. If it is, then return the associated value. If it isn't the

right string, then look at subsequent entries until either

� an entry for the string is found.

� an empty entry is found.

� It's been shown that all entries are full up.

You'll have to add just a few lines to the find entry routine of the previous

exercise. Remember to cycle round when the bottom of the table is reached.

23

LIST OF FIGURES 12. KEYWORDS, OPERATORS AND DECLARATIONS

A more robust method (and the answer to the exercise here) is in the next set

of exercises (see section 17).

12 Keywords, Operators and Declarations

12.1 Keywords

You can't use the following reserved words for variable names, etc.

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while

A few of these haven't yet been described.

auto :- This is the default Storage Class for variables so it's not explicitly used.

static, which you've already met, is an alternative class.

const :- If a variable isn't meant to change you can de�ne it as const. E.g., If
you create an integer using `const int i = 6;' then a later `i = 7;' will

be illegal. However, if you create a pointer to i and use this to change the

value, you'll probably get away with it. The main purpose of const is to help

optimisers. volatile is the opposite of const.

enum :- C has enumerated types, like pascal. E.g.

enum color {Red, Green, Blue};

They're not as useful as in pascal because C doesn't check if you set an

enumerated type to a valid value.

register :- You can suggest to the compiler that a variable should be kept in a

register for faster access. E.g. `register int i' might help if i is a much-

used indexing variable. An optimising compiler should use registers e�cienty

anyway. Note that you can't use the `&' operator on a register variable.

12.2 Operators

At last, here is a table of operators and precedence.

The lines of the table are in order of precedence, so `a * b + 6' is interpreted

as `(a * b) + 6'. When in doubt put brackets in!

The Associativity column shows how the operators group. E.g.`<' groups left
to right, meaning that a < b < c is equivalent to (a < b) < c rather than a < (b < c).

Both are pretty useless expressions.

24

LIST OF FIGURES 12. KEYWORDS, OPERATORS AND DECLARATIONS

Associativity Operator

left to right () [], ->, .

right to left ! (negation), ~ (bit-not)

++, --, - (unary) , * (unary), & (unary), sizeof

right to left cast (type)

left to right *, /, % (modulus)

left to right - +

left to right <<, >>

left to right <, <=, >, >=

left to right ==, !=

left to right & (bit-and), | (bit-or)

left to right ^ (bit-xor)

left to right && (logical and)
left to right || (logical or)

right to left ?:

right to left =, +=, -=, /=, %=, >>=, &=

left to right ,

Bit operations

C can be used to operate on bits. This is useful for low-level programming though

the operations are also used when writing X graphics applications.

Setting a bit :- Suppose you wanted to set bit 6 of i (a long, say) to 1. First

you need to create a mask that has a 1 in the 6th bit and 0 elsewhere by doing

`1L<<6' which shifts all the bits of the long 1 left 6 bits. Then you need to

do a bit-wise OR using `i = i | (1L<<6)'.

Unsetting a bit :- Suppose you wanted to set bit 6 of i (a long, say) to 0. First

you need to create a mask that has a 0 in the 6th bit and 1 elsewhere by doing

`1L<<6' then inverting the bits using the ~ operator. Then you need to do a

bit-wise AND using the & operator. The whole operation is `i =i & ~(1<<6)'

which can be contracted to `i &= ~(1<<6)'.

Creating a mask for an X call :- In X graphics, masks are often created each

of whose bits represent a option that is to be selected in some way. Each bit

can be referred to using an alias that has been set up in an include �le. E.g. a
mask which could be used in a call to make a window sensitive to key presses

and buttonpresses could be set up by doing

unsigned int mask = KeyPressMask | ButtonPressMask;

12.3 Declarations

First, a note on terminology. A variable is de�ned when it is created, and space

is made for it. A variable is declared when it already exists but needs to be re-

described to the compiler (perhaps because it was de�ned in another source �le).

Think of declaring in C like declaring at customs { admitting to the existence of

something.

C declarations are not easy to read. Any good book on C should explain how to

read complicated C declarations \inside out" to understand them, starting at the

variable name and working outwards back to the base type. You shouldn't need to

use complicated declarations so don't worry too much if you can't `decode' them.

Keep a cribsheet of useful typedefs and play with cdecl (see section 16.1).

ANSI C introduced the use of the `void' keyword in various contexts.

� `routine(void)' { the routine takes no arguments.

25

LIST OF FIGURES 13. MEMORY ALLOCATION

� `void routine (int i)' { the routine returns no value.

� `void *ptr' { ptr is a generic pointer which should be cast into a speci�c

form before use.

The following examples show common declarations.

int *p pointer to an int

int x[10] an array of 10 ints

int (*x)[10] a pointer to an array of 10 ints
int *x[10] array of 10 pointers to ints

int (*f)(int) pointer to a function taking and returning an int

void (*f)(void) pointer to a function taking no args and returning nothing

int (*f[])(int) An array of pointers to a functions taking and returning an int

Note the importance of the brackets in these declarations. If a declaration gets

too complex it should be broken down. For example, the last example could be

rewritten as

typedef int (*PFI)(int) /* declare PFI as pointer to function that

takes and returns an int.*/

PFI f[];

13 Memory Allocation

Space is automatically set aside for variables when they are de�ned, but sometimes

you don't know beforehand how many variables you'll need or just how long an

array might need to be. The malloc command creates space, returning a pointer

to this new area. To illustrate its use and dangers, here's a sequence of attempts at

writing a string reverser program.

#include <stdio.h>

#include <stdlib.h>

void print_reverse(char *str)

{

int i;

unsigned int len;

len = strlen(str) - 1; /* Why the -1? Because arrays start at 0,

so if a string has n chars, the

last char will be at position n-1

*/

for (i=len; i>=0; i--)

putchar(str[i]);

}

void main()

{

char input_str[100] /* why 100? */

printf("Input a string\n");

gets(input_str); /* should check return value */

printf("String was %s\n", input_str);

print_reverse(input_str);

}

26

LIST OF FIGURES 13. MEMORY ALLOCATION

This works, but is a bit `loose' (suppose the user types more than 100 charac-

ters?) and doesn't keep a copy of the reversed string should it be needed later.

The next example shows a wrong (but not uncommon) attempt to solve the latter

limitation.

#include <stdio.h>

/* WRONG! */

char* make_reverse(char *str)

{

int i, j;

unsigned int len;

char newstr[100];

len = strlen(str) - 1;

j=0;

for (i=len; i>=0; i--;)

newstr[j] = str[i];

j++;

/* now return a pointer to this new string */

return newstr;

}

void main()

{

char input_str[100]; /* why 100? */

char *c_ptr;

printf("Input a string\n");

gets(input_str); /* should check return value */

c_ptr = make_reverse(input_str);

printf("String was %s\n", input_str);

printf("Reversed string is %s\n", c_ptr);

}

Like many awed C programs this will work much of the time, especially if it's

not part of a bigger program. The problems are that :-

� The memory allocated for newstr when it was declared as an `automatic' vari-

able in make reverse isn't permanent { it only lasts as long as make reverse()

takes to execute. However, the array's contents aren't erased, they're just

freed for later use, so if you access the array from main you might still get

away with it for a while. Making newstr a static will preserve the data but

only until it's overwritten by a subsequent call.

� The newly created array of characters, newstr, isn't terminated with a zero

character, `\0', so trying to print the characters out as a string may be

disastrous. `Luckily' the memory location that should have been set to zero

is likely to be zero anyway.

Let's try again.

/* mallocing.c */

#include <stdio.h>

#include <stdlib.h>

char* make_reverse(char *str)

{

int i;

27

LIST OF FIGURES 14. INPUT/OUTPUT

unsigned int len;

char *ret_str, *c_ptr;

len = strlen(str);

/* Create enough space for the string AND the final \0.

*/

ret_str = (char*) malloc(len +1);

/*

Now ret_str points to a `permanent' area of memory.

*/

/* Point c_ptr to where the final '\0' goes and put it in */

c_ptr = ret_str + len;

*c_ptr = '\0';

/* now copy characters from str into the newly created space.

The str pointer will be advanced a char at a time,

the cptr pointer will be decremented a char at a time.

*/

while(*str !=0){ /* while str isn't pointing to the last '\0' */

c_ptr--;

*c_ptr = *str;

str++; /* increment the pointer so that it points to each

character in turn. */

}

return ret_str;

}

void main()

{

char input_str[100]; /* why 100? */

char *c_ptr;

printf("Input a string\n");

gets(input_str); /* Should check return value */

c_ptr = make_reverse(input_str);

printf("String was %s\n", input_str);

printf("Reversed string is %s\n", c_ptr);

}

The malloc'ed space will be preserved until it is explicitly freed (in this case

by doing `free(c ptr)'). Note that the pointer to the malloc'ed space is the only

way you have to access that memory: lose it and the memory will be inaccessible.

It will only be freed when the program �nishes.

malloc is often used to create tree and list structures, since one often doesn't

know beforehand how many items will be needed. See section A.4 for an example.

14 Input/Output

14.1 File I/O under Unix

Some �le operations work on �le pointers and some lower level ones use small

integers called �le descriptors (an index into a table of information about opened

�les).

28

LIST OF FIGURES 14. INPUT/OUTPUT

The following code doesn't do anything useful but it does use most of the �le

handling routines. The manual pages describe how each routine reports errors.

If errnum is set on error then perror can be called to print out the error string

corresponding to the error number, and a string the programmer provides as the

argument to perror.

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h> /* the man pages of the commands say which

include files need to be mentioned */

#define TRUE 1

int bytes_read;

size_t fp_bytes_read;

int fd; /* File descriptors */

int fd2;

FILE *fp; /* File pointers */

FILE *fp2;

char buffer[BUFSIZ]; /* BUFSIZ is set up in stdio.h */

main(){

/* Use File descriptors */

fd = open ("/etc/group", O_RDONLY);

if (fd == -1){

perror("Opening /etc/group");

exit(1);

}

while (TRUE){

bytes_read = read (fd, buffer,BUFSIZ);

if (bytes_read>0)

printf("%d bytes read from /etc/group.\n", bytes_read);

else{

if (bytes_read==0){

printf("End of file /etc/group reached\n");

close(fd);

break;

}

else if (bytes_read == -1){

perror("Reading /etc/group");

exit(1);

}

}

}

/* now use file pointers */

fp = fopen("/etc/passwd","r");

if (fp == NULL){

printf("fopen failed to open /etc/passwd\n");

exit(1);

}

29

LIST OF FIGURES 14. INPUT/OUTPUT

while(TRUE){

fp_bytes_read= fread (buffer, 1, BUFSIZ, fp);

printf("%d bytes read from /etc/passwd.\n", fp_bytes_read);

if (fp_bytes_read==0)

break;

}

rewind(fp); /* go back to the start of the file */

/* Find the descriptor associated with a stream */

fd2 = fileno (fp);

if (fd2 == -1)

printf("fileno failed\n");

/* Find the stream associated with a descriptor */

fp2 = fdopen (fd2, "r");

if (fp2 == NULL)

printf("fdopen failed\n");

fclose(fp2);

}

To take advantage of unix's I/O redirection it's often useful to write �lters:

programs that can read from stdin and write to stdout. In Unix, processes have

stdin, stdout and stderr channels. In stdio.h, these names have been associated

with �le pointers. The following program reads lines from stdin and writes them

to stdout prepending each line by a line number. Errors are printed on stderr.

fprintf takes the same arguments as printf except that you also specify a �le

pointer. fprintf(stdout,....) is equivalent to printf(....).

/* line_nums.c

Sample Usage : line_nums < /etc/group

*/

#include <stdio.h>

#include <stdlib.h>

#define TRUE 1

int lineno = 0;

int error_flag = 0;

char buf[BUFSIZ]; /* BUFSIZ is defined in stdio.h */

main(){

while(TRUE){

if (fgets(buf,BUFSIZ, stdin) == NULL){

if (ferror(stdin) != 0){

fprintf(stderr,"Error during reading\n");

error_flag = 1;

}

if (feof(stdin) != 0)

fprintf(stderr,"File ended\n");

clearerr(stdin);

break; /* exit the while loop */

}

else{

lineno++;

/* in the next line, "%3d" is used to restrict the

30

LIST OF FIGURES 14. INPUT/OUTPUT

number to 3 digits.

*/

fprintf(stdout,"%3d: ", lineno);

fputs(buf, stdout);

}

}

fprintf(stderr,"%d lines written\n", lineno);

exit(error_flag);

}

ferror() and feof() are intended to clarify ambiguous return values. Here

that's not a problem since a NULL return value from fgets() can only mean end-

of-�le, but with for instance getw() such double checking is necessary.

14.2 Interactive

14.2.1 Output

For e�ciency, writing to �les under Unix is usually bu�ered, so printf(....)

might not immediately produce bytes at stdout. Should your program crash soon

after a printf() command you might never see the output. If you want to force

synchronous output you can

� Use stderr (which is usually unbu�ered) instead of stdout.

� Use fflush(stdout) to ush out the standard output bu�er.

� Use setbuf(stdout,NULL) to stop standard output being bu�ered.

14.2.2 Input

scanf is a useful-looking routine for getting input. It looks for input of the format

described in its 1st argument and puts the input into the variables pointed to by

the succeeding arguments. It returns the number of arguments successfully read.

Suppose you wanted the user to type their surname then their age in. You could

do this:-

int age;

char name[50];

int return_val;

main(){

printf("Type in your surname and age, then hit the Return key\n");

while(TRUE){

return_val= scanf("%s %d", name, &age);

if (return_val == 2)

break;

else

printf("Sorry. Try Again\n");

}

}

If you use scanf in this way to directly get user input, and the user types in

something di�erent to what scanf() is expecting, scanf keeps reading until its

entire input list is ful�lled or EOF is reached. It treats a newline as white space.
Thus users can become very frustrated in this example if, say, they keep typing

their name, then hitting Return. A better scheme is to store user input in an

31

LIST OF FIGURES 15. SOURCE FILE ORGANISATION

intermediate string and use sscanf(), which is like scanf() except that its �rst

argument is the string which is to be scanned. E.g. in

...

int ret, x, y, z;

ret = sscanf(str,"x=%d y=%d z=%d", &x, &y, &z);

...

sscanf, given a string `x=3 y=7 z=89', will set the x, y, and z values accordingly

and ret will be set to 3 showing that 3 values have been scanned. If str is `x+1

y=4', sscanf will return 2 and won't hang and you can print a useful message to

the user.

To read the original string in, fgets() is a safer routine to use than gets()

since with gets() one can't check to see if the input line is too large for the bu�er.

This still leaves the problem that the string may contain a newline character (not

just whitespace) when using fgets. One must make annoying provisions for ends

of lines that are not necessary when input is treated as a continuous stream of

characters.

15 Source File organisation

The needs of large-scale organisation and support for many platforms may make

modules incomprehensible unless some understanding of the overall structure is

gained �rst.

15.1 Preprocesser Facilities

The preprocessor has some useful options.

source�le inclusion :-

#include "defines.h"

...

#include <defines.h>

The di�erence between these two variants is that with the included �le in

quotes, it is �rst looked for in the directory of the source �le. In each case,

the standard include directories on the system are searched as well as any

directories mentioned on the command line after the `-I' ag. See the `cpp'

man page for more details.

macro replacement :-

Note that these macros are expanded before the compiler is called. They aid

legibility. In the �rst example below, a simple substitution is done. In the

second, an in-line macro is de�ned, whose execution should be faster than the

equivalent function.

#define ARRAY_SIZE 1000

char str[ARRAY_SIZE];

...

#define MAX(x,y) ((x) > (y) ? (x) : (y))

int max_num;

max_num = MAX(i,j);

...

32

LIST OF FIGURES 15. SOURCE FILE ORGANISATION

conditional inclusion :-

Blocks of code can be conditionally compiled according to the existence or

value of a preprocessor variable. A variable can be created using the `#define'

preprocessor directive or using the `-D' option at compilation time. The �rst

two examples shows how debugging statements can easily be switched on or

o�. The �nal example shows how blocks of code can be de-activated.

#ifdef DEBUG

printf("got here\n");

#else

something();

#endif /*DEBUG*/

...

#if defined(DEBUG)

#define Debug(x) printf(x)

#else

#define Debug(x)

#endif

if (i == 7){

j++;

Debug(("j is now %d\n", j));

}

#if 0

/* this code won't reach the compiler */

printf("got here\n");

#endif

15.2 Multiple Source Files

Modularisation not only makes the source more easy to manage but it speeds up

re-compilation: you need only recompile the changed source �les. Also, by keeping

the I/O components in one �le (and perhaps the text to be printed into another)

one can more easily convert the software to run on other machines and in other

natural languages.

By default, functions and variables de�ned outside of functions can be accessed

from other �les, where they should be declared using the extern keyword. If how-

ever the variable is de�ned as static, it can't be accessed from other �les. In the

following example, `i', `j' and the function `mean' are created in file1.c but only

`i' can be accessed from file2.c.

/* file1.c */

int i;

static int j;

static int mean(int a, int b){

...

/* file2.c */

extern int i;

Names of external variables should be kept short; only the �rst 6 initial char-

acters are guaranteed to be signi�cant (though in practise the �rst 255 character

often are).

You should keep to a minimum the number of global variables. You can use

include �les to manage your global variables.

1. Construct a `globals.h' �le with all of your #defines and variable declara-

tions in it. Make sure all variables are de�ned as externs. Include this �le in

33

LIST OF FIGURES 15. SOURCE FILE ORGANISATION

all the relevant source �les.

2. In the �le that contains your main(), you again have all the variable de�ni-

tions, minus the externs. This is important { if they are all de�ned extern,

the linker will not be able to allocate memory for them.

You can achieve this with the help of the pre-processor if your globals.h looks

like this:-

#ifdef LOCAL

#define EXTERN

#else

#define EXTERN extern

#endif

EXTERN int num_of_files;

..

In this way, the `EXTERN' becomes `extern' in every �le that includes globals.h.

The trick is then to have

#define LOCAL

#include "globals.h"

in the �le containing the main routine.

If you're calling a routine in one �le from another �le it's all the more important

for the formal parameters to be declared correctly. Note especially that the dec-

laration `extern char *x' is not the same as `extern char x[]' { one is of type

`pointer-to-char' and the other is `array-of-type-char' (see section 10).

15.3 Make

If you have many source �les you don't need to recompile them all if you only

change one of them. By writing a makefile that describes how the executable is

produced from the source �les, the make command will do all the work for you. The

following make�le says that pgm depends on two �les a.o and b.o, and that they in

turn depend on their corresponding source �les (a.c and b.c) and a common �le

incl.h:

pgm: a.o b.o

cc -Aa a.o b.o -o pgm

a.o: incl.h a.c

cc -Aa -c a.c

b.o: incl.h b.c

cc -Aa -c b.c

Lines with a `:' are of the form

target : dependencies

make updates a target only if it's older than a �le it depends on. The way that

the target should be updated is described on the line following the dependency line

(Note: this line needs to begin with a TAB character).

Here's a more complex example of a makefile for a program called dtree. First

some variables are created and assigned. In this case typing `make' will attempt to

recompile the dtree program (because the default target is the �rst target men-

tioned). If any of the object �les it depends on are older than their corresponding

source �le, then these object �les are recreated.

The targets needn't be programs. In this example, typing `make clean' will

remove any �les created during the compilation process.

34

LIST OF FIGURES 16. DEBUGGING

Makefile for dtree

DEFS = -Aa -DSYSV

CFLAGS = $(DEFS) -O

LDFLAGS =

LIBS = -lmalloc -lXm -lXt -lX11 -lm

BINDIR = /usr/local/bin/X11

MANDIR = /usr/local/man/man1

OBJECTS_A = dtree.o Arc.o Graph.o #using XmGraph

ARCH_FILES = dtree.1 dtree.c Makefile Dtree Tree.h TreeP.h \

dtree-i.h Tree.c Arc.c Arc.h ArcP.h Graph.c Graph.h GraphP.h

dtree: $(OBJECTS_A)

$(CC) -o dtree $(LDFLAGS) $(OBJECTS_A) $(LIBS)

Arc.o: Arc.c

$(CC) -c $(CFLAGS) Arc.c

Graph.o: Graph.c

$(CC) -c $(CFLAGS) Graph.c

dtree.o: dtree.c

$(CC) -o dtree.o -c $(CFLAGS) -DTREE dtree.c

install: dtree dtree.1

cp dtree $(BINDIR)

cp dtree.1 $(MANDIR)

clean:

rm -f dtree *.o core tags a.out

16 Debugging

16.1 Utilities and routines

Some compilers have ags to turn on extra checking. gcc for example has a -Wall

option which gives a list of suspicious constructions as well as the usual compile

errors.

There are also routines that are useful

� When a system call fails it generally sets an external variable called errno to

indicate the reason for failure. Using perror() (which takes a string as an

argument) will print the string out and print the error message corresponding

to the value of errno

� assert() is useful for putting diagnostics into programs. When it is executed,

if the expression it takes as an argument is false (zero), assert prints the

expression's value and the location of the assert call. See the on-line manual

page for more details.

If using these fail, try some of the following. If your machine's lacking any of

these programs, look for public domain versions.

35

LIST OF FIGURES 16. DEBUGGING

lint :- is a program which gives the sort of warning messages about `unused vari-

ables' and `wrong number of arguments' that non-C compilers usually give.

lint takes most of the same arguments as the compiler. It needs special

libraries which are already provided.

cow :- To show which functions call which, use cflow. This produces an in-

dented output which also gives an idea of function call nesting. An ansi-ized,

much enhanced version is available by ftp from sunsite.unc.edu:/pub/linux/devel/C

cb :- To standardise the indentation of your program, send it through cb, a C

beauti�er;

cb ugly.c > lovely.c

cxrefs :- tells you where variables and functions are mentioned. It's especially

useful with multi-�le sources.

adb :- I only use adb to see why a core dump happened. If `myprog' causes a core

dump then

adb myprog

$c

will show you what function's return addresses were on the stack when the

crash happened, and what hex arguments they were called with. Quit using

$q

Symbolic Debuggers :- dbx, xdb, or gdb may be available to you. They are

symbolic source-level debuggers under which you can run a program in trace

mode allowing you to use breakpoints, query values, etc. To use this you will

have to �rst compile your program with the -g ag.

cdecl :- This program can help with C declarations. See man page for details.
Some examples:-

unix: cdecl declare fptab as array of pointer to function returning int

int (*fptab[])()

unix: cdecl explain int '(*fptab[])()'

declare fptab as array of pointer to function returning int

cdecl is available from archives in comp.sources.unix/volume6.

array bounds :- If you're using gcc there's a patch that lets you check whether

you're going o� the end of an array.

16.2 Some Common mistakes

C is based on the principle that programmers know what they're doing, so it lets

them get on with it and doesn't get in their way. Throughout this document

common errors have a Warning sign in the margin. A checklist of more errors is

given here.

36

LIST OF FIGURES 16. DEBUGGING

16.2.1 Miscellaneous

� A common mistake is to type `=' instead of `=='.

if (i=3)

return 1;

else

return 0;

will always return 1 because the assignment `i=3' has the value 3 and 3 is

true! gcc's warning option can alert you to this. You might also try to get

into the habit of writing expressions like if (3==i) to safeguard yourself from

this kind of error.

� Comments in C can't be nested. Use the preprocessor directives to temporarily

`comment out' blocks of code. Suppose you had the following code.

if (i=6)

z=mean(x,y); /* get the xy mean */

mean(z,y);

If you decided not to risk running mean you might do

/* comment this fragment out

if (i=6)

z=mean(x,y); /* get the xy mean */

mean(z,y);

*/

but it wouldn't work because the �rst `/*' would be matched by the `*/' on

the `mean(x,y)' line (the `/*' on that line being ignored), and `mean(z,y);'

wouldn't be commented out at all. In this case the �nal `*/' would be agged

as an error, but you won't always be so lucky.

� ...

i = 3;

j = 10;

while (i<100);

i = i+j;

...

This while loop will go on for ever. The semicolon after the while condition

is a null statement which forms the body of the loop so i will always be 3.

Take away that semicolon and i = i+j becomes the body, which is probably

what was intended.

� When you have an if-else statement nested in another if statement, always

put braces around the if-else. Thus, never write like this:

if (foo)

if (bar)

win ();

else

lose ();

(the else matches the closest if), always like this:

37

LIST OF FIGURES 16. DEBUGGING

if (foo)

{

if (bar)

win ();

else

lose ();

}

� Don't be fooled by indentation. In the following fragment only the execution

of the `j = 7;' statement is conditional upon the value of i.

...

if (i==7)

j = 7;

k = 7;

...

� The order of operations in an expression isn't guaranteed to be left-to-right.

A line like

a[i++] = b[i++];

will have di�erent results according to whether or not the i on the left-hand

side is calculated before the right-hand side is evaluated.

� The order of operator precedence sometimes surprises people.

...

FILE *fp;

...

if (fp=fopen(filename, "r") == NULL)

return (NULL);

Here the intention is to try opening a �le, then compare the resulting fp

to NULL to see if fopen failed. Unfortunately, what actually happens �rst

is the test (fopen(filename, "r") == NULL) which has an integer result

(non-zero if the statement is true). This result is then assigned to fp. The

compiler should warn you about this problem. The code should have some

extra brackets:-

...

FILE *fp;

...

if ((fp=fopen(filename, "r")) == NULL)

return (NULL);

� The following won't work as expected because the `~' character needs to be

interpreted by the shell.

if ((fp=fopen("~/data", "r")) == NULL)

return (NULL);

You'll have to �nd out your home directory (use getenv("HOME")) and append

to it.

38

LIST OF FIGURES 16. DEBUGGING

� scanf takes pointers to the variables that are going to be set. The following

fragment will cause a crash

...

int i;

scanf("%d",i); /* this should be scanf("%d",&i) */

� The most uncomfortable bugs are those that seem to move as you hunt them

down. Put in some printf() statements and they just disappear { or seem to.

This could mean that you're writing o� the end of an array or that one of your

pointers has gone astray. You can protect against this by doing something

like

#define BUFLEN 10

int x[BUFLEN], y;

...

if (y >= BUFLEN || y<0)

[error code here]

else

x[y] = 255;

...

� There's a big di�erence between '\0' and "\0". Suppose you had

char str[100];

char *str_ptr;

str_ptr = str;

then str ptr and str would both point to the �rst element in the array.

Suppose you wanted to initialise this string by making the �rst element a zero

byte. You could do

strcpy(str_ptr, "\0") /* or strcpy(str_ptr, "") */

or

*str_ptr = '\0';

but

str_ptr = "\0";

would do something quite di�erent. It would create a string in your executable

(namely "\0") and set str ptr to point to it with potentially disastrous ef-

fects.

� Turning on optimisation may change the behaviour of your program, espe-

cially if the program isn't perfect. For instance, if optimisation re-positions a

variable into a register it's less likely to be 0 initially, so if you've not initialised

variables before use you might get a surprize.

� A function that returns a pointer either (1) takes a pointer as a parameter

or (2) uses malloc to allocate memory to store the data in or (3) returns a

pointer to a static bu�er. As the user of a function, you must know which of

the three it is in order to use the function; the manual page describing the

function should give you this information.

39

LIST OF FIGURES 16. DEBUGGING

16.2.2 declaration mismatch

� getchar returns an integer, not a char as you might expect. If the integer

value returned is stored into a character variable and then compared against

the integer constant EOF, the comparison may never succeed, because sign-

extension of a character on widening to integer is machine-dependent. Read
the manual page before using a function.

� Suppose a function reverse takes a string. If the K&R C programmer acci-

dentally writes

reverse (str)

{

char *str;

...

}

rather than

reverse (str)

char *str;

{

...

}

the compiler might not warn the programmer that the formal parameter str

has the default type int and a local variable str is created which isn't ini-

tialised.

� In the next example, it looks as if the programmer meant to de�ne 2 pointers

to integers. In fact, ptr2 is being de�ned as an integer.

int* ptr1, ptr2;

� In K&R C the following code would crash; (ANSI C does automatic type

conversion)

int mean(num1, num2)

int num1, num2;

{

...

}

int i, answer;

float f;

/* deliberate mistake! */

answer = mean(f,j);

printf("The mean of %f and %d is %d\n", f, j, answer);

C functions usually get given arguments via the stack. Calling functions put

values on the stack then peel the same number of bytes o� when returned

to, so it doesn't matter to K&R C if the subfunction doesn't use or declare

all the arguments that it is given. It doesn't even matter if it declares more

arguments than given by the caling function as long as it doesn't write to

these values. Were it to do so, it might well overwrite the address that the

called function should return to. Such a problem might not be recognised for

quite a while, and isn't easy to track down. This is where `lint' (see 16.1)

becomes useful

40

LIST OF FIGURES 16. DEBUGGING

� If in one source �le you have int array[100] and you want to use this array

from another source �le, you mustn't declare as extern int *array but as

extern int array[]. An explanation of why this is so comes from Chris

Volpe (volpecr@crd.ge.com)

When you declare int array[100]; the compiler sets aside storage for 100
ints, at say, address 500. The compiler knows that array is an array, and
when it tries to generate code for an expression like array[3], it does the
following: It takes the starting address of the array (500), and adds to that
an o�set equal to the index (3) times the size of an int (typically 4) to get an
address of 500+3*4=512. It looks at the int stored at address 512 and there's
the int.

When you give an external declaration in another �le like extern int *array;,
the compiler takes your word for it that array is a pointer. The linker re-
solves the symbol for you as an object that resides at address 500. But since
you lied to the compiler, the compiler thinks there's a pointer variable stored
at address 500. So now, when the compiler sees an expression like array[3],
it generates code for it like this: It takes the address of the pointer (500) and,
assuming there's a pointer there, reads the value of the pointer stored there.
The pointer will typically reside at address 500 through 503. What's actu-
ally in there is indeterminate. There could be a garbage value stored there,
say 1687. The compiler gets this value, 1687, as the address of the �rst int
to which the pointer points. It then adds the scaled index o�set (12) to this
value, to get 1699, and tries to read the integer stored at address 1699, which
will likely result in a bus error or segmentation violation.

The thing to remember about all this is that even though array[index] and
pointer[index] can be used interchangeably in your source code, the compiler
generates very di�erent object code depending on whether you are indexing o�
an array identi�er or a pointer identi�er.

16.2.3 malloc

\Shipping C code has, on average, one bug per 55 lines of code. About half of
these bugs are related to memory allocation and deallocation." - (anonymous but

believable). malloc() allocates memory dynamically. The standard malloc() and

free() functions need to be e�cient and can't check the integrity of the heap on

every call. Therefore, if the heap gets corrupted, seemingly random behaviour can

occur. The following code won't work.

char *answer;

printf("Type something:\n");

gets(answer);

printf("You typed \"%s\"\n", answer);

The pointer variable answer, which is handed to the gets function as the location

into which the response should be stored, has not been set to point to any valid

storage. That is, we cannot say where the pointer answer points. Since local

variables are not initialized, and typically contain garbage, it is not even guaranteed

that answer starts out as a null pointer.

The simplest way to correct the question-asking program is to use a local array,

instead of a pointer, and let the compiler worry about allocation:

#include <string.h>

char answer[100], *p;

41

LIST OF FIGURES 16. DEBUGGING

main(){

printf("Type something:\n");

fgets(answer, 100, stdin);

if((p = strchr(answer, '\n')) != NULL)

*p = '\0';

printf("You typed \"%s\"\n", answer);

}

Note that this example also uses fgets instead of gets (always a good idea), so that

the size of the array can be speci�ed and fgets will not overwrite the end of the

array if the user types an overly-long line, though unfortunately for this example,

fgets does not automatically delete the trailing \n, as gets would.

Alignment problems can arise if malloc is used carelessly. Processors have

di�erent rules about (for instance) whether a long can be stored starting at an odd

memory location. If you try to break these rules, your program will crash giving

little or no clue why. The HP RISC chips only permit a double to start at an address

divisible by 8, so trying something like

char *block = (char*) malloc(sizeof(double));

double d = 1.2;

* (double*)block = d;

is likely to crash.

16.2.4 Find the bug

What looks wrong with these programs?

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

for (i=0; i<10; i=i+1);

printf("i is %d\n",i);

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int numbers[10];

int i;

for (i=1;i<=10;i++)

numbers[i]=i;

for (i=1;i<=10;i++)

printf("numbers[%d]=%d\n", i, numbers[i]);

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

for (i=0; i<10; i=i+1)

if (i=2)

42

LIST OF FIGURES 16. DEBUGGING

printf("i is 2\n");

else

printf("i is not 2\n");

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

for (i=0; i<10; i=i+1)

if (i<2)

printf("%d is less than 2\n",i);

printf("and %d is not equal to, 2 either\n",i);

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

i = 0;

while (i < 10);

i = i + 1;

printf("Finished. i = %d\n",i);

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

for (i=0; i<10; i=i+1)

switch(i){

case 0: printf("i is 0\n");

case 1: printf("i is 1\n");

default: printf("i is more than 1\n");

}

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

for (i=0; i<10; i=i+1)

/* check the value of i*/

switch(i){

/* is i 0?

case 0: printf("i is 0\n");

break;

/* is i 1?

case 1: printf("i is 1\n");

43

LIST OF FIGURES 16. DEBUGGING

break;

/* now the default case */

default: printf("i is more than 1\n");

}

}

� #include <stdio.h>

#include <stdlib.h>

main()

{

int i;

i=3;

i=i+2*i++;

printf("i is now %d\n",i);

}

� #include <stdio.h>

int main()

{

int a,b,c;

int *pointer;

c = 3;

pointer = &c;

/* divide c by itself */

a = c/*pointer;

b = c /* set b to 3 */;

printf("a=%d, b=%d\n", a,b);

}

� the following code works on some machines but crashes on others ...

#include <stdio.h>

#include <stdlib.h>

typedef struct {

double *par;

double *pos;

double *vel;

} ajoint;

main()

{

ajoint *joint;

joint = (ajoint *) malloc(sizeof(ajoint) + sizeof(double));

joint->pos = (double*) (joint +1);

*(joint->pos) = 0;

}

44

LIST OF FIGURES 17. EXERCISES 3

17 Exercises 3

1. Improve your primes program so that

� It stops searching for primes in the range 0 to n once it has marked all

the multiples of primes �
p
n

� It can take as an argument a number to show the upper bound of the

primes to print out (see A.1).

2. Put 10 integers in a �le, one per line. Write a program that reads the numbers

then prints their sum and and average.

3. Write a program that counts the characters, words and lines in a �le.

4. Read the 1st 10 uids from /etc/passwd, save them in an array of strings and

sort them using qsort.

5. Take a simple program (the malloc example on page 27 will do) and break

it up into 2 or 3 source �les. See if you can compile them into an executable.

Try adding static to variable and function de�nitions to see what di�erence

it makes. Write a make�le for it.

6. Write a program that given a �lename will produce a new �le encrypted using

any method you like. Then write another program to decrypt �les.

7. Write a program to count the number of ways that 8 queens can be placed

on a chess board without any 2 of them being on the same row, column or

diagonal.

8. Hashing - First a solution to the last hash exercise.

#include <stdio.h>

#include <stdlib.h>

#define TABLE_SIZE 50

#define MAX_STR_LEN 64

#define EMPTY -1

typedef struct {

char str[MAX_STR_LEN];

int value;

} Entry;

char str[MAX_STR_LEN];

/* Create an array of elements of type Entry */

Entry table[TABLE_SIZE];

int process(char *str){

int val = 1;

while (*str){

val = val * (*str);

str++;

}

return val;

}

45

LIST OF FIGURES 17. EXERCISES 3

char * get_string(char str[])

{

printf("Input a string\n");

return gets(str);

}

int hashfn(char *str){

int total = 0;

int i;

while (i = *str++)

total += i;

return total % TABLE_SIZE;

}

void set_table_values(void){

/* set all the value entries in the table to EMPTY

(here we assume that the process() routine doesn't

produce -1)

*/

int i;

for (i =0;i<TABLE_SIZE;i++)

table[i].value= EMPTY;

}

int find_entry(char *str, int bucket){

if (table[bucket].value == EMPTY){

strcpy(table[bucket].str,str);

table[bucket].value = process(str);

}

else{

if (strcmp(table[bucket].str,str)){

bucket = (bucket +1)% TABLE_SIZE;

return find_entry(str, bucket);

}

}

return table[bucket].value;

}

main(){

int bucket;

int val;

set_table_values();

/* Use get_string repeatedly. For each string:-

use the hash function to find the string's entry

in the table.

*/

while(get_string(str)){

if (! strcmp(str,"end")){

printf("Program ended\n");

exit(0);

46

LIST OF FIGURES 17. EXERCISES 3

}

bucket = hashfn(str);

val = find_entry(str,bucket);

printf("Value of <%s> is %d\n",str,val);

}

}

Another approach to collisions is for each entry in the hash table to be the

beginning of a linked list of items that produce the same hash function value.

First we need to alter the Entry structure so that it includes pointer to another

Entry. There's a slight complication here in that we can't de�ne a pointer to

something which isn't de�ned yet, so we introduce a tag name to the structure.

typedef struct _entry {

int value;

struct _entry *next;

char str[20];

} Entry;

New entry structures can be generated using the following routine.

Entry *create_an_entry(void){

Entry *entry;

entry = (Entry*) malloc(sizeof (Entry));

return entry;

}

find entry needs to be re-written.

int find_entry(Entry ** entry, char *str){

if (*entry == NULL){

*entry = create_an_entry();

set_entry(*entry,str);

return (*entry)->value;

}

else{

if ((*entry) -> value != EMPTY){

if (!strcmp ((*entry) ->str, str)){

printf("Valueue for <%s> already calculated\n",str);

return (*entry) -> value;

}

else{

printf("There's a collision: <%s> and <%s> share\n",

(*entry) ->str, str);

printf("the same hashfn valueue\n");

find_entry(&((*entry)->next),str);

}

}

else{

printf("<%s> is a new string\n",str);

set_entry((*entry),str);

47

LIST OF FIGURES 18. MORE INFORMATION

return (*entry)->value;

}

}

}

The initial table can now be

/* Create an array of elements of type Entry */

Entry *table[TABLE_SIZE];

These entries need to be initialised to NULL.

Now write a program with the following main routine to test all this out.

main(){

int bucket;

int value;

set_table_values();

/* Use get_string repeatedly. For each string:-

use the hash function to find the string's entry

in the table.

*/

while(get_string(str)){

if (! strcmp(str,"end")){

printf("Program ended\n");

exit(0);

}

bucket = hashfn(str);

value = find_entry(&(table[bucket]), str);

printf("Valueue of <%s> is %d\n",str,value);

}

}

This program could be further elaborated

� At the moment, if a string is long enough it will be too big for the array.

Change the Entry de�nition to:-

typedef struct _entry {

int val;

struct _entry *entry;

char *str;

} Entry;

and change the code so that correctly sized space for each string is created

using malloc.

� A hash function should be quick to calculate and provide an even spread

of values to minimize collisions. Add some diagnostics to the program

and improve the hash function.

18 More information

The C Help Page1 in the CUED help system2 has links to many useful resources -

1http://www-h.eng.cam.ac.uk/help/tpl/languages/C.html
2http://www-h.eng.cam.ac.uk/help/help2.html

48

LIST OF FIGURES A. EXAMPLES

� Read the Frequently Asked Questions3 �le if nothing else.

� The comp.lang.c newsgroup is informative. The ANSI C Rationale4 is a 100+

page DVI �le justifying and describing ANSI C

� The Style Guide5 describes some useful conventions

� Look in just about any ftp archive for source code.

The code at http://ftp.funet.�/pub/languages/C/Publib has routines to ma-

nipulate sets, stacks, etc.

In ftp://oak.oakland.edu/SimTel/msdos/c you'll �nd a big �le of code snip-

pets (currently version snip9510.zip) covering most subjects.

� The Lysator list of C resources6 is an excellent collection of documentary

material.

A Examples

A.1 Command Line arguments

#include <stdio.h>

#include <stdlib.h>

/* This shows how args can be read from the Unix command line */

int main(int argc, char *argv[]){

int i;

printf("The arguments are\n", argc);

for (i=1; i<argc; i++)

printf("%d %s\n",i, argv[i]);

exit (0);

}

A.2 Using qsort, random numbers and the clock

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

* compile on HPs using c89 -D_HPUX_SOURCE -o filename filename.c */

#define NUM 10

int comp(const void *a, const void *b)

{

return *(int *)a - * (int *)b;

}

int main(int argc, char *argv[])

{

int numbers[NUM];

int i;

srand48((long)time(NULL));

printf("\nUnsorted numbers are:-\n");

for (i=0; i< NUM; i++){

3http://www-h.eng.cam.ac.uk/help/tpl/languages/C/Answers.html
4http://www-h.eng.cam.ac.uk/help/tpl/languages/C/ANSI C.dvi
5http://www-h.eng.cam.ac.uk/help/tpl/languages/C/C style.dvi
6http://www.lysator.liu.se/c/index.html

49

LIST OF FIGURES A. EXAMPLES

numbers[i]= 1000 * drand48();

printf("%d: %3d\n", i, numbers[i]);

}

/* See the qsort man page for an explanation of the following */

qsort((void*) numbers, (size_t) NUM, sizeof(int), comp);

printf("\nSorted numbers are:-\n");

for (i=0; i< NUM; i++)

printf("%d:%3d\n", i, numbers[i]);

exit(0);

}

A.3 Calling other programs

The commands used from the command line can be called from C.

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

FILE *popen();

FILE *fp;

char string[32];

/* First use the system() call. Output will go to stdout. */

system("date");

/* Now `capture' the output of date using popen() */

fp = popen("date","r");

if (fp == NULL)

fprintf(stderr,"Cannot run date\n");

else{

fgets(string, 32, fp);

printf("The date command returns [%s]\n", string);

pclose(fp);

}

}

A.4 Linked Lists

The following program creates a singly linked list. Pointers are maintained to the

head and tail of the list.

#include <stdio.h>

typedef struct _list_item {

int val;

struct _list_item *next;

} list_item;

/* prototypes */

list_item *add_list_item(list_item *entry, int value);

void print_list_items(void);

list_item *head=NULL;

list_item *tail=NULL;

50

LIST OF FIGURES A. EXAMPLES

-

6

-
head

tail

val val

next next NULL

5 7

Initially

head

tail

NULL

NULL

-

6

head

tail

val

next NULL

5

After : tail=add list item(5);

After : tail=add list item(7);

Figure 2: Linked List

main(int argc, char *argv[])

{

tail=add_list_item(tail,5);

tail=add_list_item(tail,7);

tail=add_list_item(tail,2);

print_list_items();

}

list_item *add_list_item(list_item *entry, int value)

{

list_item *new_list_item;

new_list_item=(list_item*)malloc(sizeof(list_item));

if (entry==NULL){

head=new_list_item;

printf("First list_item in list\n");

}

else {

entry->next = new_list_item;

printf("Adding %d to list. Last value was %d \n",value,entry->val);

}

51

LIST OF FIGURES A. EXAMPLES

new_list_item->val = value;

new_list_item->next = NULL;

return new_list_item;

}

void print_list_items(void)

{

list_item *ptr_to_list_item;

for (ptr_to_list_item= head;ptr_to_list_item!= NULL;

ptr_to_list_item=ptr_to_list_item->next) {

printf("Value is %d \n", ptr_to_list_item->val);

}

}

A.5 Using pointers instead of arrays

#include "stdio.h"

char *words[]={"apple","belt","corpus","daffodil","epicycle","floppy",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"glands","handles","interfere","jumble","kick","lustiness",

"mangleworsel","nefarious","oleangeous","parsimonious",NULL};

void slow(void)

{

int i,j,count=0;

for (i=0; words[i] != NULL ; i=i+1)

for (j=0; j <= strlen(words[i]) ; j=j+1)

if(words[i][j] == words[i][j+1])

count= count+1;

printf("count %d\n",count);

}

void fast(void)

{

register char **cpp; /* cpp is an array of pointers to chars */

register char *cp;

register int count=0;

for (cpp= words; *cpp ; cpp++) /* loop through words. The final

NULL pointer terminates the loop */

for (cp = *cpp ; *cp ; cp++) /* loop through letters of a word.

The final '\0' terminates the loop */

if(*cp == *(cp+1))

count++;

printf("count %d\n",count);

}

/*count the number of double letters, first using arrays, then pointers */

52

LIST OF FIGURES A. EXAMPLES

void main(int argc, char *argv[]){

slow();

fast();

}

A.6 A data �lter

The program reads from stdin an ASCII �le containing values of a variable y for
integral values of x running from 0 to n-1 where n is the number of values in the
�le. There may be several values on each line. The program outputs the x, y pairs,
one pair per line, the y values scaled and translated by factors built into the main
routine..

#include <stdio.h>

#include <stdlib.h>

int answer;

float offset;

float scale;

char buf[BUFSIZ];

int xcoord = 0;

char *cptr;

int transform(int a)

{

return a * scale + offset + 0.5;

}

char* eat_space(char *cptr){

/* This while loop skips to the nonspace after spaces.

If this is the end of the line, return NULL

`While a space, keep going'

*/

while (*cptr ==' '){

if (*cptr == '\0')

return NULL;

else

cptr++;

}

return cptr;

}

char * next_next_num(char *cptr){

/* This while loop skips to the 1st space after a number.

If this is the end of the line, return NULL

`While NOT a space, keep going'

*/

while (*cptr !=' '){

if (*cptr == '\0')

return NULL;

else

cptr++;

}

/* Now move to the start of the next number */

return eat_space(cptr);

53

LIST OF FIGURES A. EXAMPLES

}

int main(int argc, char *argv[])

{

offset = 2.3;

scale = 7.5;

while(1){

/* if we haven't reached the end of the file ...*/

if(fgets(buf, BUFSIZ,stdin)!= NULL){

/* initialise cptr to point to the first number ...*/

cptr = eat_space(buf);

do{

/* convert the representation of the num into an int */

sscanf(cptr,"%d", &num);

/* print x and y to stdout */

printf("%d %d\n",xcoord, tranform(num));

/* skip to the start of the next number on the line */

cptr=next_next_num(cptr);

xcoord++;

}while (cptr!=NULL);

}

else{

exit(0);

}

}

}

A.7 Reading Directories

#include <stdio.h>

#include <sys/types.h>

#include <dirent.h>

#include <sys/stat.h>

#define REQUEST_DIR "/"

int main(int argc, char *argv[]){

FILE *fp;

DIR *dirp;

struct dirent *dp;

struct stat buf;

dirp = opendir(REQUEST_DIR);

chdir(REQUEST_DIR);

/* Look at each entry in turn */

while ((dp = readdir(dirp)) != NULL) {

/* Now stat the file to get more information */

if (stat(dp->d_name, &buf) == -1)

perror("stat\n");

if (S_ISDIR(buf.st_mode))

printf("%s is a directory\n", dp->d_name);

else if (S_ISREG(buf.st_mode))

printf("%s is a regular file\n", dp->d_name);

}

54

LIST OF FIGURES B. MORE ON ARRAYS

(void) closedir(dirp);

}

A.8 Queens: recursion and bit arithmetic

This program counts the number of ways that 8 queens can be placed on a chess
board without any 2 of them being on the same row, column or diagonal. It was
written by M. Richards at cl.cam.ac.uk

#include <stdio.h>

int count;

void try(int row, int ld, int rd){

if (row == 0xFF)

count++;

else{

int poss = 0xFF & ~(row | ld | rd);

while (poss){

int p = poss& -poss;

poss = poss -p;

try(row+p, (ld+p)<<1, (rd+p)>>1);

}

}

}

int main(int argc, char *argv[]){

printf("Eight Queens\n");

count = 0;

try(0,0,0);

printf("Number of solutions is %d\n", count);

exit(0);

}

B More on Arrays, Pointers and Malloc

B.1 Multidimensional Arrays

The elements of aai[4][2] are stored in memory in the following order.

aai[0][0]aai[0][1]aai[1][0]aai[1][1]

aai[2][0]aai[2][1]aai[3][0]aai[3][1]

*aai is of type int[]. Note that:-

aai[1][2] == *((aai[1])+2) == *(*(aai+1)+2)

and that numerically

aai == aai[0] == &aai[0][0]

*aai can be used as a pointer to the �rst element even though it is of type

`array 4 of int' because it becomes `pointer to int'when used where a value

is needed.

But *aai is not equivalent to a pointer. For example, you can't change its

value. This distinction can easily and dangerously be blurred in multi-�le situations

illustrated in the following example. In

extern int *foo;

55

LIST OF FIGURES B. MORE ON ARRAYS

foo is a variable of type pointer to int. foo's type is complete, (sizeof foo)

is allowed. You can assign to foo. But given

extern int baz[];

baz is a variable of type `array UNKNOWN-SIZE of int'. This is an `incomplete'

type, you can't take (sizeof baz). You cannot assign to baz, and although baz

will decay into a pointer in most contexts, it is not possible for (baz == NULL) ever

to be true.

The compiler will allow you to mix the array/pointer notation and will get it

right, but it needs to know what the reality is. Once you declare the array/pointer

correctly, you can then access it either way.

B.2 realloc

Suppose we have a simple array, and a subfunction for adding items to it:

#define MAXELTS 100

int array[MAXELTS];

int num_of_elements = 0;

install(int x)

{

if(num_of_elements >= MAXELTS){

fprintf(stderr, "too many elements (max %d)\n", MAXELTS);

exit(1);

}

array[num_of_elements++] = x;

}

Let's see how easy it is to remove the arbitrary limitation in this code, by dynami-

cally re-allocating the array:

#include <stdlib.h>

int *array = NULL;

int nalloc = 0;

int num_of_elements = 0;

install(x)

int x;

{

if(num_of_elements >= nalloc){

/* We're out of space. Reallocate with space for 10 more ints */

nalloc += 10;

array = (int *)realloc((char *)array, nalloc * sizeof(int));

if(array == NULL){

fprintf(stderr, "out of memory with %d elements\n",

num_of_elements);

exit(1);

}

}

array[num_of_elements++] = x;

}

56

LIST OF FIGURES C. SIGNALS AND ERROR HANDLING

If you want to be true-blue ANSI, use size t for nalloc and num of elements.

When dynamically allocating a multidimensional array, it is usually best to allo-

cate an array of pointers, and then initialize each pointer to a dynamically-allocated

\row". The resulting \ragged" array can save space, although it is not necessarily

contiguous in memory as a real array would be. Here is a two-dimensional example:

/* create an array of pointers */

int **array = (int **)malloc(nrows * sizeof(int *));

if (array == NULL){

fprintf(stderr,"Out of memory\n");

exit(1);

}

for(i = 0; i < nrows; i++){

/* create space for an array of ints */

array[i] = (int *)malloc(ncolumns * sizeof(int));

if (array[i] == NULL){

fprintf(stderr,"Out of memory\n");

exit(1);

}

}

You can keep the array's contents contiguous, while making later reallocation of

individual rows di�cult, with a bit of explicit pointer arithmetic:

int **array = (int **)malloc(nrows * sizeof(int *));

if (array == NULL){

fprintf(stderr,"Out of memory\n");

exit(1);

}

array[0] = (int *)malloc(nrows * ncolumns * sizeof(int));

if (array[0] == NULL){

fprintf(stderr,"Out of memory\n");

exit(1);

}

for(i = 1; i < nrows; i++)

array[i] = array[0] + i * ncolumns;

In either case, the elements of the dynamic array can be accessed with normal-

looking array subscripts: array[i][j].

If the double indirection implied by the above schemes is for some reason un-

acceptable, you can simulate a two-dimensional array with a single, dynamically-

allocated one-dimensional array:

int *array = (int *)malloc(nrows * ncolumns * sizeof(int));

However, you must now perform subscript calculations manually, accessing the i,j

th element with array[i * ncolumns + j].

C Signals and error handling

Various signals (interrupts) can be received by your program. See the signal.h

include �le for a list. You can trap them if you wish, or simply ignore them. E.g.

57

LIST OF FIGURES D. ANSI C

#include <signal.h>

...

/* this will ignore control-C */

signal(SIGINT, SIG_IGN);

The following code sets a `timebomb'. After Timer is called, the program will

continue execution until `n' milliseconds have passed, then normal execution will be

interrupted and `onalarm()' will be called before normal execution is resumed.

#include <signal.h>

static void onalarm(void)

{

something();

signal(SIGALRM,SIG_DFL);

}

...

void Timer(int n) /* waits for 'n' milliseconds */

{

long usec;

struct itimerval it;

if (!n) return;

usec = (long) n * 1000;

memset(&it, 0, sizeof(it));

if (usec>=1000000L) { /* more than 1 second */

it.it_value.tv_sec = usec / 1000000L;

usec %= 1000000L;

}

it.it_value.tv_usec = usec;

signal(SIGALRM,onalarm);

setitimer(ITIMER_REAL, &it, (struct itimerval *)0);

}

This same method can be used to catch emergency signals like SIGBUS (bus

error) too.

D ANSI C

In 1983, the American National Standards Institute commissioned a committee,

X3J11, to standardize the C language. After a long, arduous process, including

several widespread public reviews, the committee's work was �nally rati�ed as an

American National Standard, X3.159-1989, on December 14, 1989, and published

in the spring of 1990. For the most part, ANSI C standardizes existing practice,

with a few additions from C++ (most notably function prototypes) and support for

multinational character sets (including the much-lambasted trigraph sequences).

The ANSI C standard also formalizes the C run-time library support functions.

The published Standard includes a \Rationale," which explains many of its

decisions, and discusses a number of subtle points, including several of those covered

58

LIST OF FIGURES D. ANSI C

here. (The Rationale is \not part of ANSI Standard X3.159-1989, but is included for

information only.") The Standard has been adopted as an international standard,

ISO/IEC 9899:1990, although the Rationale is currently not included.

D.1 Converting to ANSI C

Many K&R C programs compile with an ANSI C compiler without changes. Where

changes are required, the compiler will nearly always tell you. A list of di�erences

between K&R C and ANSI C is in [7]. The most important are

Function prototyping :- Function prototypes aren't mandatory in ANSI C, but

they improve error checking. Their use enables certain ANSI C features which

otherwise, for backward compatibility, are suppressed.

Parameter Passing :- � Floats are passed as oats (in K&R C oats are con-

verted to doubles when passed to a function)

� Arguments are automatically cast into the right form for the called func-

tion. Without the function prototyping the following program wouldn't

work because `mean' is expecting 2 integers.

#include <stdio.h>

#include <stdlib.h>

int mean(int a,int b)

{

return a + b;

}

main()

{

int i;

float f;

int answer;

i = 7;

f= 5.3;

/* deliberate mistake! */

answer = mean(f,j);

printf("%f + %d = %d\n", f, j, answer);

}

Standardisation :- The standard include �les for ANSI C are

59

LIST OF FIGURES E. MATHS

assert.h Assertions

ctype.h Character identi�cation

errno.h Error handling

float.h Max and Min values for oats

limits.h limits for integral types

locale.h Internationalisation info

math.h Advanced math functions

setjmp.h Non-local jump

signal.h Exception handling

stdarg.h Variable numbers of arguments

stddef.h Standard de�nitions

stdio.h Input/Output

stdlib.h General Utilities

string.h String Manipulation

time.h Date and Time functions

If you want to support both ANSI C and K&R C , you can use the following

construction

#ifdef __STDC__

/* ANSI code */

#else

/* K and R code */

#endif

E Maths

If you're using any of the maths routines remember that you'll need to mention the

maths library on the compile line (otherwise the maths code won't be linked in) and

that you'll need to include math.h (otherwise the values returned by the routines

could be misinterpreted).

Before you start writing much maths-related code, check to see that it hasn't all

been done before. Many maths routines, including routines that o�er arbitrary pre-

cision are available by ftp from netlib.att.com. Also see the CUED help/languages/C/math_routines

�le in the gopher.eng.cam.ac.uk gopher for a long list of available resources.

One problem when writing numerical algorithms is obtaining machine constants.

On Sun's they can be obtained in <values.h>. The ANSI C standard recommends

that such constants be de�ned in the header �le <float.h>. Sun's and standards

apart, these values are not always readily available.

The NCEG (Numerical C Extensions Group) is working on proposing standard

extensions to C for numerical work, but nothing's ready yet, so before you do any

heavy computation, especially with real numbers, I suggest that you browse through

a Numerical Analysis book. Things to avoid are

� Finding the di�erence between very similar numbers (if you're summating an

alternate sign series, add all the positive terms together and all the negative

terms together, then combine the two).

� Dividing by a very small number (change the order of operations so that this

doesn't happen).

� Multiplying by a very big number.

Common problems that you might face are :-

60

LIST OF FIGURES E. MATHS

Testing for equality :- Real numbers are handled in ways that don't guarantee

expressions to yield exact results. It's risky to test for exact equality. Better

is to use something like

d = max(1.0, fabs(a), fabs(b))

and then test fabs(a - b) / d against a relative error margin. Useful con-

stants in float.h are FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON, de�ned

to be the smallest numbers such that

1.0f + FLT_EPSILON != 1.0f

1.0 + DBL_EPSILON != 1.0

1.0L + LDBL_EPSILON != 1.0L

respectively.

Avoiding over- and underow :- You can test the operands before performing

an operation in order to check whether the operation would work. You should

always avoid dividing by zero. For other checks, split up the numbers into

fractional and exponent part using the frexp() and ldexp() library functions

and compare the resulting values against HUGE (all in <math.h>).

Floats and Doubles :- K&R C encouraged the interchangeable use of float and

double since all expressions with such data types where always evaluated using

the double representation { a real nightmare for those implementing e�cient

numerical algorithms in C. This rule applied, in particular, to oating-point

arguments and for most compilers around it does not matter whether one

de�nes the argument as float or double.

According to the ANSI C standard such programs will continue to exhibit the

same behavior as long as one does not prototype the function. Therefore, when
prototyping functions make sure the prototype is included when the function

de�nition is compiled so the compiler can check if the arguments match.

� Keep in mind that the double representation does not necessarily in-

crease the precision. Actually, in most implementations the worst-case

precision decreases but the range increases.

� Do not use double or long double unnecessarily since there may a large

performance penalty. Furthermore, there is no point in using higher pre-

cision if the additional bits which will be computed are garbage anyway.

The precision one needs depends mostly on the precision of the input

data and the numerical method used.

In�nity :- The IEEE standard for oating-point recommends a set of functions

to be made available. Among these are functions to classify a value as NaN,

Infinity, Zero, Denormalized, Normalized, and so on. Most implementa-

tions provide this functionality, although there are no standard names for the

functions. Such implementations often provide prede�ned identi�ers (such as

_NaN, _Infinity, etc) to allow you to generate these values.

If x is a oating point variable, then (x != x) will be TRUE if and only if x

has the value NaN. Many C implementations claim to be IEEE 748 conformant,

but if you try the (x!=x) test above with x being a NaN, you'll �nd that they

aren't.

In the mean time, you can write your own `standard' functions and macros,

and provide versions of them for each system you use. If the system provides

61

LIST OF FIGURES E. MATHS

the functions you need, you #define your `standard' functions to be the sys-

tem functions. Otherwise, you write your function as an interface to what the

system provides, or write your own from scratch.

On HPs, type man ieee for a summary of functions which are required for, or

recommended by, the IEEE-754 standard for oating-point arithmetic, and type

man fpgetround to see how to control rounding.

See matherr(3) for details on how to cope with errors once they've happened.

If you use an HP, the following information might be of use if you want to

trap exceptions. It's from Cary Coutant (Hewlett-Packard, California Language

Lab). Because of the pipelined nature of the PA-RISC FPU, most exceptions are
delayed. The instruction that causes the exception (the divide) does not actually
trap. Instead, the next oating-point instruction causes the trap, so you usually
don't want to bypass that instruction { what you need to do is �x the result of the
earlier instruction. Even if you did bypass the current instruction, you'd hit another
trap when the next oating-point instruction is executed.

Your signal handler will need to (1) examine the oating-point exception registers
to determine what the o�ending instruction was, (2) supply a suitable replacement
value for its result, (3) save the replacement value in the appropriate part of the
signal context, (4) clear the exception register, and (5) clear the T (trap) bit in the
oating-point status register.

Alternatively, you could turn o� the exception enable bits so that the signal isn't
generated in the �rst place, or you could use HP library routines to handle the
exceptions for you.

Here's a skeleton oating-point exception handler for PA. For demonstration
purposes, it assumes that exceptions are caused by double-precision arithmetic in-
structions, whose target registers are speci�ed in the bottom 5 bits of the instruction.
It also does not handle PA-RISC 1.1 oating-point instructions. Modi�cation of the
exception handler for anything useful is left as an exercise for the reader. You'll
de�nitely need the PA-RISC Architecture and Instruction Set Reference Manual.

fpe_handler(sig, code, scp)

int sig, code;

struct sigcontext *scp;

{

int i;

printf("Trap (signal %d, code %d)\n", sig, code);

printf(" flags = %08x\n", scp->sc_sl.sl_ss.ss_flags);

printf(" pcoqh = %08x\n", scp->sc_sl.sl_ss.ss_pcoq_head);

printf(" pcoqt = %08x\n", scp->sc_sl.sl_ss.ss_pcoq_tail);

printf(" iir = %08x\n", scp->sc_sl.sl_ss.ss_iir);

printf(" isr = %08x\n", scp->sc_sl.sl_ss.ss_isr);

printf(" ior = %08x\n", scp->sc_sl.sl_ss.ss_ior);

printf(" fpstat = %08x\n", scp->sc_sl.sl_ss.ss_fpblock.fpint.ss_fpstat);

/* Handle pending exceptions */

for (i = 1; i <= 7; i++)

handle_excp(&scp->sc_sl.sl_ss.ss_fpblock.fpint, i);

/* Clear T bit in the floating-point status register */

scp->sc_sl.sl_ss.ss_fpblock.fpint.ss_fpstat &= ~0x40;

/* Re-enable the trap handler */

signal(sig, fpe_handler);

}

62

LIST OF FIGURES E. MATHS

handle_excp(fpint, n)

struct fp_int_block *fpint;

int n;

{

int code, t;

unsigned int *fr;

/* Treat the floating-point register save area as an integer array */

/* The exception registers are fr[1] through fr[7] */

fr = &fpint->ss_fpstat;

if (fr[n] == 0)

return;

printf(" excp%d = %08x", n, fr[n]);

code = fr[n] >> 26;

if (code & 0x02) printf(" inexact");

if (code & 0x08) printf(" overflow");

else if (code & 0x04) printf(" underflow");

else if (code & 0x20) printf(" invalid op");

else if (code & 0x10) printf(" div by zero");

else if (code & 0x01) printf(" unimplemented");

printf("\n");

/* For example purposes only: set target register to 0.0 */

/* Warning!!! This assumes a PA-RISC 1.0 double-precision instruction! */

/* You should really check the sub-opcode in the exception register, */

/* and tailor the action here to the excepting instruction */

t = fr[n] & 0x1f;

fr[t*2] = 0;

fr[t*2+1] = 0;

/* Clear exception register */

fr[n] = 0;

}

E.1 Fortran and C

Here are some opinions that experienced programmers have given for why fortran

has not been replaced by C for numerical work:

� \C is de�nitely for wizards, not beginners or casual programmers. Usually

people who are heavily into numerical work are not hacker types. They are

mathematicians, scientists, or engineers. They want to do calculations, not

tricky pointer manipulations. fortran's constructs are more obvious to use,

while even simple programs in C tend to be �lled with tricks."

� \fortran is dangerous to use, but not as dangerous as C. For instance, most

fortran compilers have subscript checking as an option, while I have never

encountered a C compiler with this feature. The ANSI standard for function

prototypes will give C an edge over fortran in parameter mismatch error."

� \There is a large body of well tested mathematical packages available for

fortran, that are not yet available in C; for example the IMSL package.

However, this situation is improving for C."

� \In studies done at Cray Research, they found it took signi�cantly longer for
their programmers to learn C and the number of errors generated in coding

in C (as opposed to fortran) was much higher."

63

LIST OF FIGURES F. CALLING FORTRAN FROM C

� \C is hard to optimize, especially if the programmer makes full use of C's

expressivity. Newer C features (like the const keyword etc) and new software

technology are improving the situation."

� \Some (old) implementations of C still have too many system dependent as-

pects (e.g. round up or down when dividing negative integers)."

Whether or not the switch to C is worthwhile will depend on whether its quirks

outweigh the bene�ts of having \more modern" data typing and control structures.

ANSI C goes a long way to removing the quirks but for the time being fortran is

probably more portable and will run faster on supercomputers without tweaking.

On the other hand fortran may be harder to maintain, and it is a poor �t to

algorithms that are best expressed with types more involved than n-dimensional

arrays. When Fortran9X becomes commonplace, perhaps the decision will be easier

to make.

F Calling Fortran from C

See the HP C Programmer's Guide[3] if you intend doing this on HP machines.

Rudi Vankemmel (ankemme@imec.be) mentions some general points that are worth

noting :-

1. Fortran uses a column wise storage of matrices while C stores them row wise.

This means that when you want to parse a matrix from your C-program to

the fortran routine you must transpose the matrix in your program before

entering the routine. Of course, any output from such a routine must be

transposed again.

If you omit this step, then probably your program will run (because it has

data to compute on) but it will generate wrong answers.

If you have the Fortran source code (of any routine) then on some platforms

you may use compiler directives specifying that the Fortran compiler must use

row wise storage. Some platforms support these directives. However watch out

with this if you call the same routine from another Fortran routine/program.

2. Your Fortran compiler may add an underscore to the routine name in the

symbol table. Hence in the calling C-program/routine you must add a trailing

underscore ! Otherwise the loader will complain about an unde�ned symbol.

However, check your compiler for this. For example the Fortran compiler on

VAX-VMS systems does NOT add a trailing underscore (there watch out with

the fact that the VAX-Fortran compiler translates everything in uppercase).

3. Fortran passes its variables by reference. This means that you MUST give

adresses in your calling C-program.

4. Watch out especially with floats and doubles. Make sure that the size of the

variable in the calling program is identical to the size in the Fortran routine.

This is extremely important on machines with little endian byte ordering.

Parsing a float (C-routine) to a real*8 (Fortran) number will not generate

SEGV but give wrong results as the data is parsed wrongly.

G Updating this document

The newest version of this document (Postscript and LATEX) is available

� By ftp

64

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

unix> ftp svr-ftp.eng.cam.ac.uk

Name: anonymous

Password: (send userid)

ftp> cd misc

ftp> binary

ftp> get love_C.ps.Z

ftp> get love_C.shar

ftp> quit

� On the WWW via URL http://www-h.eng.cam.ac.uk/help/documentation/docsource/index.html

H Sample answers to exercises

H.1 Exercises 1

� #include <stdio.h>

#include <stdlib.h>

int odd(int number){

/* return 0 if number is even, otherwise return 1 */

if ((number/2)*2 == number)

return 0;

else

return 1;

}

int main(){

int i;

i = 7;

printf("odd(%d) = %d\n",i,odd(i));

}

� #include <stdio.h>

#include <stdlib.h>

void binary(unsigned int number){

/* print decimal `number' in binary */

unsigned int power_of_2;

power_of_2=1;

/* Find the greatest power of 2 which isn't more

than the number

*/

while (power_of_2<= number)

if (power_of_2*2>number)

break;

else

power_of_2=power_of_2*2;

/* Now print out the digits */

while(power_of_2>0){

if(number/power_of_2 == 1){

printf("1");

number = number - power_of_2;

}

else

printf("0");

65

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

power_of_2=power_of_2/2;

}

printf("\n");

}

int main(){

unsigned int i;

i=187;

printf("%d in binary is ",i);

binary(i);

}

� #include <stdio.h>

#include <stdlib.h>

void base(unsigned int number, unsigned int base){

/* Print 'number' to a specified base */

unsigned int power_of_base;

power_of_base=1;

/* Find the greatest power of 'base' which isn't more

than the number

*/

while (power_of_base<= number){

if (power_of_base*base>number)

break;

else

power_of_base=power_of_base*base;

}

/* Now print out the digits */

while(power_of_base>0){

printf("%1d", number/power_of_base);

number = number - power_of_base * (number/power_of_base);

power_of_base=power_of_base/base;

}

printf("\n");

}

int main(){

base(87,2);

base(100,8);

}

� #include <stdio.h>

#include <stdlib.h>

#define PRIME 1 /* Create aliases for 0 and 1 */

#define NONPRIME 0

int numbers[1000];

void mark_multiples(int num){

/* Set all elements which represent multiples of num to NONPRIME */

int multiple = num *2;

while (multiple < 1000){

numbers[multiple] = NONPRIME;

multiple = multiple + num;

}

}

66

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

int get_next_prime(int num){

/* find the next prime number after `num' */

int answer;

answer = num+1;

while(numbers[answer] == NONPRIME){

answer= answer + 1;

if (answer == 1000)

break;

}

return answer;

}

main(){

int i;

int next_prime;

/* Set all the elements to PRIME.*/

for(i=0;i<1000;i++){

numbers[i] = PRIME;

}

/* 0 and 1 aren't prime, so set numbers[0] and numbers[1] to false */

numbers[0] = NONPRIME;

numbers[1] = NONPRIME;

next_prime = 2;

do{

mark_multiples(next_prime);

next_prime = get_next_prime(next_prime);

}while(next_prime < 1000);

/* Print out the indices of elements which are still set to PRIME */

for(i=0;i<1000;i++)

if (numbers[i] == PRIME)

printf(" %d ",i);

exit(0);

}

H.2 Exercises 2

� int mystrcmp(const char *s1, const char *s2){

while(*s1++=*s2++)

;

}

� int ccase;

if (skew >= 0){

ccase = copy_right + function;

}

else{

bptr = bptr + chunk_bytes;

ccase = copy_left + function;

}

67

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

� char *strchr(const char* str, int c)

{

while(*str !='\0'){

if (*str == c)

return str;

else

str++;

}

return NULL;

}

� #include <stdio.h>

#include <stdlib.h>

char * get_string(char str[])

{

printf("Input a string: ");

return gets(str);

}

main(){

int degrees;

char scale;

int return_value;

char string[1023];

while(1){

printf("Please type in a string like 20C or 15F\n");

printf("Use control-C to quit\n");

get_string(string);

return_value = sscanf(string,"%d%c",°rees, &scale);

if (return_value != 2){

printf("There's a mistake in your input. Try again.\n");

continue;

}

if ((scale == 'f')|| (scale == 'F'))

printf("%s is %dC\n",string,((degrees-32)*5)/9);

else

if ((scale == 'c')|| (scale == 'C'))

printf("%s is %dF\n",string, (degrees*9)/5+32);

else{

printf("Unable to determine whether you typed C or F\n");

printf("Try again.\n");

}

}

}

H.3 Exercises 3

� #include <stdio.h>

#include <stdlib.h>

#include <math.h>

/* This version of the primes program takes an optional

argument from the command line. Because it uses sqrt()

it needs the maths library.

*/

#define PRIME 1 /* Create aliases for 0 and 1 */

#define NONPRIME 0

68

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

#define DEFAULT_RANGE 1000

int maxprime;

int *numbers;

int range;

void usage(void){

printf("usage: prime [max]\n");

}

/* Set all elements which represent multiples of num to NONPRIME */

void mark_multiples(int num){

int multiple = num;

while (multiple+num <= range){

multiple = multiple+num;

numbers[multiple]= NONPRIME;

};

}

/* find the next prime in the range after `num' */

int get_next_prime(int num){

int answer;

answer = num+1;

while (numbers[answer] == NONPRIME){

answer= answer +1;

if (answer == maxprime)

break;

}

return answer;

}

main(int argc, char *argv[]){

int i;

int next_prime;

/* If more than 1 arg has been given , flag an error */

if (argc > 2){

usage();

exit(1);

}

/* If one arg has been given, try to read it as an integer

(sscanf returns the number of successfully scanned items)

*/

if (argc == 2){

if (sscanf(argv[1],"%d",&range) != 1)

range = DEFAULT_RANGE;

}

else

range = DEFAULT_RANGE;

maxprime = sqrt (range);

/* Instead of a fixed size array, malloc some space */

numbers = (int*) malloc((range+1)* sizeof (int));

/* Set all the elements to PRIME.*/

for (i=0;i<range;i++)

69

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

numbers[i]= PRIME;

/* 0 and 1 aren't prime, so set numbers[0] and numbers[1] to false */

numbers[0] = NONPRIME;

numbers[1] = NONPRIME;

next_prime = 2;

do{

mark_multiples(next_prime);

next_prime = get_next_prime(next_prime);

} while(next_prime <= maxprime);

/* Print out the indices of elements which are still set to PRIME */

for (i=0;i<range;i++)

if (numbers[i]== PRIME)

printf("%d\n",i);

exit(0);

}

� #include <stdio.h>

#include <stdlib.h>

#define NUMBERCOUNT 10 /* the number of numbers */

int main()

{

/* Read 10 numbers from a file called 'data' */

int numbers[NUMBERCOUNT];

FILE *fp;

int i, return_value;

float total;

char line[100];

fp = fopen("data","r");

if (fp == NULL){

fprintf(stderr,"Cannot open 'data' for reading. Bye.\n");

exit(1);

}

/* Read the numbers in */

for(i=0;i<NUMBERCOUNT;i++){

if (fgets(line,100,fp) == NULL){

fprintf(stderr,"End of file reached too early. Bye.\n");

exit(1);

}

return_value = sscanf(line,"%d", numbers+i);

if (return_value !=1){

fprintf(stderr,"Cannot parse line %d of 'data'. Bye.\n",i+1);

exit(1);

}

}

fclose(fp);

/* Now calculate the total */

total=0.0;

for(i=0;i<NUMBERCOUNT;i++){

total=total+numbers[i];

}

printf("The total is %.3f. The average is %.3f\n",

total,total/NUMBERCOUNT);

70

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

}

� #include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define UIDCOUNT 10

#define MAXUIDLENGTH 20

main()

{

/* Sort the first 10 uids in the password file */

char uids[UIDCOUNT][MAXUIDLENGTH];

char *cptr;

FILE *fp;

int i, return_value;

float total;

char line[100];

fp = fopen("/etc/passwd","r");

if (fp == NULL){

fprintf(stderr,"Cannot open '/etc/passwd' for reading. Bye.\n");

exit(1);

}

/* Read each of the first ten lines into the 'line' array.

Replace the first ':' by a '\0'. Copy the resulting

truncated string into the uids array

*/

for(i=0;i<UIDCOUNT;i++){

if (fgets(line,100,fp) == NULL){

fprintf(stderr,"End of file reached too early. Bye.\n");

exit(1);

}

cptr = strchr(line,':');

if (cptr == NULL){

fprintf(stderr,"Strange line in '/etc/passwd'. Bye.\n");

exit(1);

}

*cptr = '\0';

strncpy(uids[i],line,MAXUIDLENGTH);

}

/* See the qsort man page for an explanation of the following.

Note that strcmp doesn't precisely match the man page's

requirements, so you may get a warning message on compiling

*/

qsort((void*) uids, (size_t) UIDCOUNT, MAXUIDLENGTH, strcmp);

/* Print the sorted list */

for(i=0;i<UIDCOUNT;i++){

printf("%s\n", uids[i]);

}

}

� #include <stdio.h>

#include <stdlib.h>

#define TABLE_SIZE 50

71

LIST OF FIGURES H. SAMPLE ANSWERS TO EXERCISES

#define MAX_STR_LEN 64

#define EMPTY (-1)

typedef struct _entry {

int value;

struct _entry *next;

char str[20];

} Entry;

char str[MAX_STR_LEN];

/* Create an array of elements of type Entry */

Entry *table[TABLE_SIZE];

int process(char *str){

int value = 1;

while (*str){

value = value * (*str);

str++;

}

return value;

}

char * get_string(char str[])

{

printf("Input a string\n");

return gets(str);

}

int hashfn(char *str){

int total = 0;

int i;

while (i = *str++)

total += i;

return total % TABLE_SIZE;

}

void set_table_values(void){

/* set all the entries in the table to NULL

*/

int i;

for (i =0;i<TABLE_SIZE;i++)

table[i] = NULL;

}

void set_entry(Entry *entry, char *str){

strcpy(entry->str,str);

entry->value = process(str);

}

Entry *create_an_entry(void){

Entry *entry;

entry = (Entry*) malloc(sizeof (Entry));

return entry;

}

72

REFERENCES REFERENCES

main(){

int bucket;

int value;

set_table_values();

/* Use get_string repeatedly. For each string:-

use the hash function to find the string's entry

in the table.

*/

while(get_string(str)){

if (! strcmp(str,"end")){

printf("Program ended\n");

exit(0);

}

bucket = hashfn(str);

value = find_entry(&(table[bucket]), str);

printf("Value of <%s> is %d\n",str,value);

}

}

References

[1] Banahan, Brady, and Doran. The C Book. Addison Wesley, 1988.

[2] Samuel P. Harbison and Guy L. Steele. C: A Reference Manual. Prentice Hall,
1987.

[3] Hewlett-Packard Company. HP C Programmer's Guide, 1992.

[4] Allen I. Hollub. The C Companion. Prentice Hall, 1987.

[5] Mark Horton. Portable C Software. Prentice-Hall, 1990.

[6] Brian W. Kernighan and P.J. Plauger. The Elements of Programming Style.
McGraw-Hill, 1978.

[7] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language
Second Edition. Prentice-Hall, Inc., 1988.

[8] Andrew Koenig. C Traps and Pitfalls. Addison-Wesley, 1989.

[9] J.F. Korsh and L.J. Garrett. Data Structures, Algorithms, and Program Style
using C. PSW-Kent, 1988.

[10] Steve Oualline. Practical C Programming. O'Reilly & Associates, Inc.

[11] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vet-

terling. NUMERICAL RECIPES in C: The Art of Scienti�c Computing. Cam-

bridge University Press, 1988.

[12] X3J11. Draft Proposed American National Standard for Information Systems

| Programming Language C. Technical Report X3J11/88{158, ANSI Ac-

credited Standards Committee, X3 Information Processing Systems, December

1988.

73

