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ABSTRACT 1. INTRODUCTION

We present a Scalable Distributed Information Management Sys- ~ The goal of this research is to design and build a Scalable Dis-
tem (SDIMS) thataggregatesinformation about large-scale net-  tributed Information Management System (SDIMS) thggregates
worked systems and that can serve as a basic building block for ainformation about large-scale networked systems and that can serve
broad range of large-scale distributed applications by providing de- as a basic building block for a broad range of large-scale distributed
tailed views of nearby information and summary views of global in- applications. Monitoring, querying, and reacting to changes in
formation. To serve as a basic building block, a SDIMS should have the state of a distributed system are core components of applica-
four properties: scalability to many nodes and attributes, flexibility tions such as system management [15, 31, 37, 42], service place-
to accommodate a broad range of applications, administrative iso- ment [14, 43], data sharing and caching [18, 29, 32, 35, 46], sensor
lation for security and availability, and robustness to node and net- monitoring and control [20, 21], multicast tree formation [8, 9, 33,
work failures. We design, implement and evaluate a SDIMS that (1) 36, 38], and naming and request routing [10, 11]. We therefore
leverages Distributed Hash Tables (DHT) to create scalable aggre-Speculate that a SDIMS in a networked system would provide a
gation trees, (2) provides flexibility through a simple API that lets “distributed operating systems backbone” and facilitate the devel-
applications control propagation of reads and writes, (3) provides opment and deployment of new distributed services.

administrative isolation through simple extensions to current DHT ~ For a large scale information systeirigrarchical aggregation
algorithms, and (4) achieves robustness to node and network reconis a fundamental abstraction for scalability. Rather than expose all
figurations through |azy reaggregation, on-demand reaggregation,information to all nodes, hierarchical aggregation allows a node to
and tunable spatial replication. Through extensive simulations and access detailed views of nearby information and summary views of
micro-benchmark experiments, we observe that our system is an or-global information. In a SDIMS based on hierarchical aggregation,
der of magnitude more scalable than existing approaches, achievedlifferent nodes can therefore receive different answers to the query
isolation properties at the cost of modestly increased read latency“find a [nearby] node with at least 1 GB of free memory” or “find

in comparison to flat DHTs, and gracefully handles failures. a [nearby] copy of file foo.” A hierarchical system that aggregates
information through reduction trees [21, 38] allows nodes to access
information they care about while maintaining system scalability.

To be used as a basic building block, a SDIMS should have
four properties. First, the system should be scalable: it should
accommodate large numbers of participating nodes, and it should
allow applications to install and monitor large numbers of data at-
tributes. Enterprise and global scale systems today might have tens
of thousands to millions of nodes and these numbers will increase
over time. Similarly, we hope to support many applications, and
each application may track several attributes (e.g., the load and
free memory of a system’s machines) or millions of attributes (e.g.,
which files are stored on which machines).

Second, the system should haflexibility to accommodate a
broad range of applications and attributes. For examgad-
dominatedattributes likenumCPUsrarely change in value, while
*This work is supported in part by the National Science Foun- write-dominatedattributes likenumProcesseshange quite often.
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award. an approach tuned for write-dominated attributes will suffer from
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replication to the applications.

Third, a SDIMS should providadministrative isolation In a
large system, it is natural to arrange nodes in an organizational or
an administrative hierarchy. A SDIMS should support administra-



tive isolation in which queries about an administrative domain’s in- vergenceandpath localityproperties in order to achieal-
formation can be satisfied within the domain so that the system can ministrative isolation

operate during disconnections from other domains, so that an ex-
ternal observer cannot monitor or affect intra-domain queries, and
to support domain-scoped queries efficiently.

Fourth, the system must lebustto node failures and discon-
nections. A SDIMS should adapt to reconfigurations in a timely
fashion and should also provide mechanisms so that applications
can tradeoff the cost of adaptation with the consistency level in the
aggregated results when reconfigurations occur.

We draw inspiration from two previous workgistrolabe[38]
andDistributed Hash Tables (DHTSs) We have built a prototype of SDIMS. Through simulations and

Astrolabe [38] is a robust information management system. As- micro-benchmark experiments on a number of department machines
trolabe provides the abstraction of a single logical aggregation tree and PlanetLab [27] nodes, we observe that the prototype achieves
that mirrors a system’s administrative hierarchy. It provides a gen- scalability with respect to both nodes and attributes through use
eral interface for installing new aggregation functions and provides of its flexible API, inflicts an order of magnitude lower maximum
eventual consistency on its data. Astrolabe is robust due to its usenode stress than unstructured gossiping schemes, achieves isolation
of an unstructured gossip protocol for disseminating information properties at a cost of modestly increased read latency compared to
and its strategy of replicating all aggregated attribute values for a flat DHTs, and gracefully handles node failures.
subtree to all nodes in the subtree. This combination allows any  This initial study discusses key aspects of an ongoing system
communication pattern to yield eventual consistency and allows building effort, but it does not address all issues in building a SDIMS.
any node to answer any query using local information. This high For example, we believe that our strategies for providing robustness
degree of replication, however, may limit the system’s ability to will mesh well with techniques such asipernode§22] and other
accommodate large numbers of attributes. Also, although the ap-ongoing efforts to improve DHTs [30] for further improving ro-
proach works well for read-dominated attributes, an update at one bustness. Also, although splitting aggregation among many trees
node can eventually affect the state at all nodes, which may limit improves scalability for simple queries, this approach may make
the system'’s flexibility to support write-dominated attributes. complex and multi-attribute queries more expensive compared to

Recent research in peer-to-peer structured networks resulted ina single tree. Additional work is needed to understand the signif-
Distributed Hash Tables (DHTs) [18, 28, 29, 32, 35, 46]—a data icance of this limitation for real workloads and, if necessary, to
structure that scales with the number of nodes and that distributesadapt query planning techniques from DHT abstractions [16, 19]
the read-write load for different queries among the participating to scalable aggregation tree abstractions.
nodes. It is interesting to note that although these systems export In Section 2, we explain the hierarchical aggregation abstrac-
a global hash table abstraction, many of them internally make usetion that SDIMS provides to applications. In Sections 3 and 4, we
of what can be viewed as a scalable system of aggregation treesdescribe the design of our system for achieving the flexibility, scal-
to, for example, route a request for a given key to the right DHT ability, and administrative isolation requirements of a SDIMS. In
node. Indeed, rather than export a general DHT interface, Plaxton Section 5, we detail the implementation of our prototype system.
et al’s [28] original application makes use of hierarchical aggre- Section 6 addresses the issue of adaptation to the topological re-
gation to allow nodes to locate nearby copies of objects. It seems configurations. In Section 7, we present the evaluation of our sys-
appealing to develop a SDIMS abstraction that exposes this internaltem through large-scale simulations and microbenchmarks on real
functionality in a general way so that scalable trees for aggregation networks. Section 8 details the related work, and Section 9 sum-
can be a basic system building block alongside the DHTSs. marizes our contribution.

At a first glance, it might appear to be obvious that simply fus-

ing DHTs with Astrolabe’s aggregation abstraction will resultina 2. AGGREGATION ABSTRACTION

SDIMS. However, meeting the SDIMS requirements forces a de- Aggregation is a natural abstraction for a large-scale distributed

s't?nbtot ?3) rzisf?e];%l:]rt guersetzlogt?(:)rﬁr)ezg\i,\rq ?SE??EQ’SH] oapzd:f'f;:\(lag information system because aggregation provides scalability by al-
attribute g9reg 2 (2) lowing a node to view detailed information about the state near it

provide flexibility in the aggregation to accommodate different ap- . . : .
S ) and progressively coarser-grained summaries about progressively
m 2
plication requirements? (3) How to adapt a global, flat DHT mesh larger subsets of a system’s data [38].

to attain administrative isolation property? and (4) How to provide Our aggregation abstraction is defined across a tree spanning all

rol?rl;]stnkess W'thqgt gnstru:{:tt#ed gossmhan? totalt:ep;hcat(ljon_? f nodes in the system. Each physical node in the system is a leaf and
ourS?DIhe/lécdoen;{énu;?en:sofotlléivgapert atform the foundation o each subtree represents a Iogipa}l group of nod_es. Note that logical
) groups can correspond to administrative domains (e.g., department
1. We define a new aggregation abstraction that specifies bothor university) or groups of nodes within a domain (e.g., 10 work-
attribute type and attribute name and that associates an aggrestations on a LAN in CS department). An internal non-leaf node,
gation function with a particular attribute type. This abstrac- which we callvirtual node is simulated by one or more physical
tion paves the way for utilizing the DHT system’s internal  nodes at the leaves of the subtree for which the virtual node is the
trees for aggregation and for achievisgalability with both root. We describe how to form such trees in a later section.
nodes and attributes. Each physical node hdscal datastored as a set dattributeType
attributeName value) tuples such agconfiguration, numCPUs,
16), (mcast membership, session foo, yesffile stored, foo, myl-
Paddress) The system associates aggregation functionfype
with each attribute type, and for each levedubtreeT; in the sys-
3. We augment an existing DHT algorithm to enspath con- tem, the system defines aggregate valu® typenamefor each (at-

4. We providerobustnesso node and network reconfigurations
by (a) providing temporal replication through lazy reaggre-
gation that guarantees eventual consistency and (b) ensur-
ing that our flexible API allows demanding applications gain
additional robustness by using tunable spatial replication of
data aggregates or by performing fast on-demand reaggre-
gation to augment the underlying lazy reaggregation or by
doing both.

2. We provide a flexible API that lets applications control the
propagation of reads and writes and thus trade off update
cost, read latency, replication, and staleness.



tributeType, attributeName) pair as follows. For a (physical) leaf [ Parameter] description [ optional |

nodeTo at level0, Vo typenameis the locally stored value for the at- attrType [ Aftribute Type

tribute type and name or NULL if no matching tuple exists. Then 3ggrfunc ﬁggﬁgﬁ“ﬁ”\/\';;’&cgggh I

the aggregate value for a leviebubtreeT; is the aggregation func- P sent (defauﬁt: all) P

tion for the type, fiype cOmputed across the aggregate values of down How far downward each aggre- X

each ofTy’s k children: gate is sent (default: none)

Vi typename= ftypeV 1 typename Vit 1.typename -+ Vi 1 typename- domain | Domain restriction (default: nong) X
Although SDIMS allows arbitrary aggregation functions, it is of- expTime | Expiry Time

ten desirable that these functions satisfy ttierarchical computa-
tion property [21]: f(vq,...,Vn)=F(f(Va,...,Vs,), F(Vs41,.-,Vs,),
.oy T(Vg+1,---,Vn)), Wherey; is the value of an attribute at node
i. For example, the average operation, definedwagvy, ...,vn) =

1/n. 3" ovi, does not satisfy the property. Instead, if an attribute I (s.t.I < k) downward forj levels. , ,
stores values as tuplésumcount), the attribute satisfies the hier- A SDIMS must provide a wide range of flexible computation and

archical computation property while still allowing the applications Propagation strategies to applications for it to be a general abstrac-

to compute the average from the aggregate sum and count values. 1on- An application should be able to choose a particular mech-
Finally, note that for a large-scale system, it is difficult or im- anism based on its read-to-write ratio that reduces the bandwidth

possible to insist that the aggregation value returned by a probe CONSUMPption while attaining the required responsiveness and pre-
corresponds to the function computed over the current values at the€iSion- Note that the read-to-write ratio of the attributes that appli-
leaves at the instant of the probe. Therefore our system providesCtions install vary extensively. For exampleremd-dominated

only weak consistency guarantees — specifically eventual consis-attribute like numCPUsrarely changes in value, while arite-
tency as defined in [38]. dominatedattribute likenumProcesseshanges quite often. An ag-

gregation strategy like Update-All works well fegad-dominated
3. FLEXIBILITY att_rlbutes put suffer; high bandwidth consumption whe_n applied for
o } ) ) ) write-dominatedattributes. Conversely, an approach like Update-

A major innovation of our work is enabling flexible aggregate | 5cal works well forwrite-dominatedattributes but suffers from
computation and propagation. The definition of the aggregation unnecessary query latency or imprecision fiead-dominatedt-
abstraction allows considerable flexibility in how, when, and where yinutes.
aggregate values are computed and propagated. While previous gpjms also allows non-uniform computation and propagation
systems [15, 29, 38, 32, 35, 46] implement a single static strategy, 5¢ross the aggregation tree with different up and down parameters
we argue that a SDIMS should providlexible computation and i gifferent subtrees so that applications can adapt with the spa-
propagatiorto efficiently support wide variety of applications with  tja] and temporal heterogeneity of read and write operations. With
diverse requirements. In order to provide this flexibility, we de- regpect to spatial heterogeneity, access patterns may differ for dit-
velop a simple interface that decomposes the aggregation abstracterent parts of the tree, requiring different propagation strategies
tion into three pieces of functionality: install, update, and probe. o, different parts of the tree. Similarly with respect to temporal

This definition of the aggregation abstraction allows our system peterogeneity, access patterns may change over time requiring dif-
to provide a continuous spectrum of strategies ranging from lazy ferent strategies over time.

aggregate computation and propagation on reads to aggressive im-

mediate computation and propagation on writes. In Figure 1, we 3.1 Aggregation API

illustrate both extreme strategies and an intermediate strategy. Un- A . . "

der the lazyUpdate-Localcomputation and propagation strategy, We provide the flexibility described above by splitting the ag-

an update (or write) only affects local state. Then, a probe (or read) 9r€gation APl into three functiongnstall() installs an aggregation
that reads a levdlaggregate value is sent up the tree to the issuing fUnction that defines an operation on an attribute type and speci-

node’s levelr ancestor and then down the tree to the leaves. The fi€S the update strategy that the function will uspdate()inserts
system then computes the desired aggregate value at each layer uf’, medifies a node’s local value for an attribute, @abe() ob-

the tree until the level-ancestor that holds the desired value. Fi- @S an aggregate value for a specified subtree. The install inter-
nally, the leveli ancestor sends the result down the tree to the is- [2c allows applications to specify tieandj parameters of the
suing node. In the other extreme case of the aggrekiidate-All Update-Ujr-Downyj strategy along with the aggregation function.
immediate computation and propagation on writes [38], when an The update interface invokes the aggregation of an attribute on the

update occurs, changes are aggregated up the tree, and each netiee according to cor_responding aggregation func@ion_’s aggregati_on
aggregate value is flooded to all of a node’s descendants. In thisStrategy. The probe interface not only allows applications to obtain

case, each levélnode not only maintains the aggregate values for (€ 2ggregated value for a specified tree but also allows a probing
the leveli subtree but also receives and locally stores copies of all "0d€ tocontinuouslyfetch the values for a specified time, thus en-

of its ancestors’ levej-(j > i) aggregation values. Also, a leaf sat- abling an application to adapt to spatial and temporal heterogeneity.
isfies a probe for a levélaggregate using purely local data. In an The rest of the section describes these three interfaces in detail.

intermediatéJpdate-Upstrategy, the root of each subtree maintains

the subtree’s current aggregate value, and when an update occurs,3-1-:L Install

the leaf node updates its local state and passes the update to its Thelnstall operation installs an aggregation function in the sys-

parent, and then each successive enclosing subtree updates its agem. The arguments for this operation are listed in Table 1. The
gregate value and passes the new value to its parent. This strategwttrTypeargument denotes the type of attributes on which this ag-
satisfies a leaf’s probe for a levekggregate value by sending the gregation function is invoked. Installed functions are soft state that
probe up to the levalancestor of the leaf and then sending the ag- must be periodically renewed or they will be garbage collected at
gregate value down to the leaf. Finally, notice that other strategies expTime

exist. In general, an Update-kfbown strategy aggregates up to The argumentsip anddownspecify the aggregate computation

Table 1: Arguments for the install operation

thekth level and propagates the aggregate values of a node at level



Update Strategy On Update On Probe for Global Aggregate Value | On Probe for Level-1 Aggregate Value

Update-Local

Update-Up
Update-All m\
Figure 1: Flexible API
[ parameter] description | optional] from the ancestor td. Note that continuous mode enables SDIMS
atirType [ Attribute Type to support a distributed sensor-actuator mechanism where a sen-
er;tg&\l:me égﬂggheohlsargreOne-shot (default. X sor monitors a level-aggregate with a continuous mode probe and
one-shot) ’ triggers an actuator upon receiving new values for the probe.
level Level at which aggregate is sought X Theup anddownarguments enable applications to perform on-
(default: at all levels) demand fast re-aggregation during reconfigurations, where a forced
up How far up to go and re-fetch the X re-aggregation is done for the corresponding levels even if the ag-
value (default: none) gregated value is available, as we discuss in Section 6. When
down ZOV‘:efagted(g‘gfgu}? n%%e?nd rep X present, thaip and down arguments are interpreted as described
expTime E?(%irygTime ' in the install operation.

3.1.4 Dynamic Adaptation

At the API level, thaupanddownarguments in install API can be
regarded as hints, since they suggest a computation strategy but do
not affect the semantics of an aggregation function. A SDIMS im-
plementation can dynamically adjust its up/down strategies for an
attribute based on its measured read/write frequency. But a virtual
intermediate node needs to know the currgmtaind down propa-
3.1.2 Update gation values to decide if the local aggregate is fresh in order to
answer a probe. This is the key reason wipyanddownneed to be
statically defined at the install time and can not be specified in the
update operation. In dynamic adaptation, we implement a lease-
based mechanism where a node issues a lease to a parent or a child
denoting that it will keep propagating the updates to that parent or
child. We are currently evaluating different policies to decide when
to issue a lease and when to revoke a lease.

Table 2: Arguments for the probe operation

and propagation stratedypdate-Ufx-Dowrj . The domainargu-
ment, if present, indicates that the aggregation function should be
installed on all nodes in the specified domain; otherwise the func-
tion is installed on all nodes in the system.

TheUpdateoperation takes three argumeatgType, attrName,
andvalueand creates a new (attrType, attrName, value) tuple or
updates the value of an old tuple with matchatgTypeandattr-
Nameat a leaf node.

The update interface meshes with installed aggregate computa-
tion and propagation strategy to provide flexibility. In particular,
as outlined above and described in detail in Section 5, after a leaf
applies an update locally, the update may trigger re-computation
of aggregate values up the tree and may also trigger propagation4- SCALABILITY
of changed aggregate values down the tree. Notice that our ab- Our design achieves scalability with respect to both nodes and at-

straction associates an aggregation function with onlataiType tributes through two key ideas. First, it carefully defines the aggre-
but lets updates specify attrNamealong with theattrType This gation abstraction to mesh well with its underlying scalable DHT
technique helps achieve scalability with respect to nodes and at-system. Second, it refines the basic DHT abstraction to form an
tributes as described in Section 4. Autonomous DHT (ADHT) to achieve the administrative isolation

properties that are crucial to scaling for large real-world systems.
3.1.3 Probe In this section, we describe these two ideas in detail.

TheProbeoperation returns the value of an attribute to an appli- .
cation. The complete argument set for the probe operation is shown4-1 ~ Leveraging DHTs
in Table 2. Along with theattrNameand theattrTypearguments, a In contrast to previous systems [4, 15, 38, 39, 45], SDIMS’s ag-
levelargument specifies the level at which the answers are requiredgregation abstraction specifies both an attribute type and attribute
for an attribute. In our implementation we choose to return results name and associates an aggregation function with a type rather than
at all levelsk < | for a leveld probe because (i) it is inexpensive as  just specifying and associating a function with a name. Installing a
the nodes traversed for levieprobe also contain lev&laggregates single function that can operate on many different named attributes
for k <1 and as we expect the network cost of transmitting the ad- matching a type improves scalability for “sparse attribute types”
ditional information to be small for the small aggregates which we with large, sparsely-filled nhame spaces. For example, to construct
focus and (ii) it is useful as applications can efficiently get several a file location service, our interface allows us to install a single
aggregates with a single probe (e.g., for domain-scoped queries agunction that computes an aggregate value for any named file. A

explained in Section 4.2). subtree’s aggregate value for (FILELOC, name) would be the ID of
Probes withmodeset tocontinuousand with finiteexpTimeen- a node in the subtree that stores the named file. Conversely, Astro-

able applications to handle spatial and temporal heterogeneity. Whelabe copes with sparse attributes by having aggregation functions

nodeA issues a continuous probe at lel/&br an attribute, then re- compute sets or lists and suggests that scalability can be improved

gardless of theip and down parameters, updates for the attribute by representing such sets with Bloom filters [6]. Supporting sparse
at any node inA’s leveld ancestor’'s subtree are aggregated up to names within a type provides at least two advantages. First, when
levell and the aggregated value is propagated down along the paththe value associated with a name is updated, only the state associ-
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Figure 2: The DHT tree corresponding to key 111 DHTtrees11)
and the corresponding aggregation tree.

Figure 3: Example shows how isolation property is violated
ated with that name needs to be updated and propagated to otheWith original Pastry. We also show the corresponding aggre-
nodes. Second, splitting values associated with different namesgdation tree.
into different aggregation values allows our system to leverage Dis-
tributed Hash Tables (DHTs) to map different names to different
trees and thereby spread the function’s logical root node’s load and
state across multiple physical nodes.

Given this abstraction, scalably mapping attributes to DHTSs is
straightforward. DHT systems assign a long, random ID to each
node and define an algorithm to route a request for kdg a
noderooty such that the union of paths from all nodes forms a tree
DHTtreg, rooted at the nodmot,. Now, as illustrated in Figure 2,
by aggregating an attribute along the aggregation tree correspond-Figure 4: Autonomous DHT satisfying the isolation property.
ing to DHTtreg, for k =hash(attribute type, attribute namelffer- Also the corresponding aggregation tree is shown.
ent attributes will be aggregated along different trees.

In comparison to a scheme where all attributes are aggregatedL immediate higher and lower neighbors in the nodeld space, and
along a single tree, aggregating along multiple trees incurs lower forwards the packet to a node with an identical prefix but that is
maximum node stress: whereas in a single aggregation tree ap-numerically closer to the destination key in the nodeld space. This
proach, the root and the intermediate nodes pass around more mesgprocess continues until the destination node appears in the leaf set,
sages than leaf nodes, in a DHT-based multi-tree, each node acts asfter which the message is routed directly. Pastry’s expected num-
an intermediate aggregation point for some attributes and as a leafber of routing steps itogn, wheren is the number of nodes, but
node for other attributes. Hence, this approach distributes the onusas Figure 3 illustrates, this algorithm does not guarantee path con-

key = 111XX

011XX 100XX 101XX 110XX  010XX

of aggregation across all nodes. vergence: if two nodes in a domain have nodelds that match a key
L. . . in the same number of bits, both of them can route to a third node
4.2 Administrative Isolation outside the domain when routing for that key.

Aggregation trees should provide administrative isolation by en- ~ Simple modifications to Pastry’s route table construction and
suring that for each domain, the virtual node at the root of the key-routing protocols yield an Autonomous DHT (ADHT) that sat-
smallest aggregation subtree containing all nodes of that domain isisfies the path locality and path convergence properties. As Figure 4
hosted by a node in that domain. Administrative isolation is impor- illustrates, whenever two nodes in a domain share the same prefix
tant for three reasons: (i) for security — so that updates and probeswith respect to a key and no other node in the domain has a longer
flowing in a domain are not accessible outside the domain, (ii) for prefix, our algorithm introduces a virtual node at the boundary of
availability — so that queries for values in a domain are not affected the domain corresponding to that prefix plus the next digit of the
by failures of nodes in other domains, and (iii) for efficiency — so key; such a virtual node is simulated by the existing node whose id

that domain-scoped queries can be simple and efficient. is numerically closest to the virtual node’s id. Our ADHT'’s routing
To provide administrative isolation to aggregation trees, a DHT table differs from Pastry’s in two ways. First, each node maintains
should satisfy two properties: a separate leaf set for each domain of which it is a part. Second,

nodes use two proximity metrics when populating the routing tables
1. Path Locality: Search paths should always be contained in — hierarchical domain proximity is the primary metric and network
the smallest possible domain. distance is secondary. Then, to route a packet to a global root for a
) key, ADHT routing algorithm uses the routing table and the leaf set
2. Path Convergence: Search paths for a key from different o iries to route to each successive enclosing domain’s root (the vir-
nodes in a domain should converge at a node in that domain. 5| or real node in the domain matching the key in the maximum

Existing DHTSs support path locality [18] or can easily support it number of digits). Additional details about the ADHT algorithm

by using the domain nearness as the distance metric [7, 17], but theyartlaaavaila_ble inMar_1 ex@e_nded tde_tf:fhnical lrer;ort [4f4]. h admini
do not guarantee path convergence as those systems try to optimize _rope_rtles. a'”‘a'f"”g a different leaf set for each adminis-
the search path to the root to reduce response latency. For examplet,rat've hlerarch%level increases the Eumber of ne ighbors .that each
Pastry [32] usegprefix routingin which each node’s routing table BOde trac:](s gz );Igbn+;‘| fr?rg_ (2. )* lgbr.]+.c 'E unmoglfledf
contains one row per hexadecimal digit in the nodeld space where "aSty, Wheré Is the number of bits in a digif Is the number o

theith row contains a list of nodes whose nodelds differ from the gode_s,c IS the_ Ieaget S'ZF' aridis the numbc;er of domain Ievz_els.
current node’s nodeld in thi¢h digit with one entry for each pos- outing requires Agpn +1) steps compared to @) steps in

sible digit value. Given a routing topology, to route a packet to Pastry; "’_".SO’ each _routing hop may be longer than in Pastry because
an arbitrary destination key, a node in Pastry forwards a packet to the modified algorithm's f°““f‘9 table prefers_ same-dor_n_aln nodes
the node with a nodeld prefix matching the key in at least one more over nearby nodes. We experimentally quantify the additional rout-

digit than the current node. If such a node is not known, the cur- 'ngl coslts in Sect;on 7.th ADHT t | I d ins to i
rent node uses an additional data structure |éhé setcontaining n alarge system, the opology allows domains 1o Im-
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Figure 5: Example for domain-scoped queries Level 1 . MIZ fom MIE from
H s : . . r\ To parent 0X... Virtual Node
prove security for sensitive attribute types by installing them only o\ A ‘/
within a specified domain. Then, aggregation occurs entirely within Level 0 | o ’ From parents
MiB

the domain and a node external to the domain can neither observe gt
nor affect the updates and aggregation computations of the attribute MIBs
type. Furthermore, though we have not implemented this feature

in the prototype, the ADHT topology would also support domain- Figure 6: Example illustrating the data structures and the or-
restricted probes that could ensure that no one outside of a domainganization of them at a node.

can observe a probe for data stored within the domain.

The ADHT topology also enhances availability by allowing the e refer to a store of (attribute type, attribute name, value) tuples
common case of probes for data within a domain to depend only on a5 3 Management Information Base or MIB, following the termi-
adomain’s nodes. This, for example, allows a domain that becomesno|ogy from Astrolabe [38] and SNMP [34]. We refer an (attribute
disconnected from the rest of the Internet to continue to answer type attribute name) tuple as attribute key
queries for local data. . o As Figure 6 illustrates, each physical node in the system acts as

Aggregation trees that provide administrative isolation also en- seyeral virtual nodes in the AML: a node acts as leaf for all attribute
able the definition of simple and efficient domain-scoped aggre- keys, as a level-1 subtree root for keys whose hash matches the
gation functions to support queries like “what is the average load pgde’s ID inb prefix bits (whereb is the number of bits corrected
on machines in domain X?" For example, consider an aggrega- jn each step of the ADHT's routing scheme), as a lévalibtree
tion function to count the number of machines in an example sys- oot for attribute keys whose hash matches the node’s ID in the
tem with three machines illustrated in Figure 5. Each leaf node jnjtial i « b bits, and as the system’s global root for attribute keys
| updates attributblumMachinesvith a valuey containing a set  \hose hash matches the node’s ID in more prefix bits than any
of tuples of form (Domain, Count) for each domain of which the  gther node (in case of a tie, the first non-matching bit is ignored
node is a part. In the example, the node Al with name AL1.A. per- gnd the comparison is continued [46]).
forms an update with the value ((A1.A.,1),(A.,1),(.,1)). An aggre-  To support hierarchical aggregation, each virtual node at the root
gation function at an internal virtual node hosted on nbideith of a leveli subtree maintains several MIBs that storeqttijd MIBs
child setC computes the aggregate as a set of tuples: for each do-containing raw aggregate values gathered from children, (&) a
mainD thatN is part of, form a tuplgD, ¥ .cc(count (D, count) € duction MIBcontaining locally aggregated values across this raw
Vc)). This computation is illustrated in the Figure 5. Now a query information, and (3) amncestor MIBcontaining aggregate values
for NumMachineswith level set to MAX will return the aggre-  gcatterediownfrom ancestors. This basic strategy of maintaining
gate values at each intermediate virtual node on the path to _thech"d, reduction, and ancestor MIBs is based on Astrolabe [38],
root as a set of tuples (tree level, aggregated value) from which pyt our structured propagation strategy channels information that
it is easy to extract the count of machines at each enclosing do-fiows up according to its attribute key and our flexible propagation
main. For example, Al would receive ((2, (B1.B.,1),(B.,1).(..3))). strategy only sends child updatesand ancestor aggregate results
1 (ALA.D),(A.2),(.2). (0, (AL.A.1),(A.,1),(.,1)))). Note that  gownas far as specified by the attribute key’s aggregation func-
supporting domain-scoped queries would be less convenient andiion, Note that in the discussion below, for ease of explanation, we
less efficient if aggregation trees did not conform to the system's assume that the routing protocol is correcting single bit at a time
administrative structure. It would be less efficient because each in- () — 1). Our system, built upon Pastry, handles multi-bit correction
termediate virtual node will have to maintain a list of all values at (b= 4) and is a simple extension to the scheme described here.
the leaves in its subtree along with their names and it would be less g 5 given virtual node; at leveli, eachchild MIB contains the
convenient as applications that need an aggregate for a domain willsypset of a child's reduction MIB that contains tuples that match
have to pick values of nodes in that domain from the list returned ni’s node ID ini bits and whosep aggregation function attribute is

by a probe and perform computation. at leasti. These local copies make it easy for a node to recompute
a leveli aggregate value when one child’s input changes. Nodes
5. PROTOTYPE IMPLEMENTATION maintain their child MIBs in stable storage and use a simplified

version of the Bayou log exchange protocsdijsconflict detection
and resolution) for synchronization after disconnections [26].
Virtual noden; at leveli maintains areduction MIBof tuples
with a tuple for each key present in any child MIB containing the
attribute type, attribute name, and output of the attribute type’s ag-

The internal design of our SDIMS prototype comprises of two
layers: the Autonomous DHT (ADHT) layer manages the overlay
topology of the system and the Aggregation Management Layer
(AML) maintains attribute tuples, performs aggregations, stores
and propagates aggregate values. Given the ADHT construction : . . ,
described in Section 4.2, each node implements an Aggregationgrega.te functions applied to the chlld_ren_s tuples.

Management Layer (AML) to support the flexible API described in A virtual nodery at _Ie_vel| al_so maintains aa_ncestor MiBto
store the tuples containing attribute key and a list of aggregate val-

Section 3. In this section, we describe the internal state and opera- -
tion of the AML layer of a node in the system P ues at different levels scattered down from ancestors. Note that the



list for a key might contain multiple aggregate values for a same node that requested it. Note that in the extreme case of a function

level but aggregated at different nodes (see Figure 4). So, the ag-installed withup= down= 0, a leveli probe can touch all nodes

gregate values are tagged not only with level information, but are in a leveli subtree while in the opposite extreme case of a func-

also tagged with ID of the node that performed the aggregation.  tion installed withup = down= ALL, probe is a completely local
Level-0 differs slightly from other levels. Each level-0 leaf node operation at a leaf.

maintains docal MIB rather than maintaining child MIBs and a For probes that include phases 2 (probe scatter) and 3 (probe
reduction MIB. This local MIB stores information about the local aggregation), an issue is how to decide when a node should stop
node’s state inserted by local applicationswpalate()calls. We en- waiting for its children to respond and send up its current aggre-

vision various “sensor” programs and applications insert data into gate value. A node stops waiting for its children when one of three
local MIB. For example, one program might monitor local configu- conditions occurs: (1) all children have responded, (2) the ADHT
ration and perform updates with information such as total memory, layer signals one or more reconfiguration events that mark all chil-
free memory, etc., A distributed file system might perform update dren that have not yet responded as unreachable, or (3) a watchdog
for each file stored on the local node. timer for the request fires. The last case accounts for nodes that
Along with these MIBs, a virtual node maintains two other ta- participate in the ADHT protocol but that fail at the AML level.
bles: an aggregation function table and an outstanding probes ta- At a virtual node, continuous probes are handled similarly as
ble. An aggregation function table contains the aggregation func- one-shot probes except that such probes are stored in the outstand-
tion and installation arguments (see Table 1) associated with an at-ing probe table for a time period ekpTimespecified in the probe.
tribute type or an attribute type and name. Each aggregate func-Thus each update for an attribute triggers re-evaluation of continu-
tion is installed on all nodes in a domain’s subtree, so the aggregateous probes for that attribute.
function table can be thought of as a special case of the ancestor We implement a lease-based mechanism for dynamic adaptation.
MIB with domain functions always installedp to a root within a A level virtual node for an attribute can issue the lease for level-
specified domain andownto all nodes within the domain. The | aggregate to a parent or a child onlyuip is greater thar or it
outstanding probes table maintains temporary information regard- has leases from all its children. A virtual node at leiveln issue
ing in-progress probes. the lease for levek aggregate fok > | to a child only if dowr>
Given these data structures, it is simple to support the three APl k—1 or if it has the lease for that aggregate from its parent. Now a
functions described in Section 3.1. probe for levelk aggregate can be answered by leveirtual node
Install Thelnstall operation (see Table 1) installs on adomain an if it has a valid lease, irrespective of thp anddownvalues. We
aggregation function that acts on a specified attribute type. Execu-are currently designing different policies to decide when to issue a

tion of an install operation for functioaggrFuncon attribute type lease and when to revoke a lease and are also evaluating them with
attrTypeproceeds in two phases: first the install request is passedthe above mechanism.
up the ADHT tree with the attribute kefattrType, null)until it Our current prototype does not implement access control on in-

reaches the root for that key within the specified domain. Then, the stall, update, and probe operations but we plan to implement As-
request is flooded down the tree and installed on all intermediate trolabe’s [38] certificate-based restrictions. Also our current pro-

and leaf nodes. totype does not restrict the resource consumption in executing the
Update When a leveli virtual node receives an update for an aggregation functions; but, ‘techniques from research on resource
attribute from a child below: it first recomputes the levelggre- management in server systems and operating systems [2, 3] can be

gate value for the specified key, stores that value in its reduction applied here.
MIB and then, subject to the function’ anddomainparameters,
passes the updated value to the appropriate parent based onthe a§, ROBUSTNESS
tribute key. Also, the levei{i > 1) virtual node sends the updated
leveld aggregate to all its children if the functiord®ewnparameter
exceeds zero. Upon receipt of a levelggregate from a parent,
a levelk virtual node stores the value in its ancestor MIB and, if
k > i —down forwards this aggregate to its children.

Probe A Probe collects and returns the aggregate value for a
specified attribute key for a specified level of the tree. As Figure 1

In large scale systems, reconfigurations are common. Our two
main principles for robustness are to guarantee (i) read availability
— probes complete in finite time, and (ii) eventual consistency — up-
dates by a live node will be visible to probes by connected nodes
in finite time. During reconfigurations, a probe might return a stale
value for two reasons. First, reconfigurations lead to incorrectness
illustrates, the system satisfies a probe for a Ieeggregate value in the previous aggregate values. Second, the nodes needed for

aggregation to answer the probe become unreachable. Our sys-

using a four-phqse protocol that may be short-cwcune_d when up- tem also provides two hooks that applications can use for improved
dates have previously propagated either results or partial results UP, 1 d-to-end robustness in the presence of reconfigurations: (1) On-
or down the tree. In phase_ Lt t? probe ph_asethe system demand re-aggregation and (2) application controlled replication.

routes the probe up the attribute key’s tree to either the root of the Our system handles reconfigurations at two levels — adaptation at

leveld subtree or to a node that stores the requested value in its an- he ADHT layer to ensure connectivity and adaptation at the AML
cestor MIB. In the former case, the system proceeds to phase 2 an .
ayer to ensure access to the data in SDIMS.

in the latter it skips to phase 4. In phase 2, phebe scatter phase
each node that receives a probe request sends it to all of its childreng. 1 ADHT Adaptation
unless the node’s reduction MIB already has a value that matches
Lhneb‘gggﬁ (S)fe}:tsr';ljé?rzg?/’ Ilnn ;\)I\rlggg ga:b?@tg: Qgggégttilgrt]e[s)hzgise 3t.ation algorithm [32] —the leaf sets are repaired as soon as arecon-
when a node receives values for thé specified kev from each of its figuration is detected and the routing table is repaired lazily. Note
P y -that maintaining extra leaf sets does not degrade the fault-tolerance

children, it executes the aggregate function on these values and ei- i o ; oy
ther (a) forwards the result to its parent (if its level is less than property of the original Pastry; indeed, it enhances the resilience

or (b) initiates phase 4 (if it is at levé). Finally, in phase 4, the of ADHTSs to failures by providing additional routing links. Due

a0areqate routing phaste agareqate value is routed down to the to redundancy in the leaf sets and the routing table, updates can be
99reg 9p ggreg routed towards their root nodes successfully even during failures.

Our ADHT layer adaptation algorithm is same as Pastry’s adap-
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Broadly, we use two types of strategies for AML adaptation in
the face of reconfigurations: (1) Replication in time as a funda- Figure 8: Flexibility of our approach. With different UP and
mental baseline strategy, and (2) Replication in space as an addi-DOWN values in a network of 4096 nodes for different read-
tional performance optimization that falls back on replication in write ratios.
time when the system runs out of replicas. We provide two mecha-
nisms for replication in time. First, lazy re-aggregation propagates Probes for the file location can then be answered without accessing
already received updates to new children or new parents in a lazythe root; hence they are not affected by the failure of the root. How-
fashion over time. Second, applications can reduce the probability ever, note that this technique is not appropriate in some cases. An
of probe response staleness during such repairs through our flexibleaggregated value in file location system is valid as long as the node

API with appropriate setting of thdownparameter. hosting the file is active, irrespective of the status of other nodes
Lazy Re-aggregation: The DHT layer informs the AML layer in the system; whereas an application that counts the number of

about reconfigurations in the network using the following three machines in a system may receive incorrect results irrespective of

function calls -newParent, failedChildandnewChild OnnewPar- the replication. If reconfigurations are only transient (like a node

ent(parent, prefix)all probes in the outstanding-probes table cor- temporarily not responding due to a burst of load), the replicated
responding tprefixare re-evaluated. If parent is not null, then ag- aggregate closely or correctly resembles the current state.
gregation functions and already existing data are lazily transferred
in the background. Any new updates, installs, and probes for this
prefix are sent to the parent immediately. f@medChild(child, pre- 7. EVALUATION
fix), the AML layer marks the child as inactive and any outstanding  We have implemented a prototype of SDIMS in Java using the
probes that are waiting for data from this child are re-evaluated. FreePastry framework [32] and performed large-scale simulation
On newChild(child, prefix)the AML layer creates space in its data €xperiments and micro-benchmark experiments on two real net-
structures for this child. works: 187 machines in the department and 69 machines on the
Figure 7 shows the time line for the default lazy re-aggregation PlanetLab [27] testbed. In all experiments, we use static up and
upon reconfiguration. Probes initiated between points 1 and 2 anddown values and turn off dynamic adaptation. Our evaluation sup-
that are affected by reconfigurations are reevaluated by AML upon Ports four main conclusions. First, flexible API provides different
detecting the reconfiguration. Probes that complete or start betweerPropagation strategies that minimize communication resources at
points 2 and 8 may return stale answers. different read-to-write ratios. For example, in our simulation we
On-demand Re_aggregation: The default |azy aggregation observe Update-Local to be efficient for read-to-write ratios be-
scheme lazily propagates the old updates in the system. Addition-low 0.0001, Update-Up around 1, and Update-All above 50000.
ally, usingup anddownknobs in the Probe API, applications can Second, our system is scalable with respect to both nodes and at-
force on-demand fast re-aggregation of updates to avoid stalenesdributes. In particular, we find that the maximum node stress in
in the face of reconfigurations. In particular, if an application de- Our system is an order lower than observed with an Update-All,
tects or suspects an answer as stale, then it can re-issue the prob@0Ssiping approach. Third, in contrast to unmodified Pastry which
increasing the up and down parameters to force the refreshing ofVviolates path convergence property in upto 14% cases, our system
the cached data. Note that this strategy will be useful only after the conforms to the property. Fourth, the system is robust to reconfig-
DHT adaptation is completed (Point 6 on the time line in Figure 7). Urations and adapts to failures with in a few seconds.
Replication in Space: Replication in space is more challeng- . . .
ing in our system than in a DHT file location application because /-1 Simulation Experiments
replication in space can be achieved easily in the latter by just repli-  Flexibility and Scalability: A major innovation of our system
cating the root node’s contents. In our system, however, all internal is its ability to provide flexible computation and propagation of ag-

nodes have to be replicated along with the root. gregates. In Figure 8, we demonstrate the flexibility exposed by the
In our system, applications control replication in space using aggregation API explained in Section 3. We simulate a system with
anddownknobs in the Install API; with largap anddownvalues, 4096 nodes arranged in a domain hierarchy with branching factor

aggregates at the intermediate virtual nodes are propagated to mor¢bf) of 16 and install several attributes with differamg anddown
nodes in the system. By reducing the number of nodes that have toparameters. We plot the average number of messages per operation
be accessed to answer a probe, applications can reduce the probancurred for a wide range of read-to-write ratios of the operations
bility of incorrect results occurring due to the failure of nodes that for different attributes. Simulations with other sizes of networks
do not contribute to the aggregate. For example, in a file location with different branching factors reveal similar results. This graph
application, using a non-zero positidewnparameter ensures that  clearly demonstrates the benefit of supporting a wide range of com-
a file’s global aggregate is replicated on nodes other than the root.putation and propagation strategies. Although having a small UP



1e+07 _ . ‘
P ADHT bf=4
1le+06 4 6 i
P ADHT b=16
100000 | Gossip 65536”7§./,.7 o 5| |
" L
ﬁ Gossip 4096 ;ggs DHT 256, c )( ) *
% 10000 F *,«;:%"' e » S 4t .-~ ADHT bf=64
8 N o - @ L
z Gossip 256X~ 3 .
E W e - g -
3 1000 | et = _n 4 g 3r — B
£ o o " DHT 4096__--° @ P
3 . - o
s L - o
° " o 2 PASTRY bf=4,16,64 1
100> = - =" DHT 65536
o o - o o
o — o7
10 oo gumgs” g ETIe 0 ] 1 4
0 w ‘ ‘
. . . . .
1 10 100 1000 10000 100000 10 100 1000 10000 100000
Number of attributes installed Number of Nodes

Figure 9: Max node stress for a gossiping approach vs. ADHT Figure 10: Average path length to root in Pastry versus ADHT
based approach for different number of nodes with increasing for different branching factors. Note that all lines correspond-
number of sparseattributes. ing to Pastry overlap.

value is efficient for attributes with low read-to-write ratios (write 1 ‘ ‘ ‘ I
dominated applications), the probe latency, when reads do occur, wl ‘\\(,2/\, =64 x|
may be high since the probe needs to aggregate the data from all
the nodes that did not send their aggregate up. Conversely, applica- wr A
tions that wish to improve probe overheads or latencies can increase
their UP and DOWN propagation at a potential cost of increase in
write overheads.

Compared to an existing Update-all single aggregation tree ap-
proach [38], scalability in SDIMS comes from (1) leveraging DHTs

10 -

Percentage of violations

to form multiple aggregation trees that split the load across nodes o ERY 1
and (2) flexible propagation that avoids propagation of all updates N R ; |
to all nodes. Figure 9 demonstrates the SDIMS’s scalability with i ' )

nodes and attributes. For this experiment, we build a simulator to 0% s P e pro
simulate both Astrolabe [38] (a gossiping, Update-All approach) Number of Nodes

and our system for an increasing numbespérseattributes. Each
attribute corresponds to the membership in a multicast session with
a small number of participants. For this experiment, the session
size is set to 8, the branching factor is set to 16, the propagation s Average Latency 3000
mode for SDIMS is Update-Up, and the participant nodes perform

Figure 11: Percentage of probe pairs whose paths to the root
did not conform to the path convergence property with Pastry.

)
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continuous probes for the global aggregate value. We plot the max- =, £

imum node stress (in terms of messages) observed in both schemes § S1000

for different sized networks with increasing number of sessions ¥ 3

when the participant of each session performs an update operation. ° PR~ 0 R ,oi >
Clearly, the DHT based scheme is more scalable with respect to at- & & @f & & @@'&
tributes than an Update-all gossiping scheme. Observe that at some N ¥
constant number of attributes, as the number of nodes increase in (a) (b)

the system, the maximum node stress increases in the gossipinq:_

approach, while it decreases in our approach as the load of aggret9uré 12: Latency of probes for aggregate at global root level

gation is spread across more nodes. Simulations with other sessionVith three different modes of aggregate propagation on (a) de-

sizes (4 and 16) yield similar results. partment machines, and (b) PlanetLab machines

Administrative Hierarchy and Robustness: Although the ) o

routing protocol of ADHT might lead to an increased number of Pastry and ADHT in the average path length; butitis at these small

hops to reach the root for a key as compared to original Pastry, thedomain sizes, that the path convergence fails more often with the

algorithm conforms to the path convergence and locality properties Original Pastry.

and thus provides administrative isolation property. In Figure 10, .

we quanti?y the increased path length by co?npgris%ns witr?unmod- 7.2 Testbed experiments

ified Pastry for different sized networks with different branching We run our prototype on 180 department machines (some ma-

factors of the domain hierarchy tree. To quantify the path con- chines ran multiple node instances, so this configuration has a to-

vergence property, we perform simulations with a large number of tal of 283 SDIMS nodes) and also on 69 machines of the Planet-

probe pairs — each pair probing for a random key starting from two Lab [27] testbed. We measure the performance of our system with

randomly chosen nodes. In Figure 11, we plot the percentage oftwo micro-benchmarks. In the first micro-benchmark, we install

probe pairs for unmodified pastry that do not conform to the path three aggregation functions of types Update-Local, Update-Up, and

convergence property. When the branching factor is low, the do- Update-All, perform update operation on all nodes for all three ag-

main hierarchy tree is deeper resulting in a large difference betweengregation functions, and measure the latencies incurred by probes
for the global aggregate from all nodes in the system. Figure 12
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VT — writes (Figure 8), has moderate read latencies (Figure 12), and is

latency —«— 7 2840 scalable with respect to both nodes and attributes (Figure 9), and

120 P Node»‘i illed - 2820 (3) small domain sizes are the cases where DHT algorithms fail to
‘ provide path convergence more often and SDIMS ensures path con-

2800 vergence with only a moderate increase in path lengths (Figure 11).

2780

7.3 Applications

SDIMS is designed as a general distributed monitoring and con-
2740 trol infrastructure for a broad range of applications. Above, we dis-
cuss some simple microbenchmarks including a multicast member-
ship service and a calculate-sum function. Van Renesse et al. [38]
0 . ‘ ‘ 2700 provide detailed examples of how such a service can be used for a
0 5 10 15 20 25 . . . . . .
Time(in sec) peer-to-peer caching directory, a data-diffusion service, a publish-
subscribe system, barrier synchronization, and voting. Addition-
Figure 13: Micro-benchmark on department network showing ally, we have initial experience using SDIMS to construct two sig-
the behavior of the probes from a single node when failures are nificant applications: the control plane for a large-scale distributed
happening at some other nodes. All 283 nodes assign a value of file system [12] and a network monitor for identifying “heavy hit-

Latency (in ms)
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2760

2720

10 to the attribute. ters” that consume excess resources.
Distributed file system control: The PRACTI (Partial Repli-
100000 s ) " cation, Arbitrary Consistency, Topology Independence) replication
Node fled === system provides a set of mechanisms for data replication over which

arbitrary control policies can be layered. We use SDIMS to provide
several key functions in order to create a file system over the low-
level PRACTI mechanisms.

First, nodes use SDIMS as a directory to handle read misses.
When a noden receives an objeat, it updates thgReadDir, 0)
attribute with the valuen; whenn discardso from its local store,
it resets(ReadDir, o)to NULL. At each virtual node, th&eadDir
aggregation function simply selects a random non-null child value
(if any) and we use the Update-Up policy for propagating updates.
5 5 Finally, to locate a nearby copy of an objecta noden; issues a
T e o 0 20 2o w0 w0 a0 w0 50 series of probe requests for ttRReadDir, o)attribute, starting with
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Timefin sec) level= 1 and increasing thievel value with each repeated probe
Figure 14: Probe performance during failures on 69 machines ~ request until a non-null node IR is returned. n; then sends a
of Planetlab testbed demand read request 19, andn, sends the data if it has it. Con-

versely, if np does not have a copy d, it sends a nack tog,

shows the observed latencies for both testbeds. Notice that the la-2ndn issues a retry probe with treownparameter set to a value
tency in Update-Local is high compared to the Update-UP policy. larger than gsed |n.the previous probe in order to force on-demand
This is because latency in Update-Local is affected by the presence®-aggregation, which will yield a fresher value for the retry.
of even a single slow machine or a single machine with a high la- ~ Second, nodes subscribe to invalidations and updatieseiest
tency network connection. setsof files, and nodes use SDIMS to set up and maintain per-
Inthe second benchmark, we examine robustness. We install ongnterest-set network-topology-sensitive spanning trees for propa-
aggregation function of type Update-Up that performs sum opera- 9ating this information. To subscribe to invalidations for interest
tion on an integer valued attribute. Each node updates the attributeS€ti, & noden, first updates theinval, i) attribute with its iden-
with the value 10. Then we monitor the latencies and results re- tity N1, and the aggregation function at each virtual node selects
turned on the probe operation for global aggregate on one chosen®n€ non-null child value. Finallyy; probes increasing levels of the
node, while we kill some nodes after every few probes. Figure 13 the(Inval, i) attribute until it finds the first node, 7 ng; m then
shows the results on the departmental testbed. Due to the nature/S€sn as its parent in the spanning treg. also issues a continu-
of the testbed (machines in a department), there is little change in 0us probe for this attribute at this level so that it is notified of any
the latencies even in the face of reconfigurations. In Figure 14, we change to its spanning tree parent. Spanning trees for streams of
present the results of the experiment on PlanetLab testbed. ThePushed updates are maintained in a similar manner. .
root node of the aggregation tree is terminated after about 275 sec- In the future, we plan to use SDIMS for at least two additional
onds. There is a 5X increase in the latencies after the death of theServices within this replication system. First, we plan to use SDIMS
initial root node as a more distant node becomes the root node aftert© track the read and write rates to different objects; prefetch algo-
repairs. In both experiments, the values returned on probes startfithms will use this information to prioritize replication [40, 41].
reflecting the correct situation within a short time after the failures. Second, we plan to track the ranges of invalidation sequence num-
From both the testbed benchmark experiments and the simula-Ders seen by each node for each interest set in order to augment
tion experiments on flexibility and scalability, we conclude that (1) the spanning trees described above with additional *hole filling” to
the flexibility provided by SDIMS allows applications to tradeoff ~allow nodes to locate specific invalidations they have missed.
read-write overheads (Figure 8), read latency, and sensitivity to _ Overall, our initial experience with using SDIMS for the PRAC-
slow machines (Figure 12), (2) a good default aggregation strat- ' replication system suggests that (1) the general aggregation

egy isUpdate-Upwhich has moderate overheads on both reads and interface provided by SDIMS simplifies the construction of dis-
tributed applications—given the low-level PRACTI mechanisms,



we were able to construct a basic file system that uses SDIMS for eraldistributed hash tablabstraction as a useful building block for
several distinct control tasks in under two weeks and (2) the weak a broad range of distributed applications. Some of these systems
consistency guarantees provided by SDIMS meet the requirementsinternally make use of the reduction forest not only for routing but
of this application—each node’s controller effectively treats infor- also for caching [32], but for simplicity, these systems do not gen-
mation from SDIMS as hints, and if a contacted node does not have erally export this powerful functionality in their external interface.
the needed data, the controller retries, using SDIMS on-demand re-Our goal is to develop and expose the internal reduction forest of
aggregation to obtain a fresher hint. DHTs as a similarly general and useful abstraction.

Distributed heavy hitter problem: The goal of the heavy hitter Although object location is a predominant target application for
problem is to identify network sources, destinations, or protocols DHTSs, several other applications like multicast [8, 9, 33, 36] and
that account for significant or unusual amounts of traffic. As noted DNS [11] are also built using DHTs. All these systems implicitly
by Estan et al. [13], this information is useful for a variety of appli- perform aggregation on some attribute, and each one of them must
cations such as intrusion detection (e.g., port scanning), denial of be designed to handle any reconfigurations in the underlying DHT.
service detection, worm detection and tracking, fair network allo- With the aggregation abstraction provided by our system, designing
cation, and network maintenance. Significant work has been doneand building of such applications becomes easier.
on developing high-performance stream-processing algorithms for  Internal DHT trees typically do not satisfy domain locality prop-
identifying heavy hitters at one router, but this is just a first step; erties required in our system. Castro et al. [7] and Gummadi et
ideally these applications would like not just one router’s views of al. [17] point out the importance of path convergence from the per-
the heavy hitters but an aggregate view. spective of achieving efficiency and investigate the performance of

We use SDIMS to allow local information about heavy hitters Pastry and other DHT algorithms, respectively. SkipNet [18] pro-
to be pooled into a view of global heavy hitters. For each desti- vides domain restricted routing where a key search is limited to the
nation IP addrestPy, a node updates the attribuBestBWIPy) specified domain. This interface can be used to ensure path conver-
with the number of bytes sent € in the last time window. The gence by searching in the lowest domain and moving up to the next
aggregation function for attribute ty@estBWis installed with the domain when the search reaches the root in the current domain. Al-
Update-UP strategy and simply adds the values from child nodes. though this strategy guarantees path convergence, it loses the aggre-
Nodes perform continuous probe for global aggregate of the at- gation tree abstraction property of DHTs as the domain constrained
tribute and raise an alarm when the global aggregate value goesrouting might touch a node more than once (as it searches forward
above a specified limit. Note that only nodes sending data to a par-and then backward to stay within a domain).
ticular IP address perform probes for the corresponding attribute.

Also note that techniques from [25] can be extended to hierarchical 9, CONCLUSIONS

case to tradeoff precision for communication bandwidth. This paper presents a Scalable Distributed Information Manage-

ment System (SDIMS) that aggregates information in large-scale

8. RELATED WORK networked systems and that can serve as a basic building block
The aggregation abstraction we use in our work is heavily influ- for a broad range of applications. For large scale systénes;
enced by the Astrolabe [38] project. Astrolabe adopts a Propagate-archical aggregationis a fundamental abstraction for scalability.
All and unstructured gossiping technigues to attain robustness [5]. We build our system by extending ideas from Astrolabe and DHTs
However, any gossiping scheme requires aggressive replication ofto achieve (i) scalability with respect to both nodes and attributes
the aggregates. While such aggressive replication is efficient for through a new aggregation abstraction that helps leverage DHT's
read-dominatedttributes, it incurs high message cost for attributes internal trees for aggregation, (ii) flexibility through a simple API
with a small read-to-write ratio. Our approach provides a flexi- that lets applications control propagation of reads and writes, (ii)
ble API for applications to set propagation rules according to their administrative isolation through simple augmentations of current
read-to-write ratios. Other closely related projects include Wil- DHT algorithms, and (iv) robustness to node and network recon-
low [39], Cone [4], DASIS [1], and SOMO [45]. Willow, DASIS  figurations through lazy reaggregation, on-demand reaggregation,
and SOMO build a single tree for aggregation. Cone builds a tree and tunable spatial replication.
per attribute and requires a total order on the attribute values.
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