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Abstract
Reinforcement learning is a machine learning answer to the optimal control problem. It
consists in learning an optimal control policy through interactions with the system to be
controlled, the quality of this policy being quantified by the so-called value function. An
important subtopic of reinforcement learning is to compute an approximation of this value
function when the system is too large for an exact representation. This survey reviews
state of the art methods for (parametric) value function approximation by grouping them
into three main categories: bootstrapping, residuals and projected fixed-point approaches.
Related algorithms are derived by considering one of the associated cost functions and
a specific way to minimize it, almost always a stochastic gradient descent or a recursive
least-squares approach.
Keywords: Reinforcement learning, value function approximation, survey
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1. Introduction

Optimal control of stochastic dynamic systems is a trend of research with a long history.
Several points of view can be adopted according to the information available on the system
such as a model of the physics ruling the system (automation) or a stochastic model of
its dynamic (dynamic programming). The machine learning response to this recurrent
problem is the Reinforcement Learning (RL) paradigm, in which an artificial agent learns
an optimal control policy through interactions with the dynamic system (also considered
as its environment). After each interaction, the agent receives an immediate scalar reward
information and the optimal policy it searches for is the one that maximizes the cumulative
reward over the long term.

The system to be controlled is usually modeled as a Markovian Decision Process (MDP).
An MDP is made up of a set of states (the different configurations of the system), a set
of actions (which cause a change of the system’s state), a set of Markovian transition
probabilities (the probability to transit from one state to another under a given action; the
Markovian property states that the probability depends on the current state-action pair
and not on the path followed to reach it), a reward function associating a scalar to each
transition and a discounting factor which decreases long-term rewards’ influence. How the
agent acts with the system is modeled by a so-called policy which associates to each state a
probability distribution over actions. The quality of such a policy is quantified by a so-called
value function which associates to each state the expected cumulative discounted reward
from starting in the considered state and then following the given policy (expectation being
done over all possible trajectories). An optimal policy is one of those which maximize the
associated value function for each state.

Thanks to the Markovian property, value functions can be (more or less simply) com-
puted using so-called Bellman equations. The value function of a given policy satisfies the
(linear) Bellman evaluation equation and the optimal value function (which is linked to one
of the optimal policies) satisfies the (nonlinear) Bellman optimality equation. These Bell-
man equations are very important for dynamic programming and reinforcement learning,
as they allow computing the value function. If the Markovian hypothesis is not satisfied
(something known as partial observability or perceptual aliasing), there are roughly two
solutions: the first one is to transform the problem such as to work with something for
which the Markovian property holds and the second one is to stop using Bellman equations.
In the rest of this article, it is assumed that this property holds.

If the model (that is transition probabilities and the reward function) is known and if
state and action spaces are small enough, the optimal policy can be computed using dy-
namic programming. A first scheme, called policy iteration, consists in evaluating an initial
policy (that is computing the associated value function using the linear Bellman evaluation
equation) and then improving this policy, the new one being greedy respectively to the com-
puted value function (it associates to each state the action which maximizes the expected
cumulative reward obtained from starting in this state, applying this action and then follow-
ing the initial policy). Evaluation and improvement are iterated until convergence (which
occurs in a finite number of iterations). A second scheme, called value iteration, consists
in computing directly the optimal value function (using the nonlinear Bellman optimality
equation and an iterative scheme based on the fact that the value function is the unique
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fixed-point of the associated Bellman operator). The optimal policy is greedy respectively
to the optimal value function. There is a third scheme, based on linear programming;
however, it is not considered in this article.

Reinforcement learning aims at estimating the optimal policy without knowing the
model and from interactions with the system. Value functions can no longer be computed,
they have to be estimated, which is the main scope of this paper. Reinforcement learning
heavily relies on dynamic programming, in the sense that most of approaches are some sort
of generalizations of value or policy iteration. A first problem is that computing a greedy
policy (required for both schemes) from a value function requires the model to be known.
The state-action value (or Q-) function alleviate this problem by providing an additional
degree of freedom on the first action to be chosen. It is defined, for a given policy and for
a state-action couple, as the expected discounted cumulative reward starting in the given
state, applying the given action and then following the fixed policy. A greedy policy can
thus be obtained by maximizing the Q-function over actions.

There are two main approaches to estimate an optimal policy. The first one, based
on value iteration, consists in estimating directly the optimal state-action value function
which is then used to derive an estimate of the optimal policy (with the drawback that
errors in the Q-function estimation can lead to a bad derived policy). The second one,
based on policy iteration, consists in mixing the estimation of the Q-function of the current
policy (policy evaluation) with policy improvement in a generalized policy iteration scheme
(generalized in the sense that evaluation and improvement processes interact, independently
of the granularity and other details). This scheme presents many variations. Generally, the
Q-function is not perfectly estimated when the improvement step occurs (which is known
as optimistic policy iteration). Each change in the policy implies a change in the associated
Q-function; therefore, the estimation process can be non-stationary. The policy can be
derived from the estimated state-action value function (for example, using a Boltzmann
distribution or an ε-greedy policy). There is generally an underlying dilemma between
exploration and exploitation. At each time step, the agent should decide between acting
greedily respectively to its uncertain and imperfect knowledge of the world (exploitation)
and taking another action which improves this knowledge and possibly leads to a better
policy (exploration). The policy can also have its own representation, which leads to actor-
critic architectures. The actor is the policy, and the critic is an estimated value or Q-function
which is used to correct the policy representation.

All these approaches share a common subproblem: estimating the (state-action) value
function (of a given policy or the optimal one directly). This issue is even more difficult
when state or action spaces are too large for a tabular representation, which implies to use
some approximate representation. Generally speaking, estimating a function from samples
is addressed by the supervised learning paradigm. However, in reinforcement learning, the
(state-action) values are not directly observed, which renders the underlying estimation
problem more difficult. Despite this, a number of (state-action) value function approxima-
tors have been proposed in the past decades. The aim of this paper is to review the more
classic ones by adopting an unifying view which classifies them into three main categories:
bootstrapping approaches, residual approaches and projected fixed-point approaches. Each
of these approaches is related to a specific cost function, and algorithms are derived con-
sidering one of these costs and a specific way to minimize it (almost always a stochastic
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gradient descent or a recursive least-squares approach). Before this, the underlying formal-
ism is presented. More details can be found in reference textbooks (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998; Sigaud and Buffet, 2010).

2. Preliminaries

A Markovian decision process (MDP) is a tuple {S, A, P,R, γ} where S is the (finite) state
space, A the (finite) action space, P : s, a ∈ S × A → p(.|s, a) ∈ P(S) the family of
Markovian transition probabilities, R : s, a, s′ ∈ S × A × S → r = R(s, a, s′) ∈ R the
bounded reward function and γ the discount factor weighting long term rewards. According
to these definitions, the system stochastically steps from state to state conditionally to the
actions the agent performed. Let i be the discrete time step. To each transition (si, ai, si+1)
is associated an immediate reward ri. The action selection process is driven by a policy
π : s ∈ S → π(.|s) ∈ P(A).

The quality of a policy is quantified by the value function V π, defined as the expected
discounted cumulative reward starting in a state s and then following the policy π:

V π(s) = E[
∞∑
i=0

γiri|s0 = s, π] (1)

Thanks to the Markovian property, the value function of a policy π satisfies the linear
Bellman evaluation equation:

V π(s) = Es′,a|s,π[R(s, a, s′) + γV π(s′)] (2)

=
∑
a∈A

π(a|s)
∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV π(s′)) (3)

Let define the Bellman evaluation operator T π:

T π : V ∈ RS → T πV ∈ RS : T πV (s) = Es′,a|s,π[R(s, a, s′) + γV (s′)] (4)

The operator T π is a contraction and V π is its unique fixed-point:

V π = T πV π (5)

For a practical purpose, the sampled Bellman operator T̂ π is defined as the Bellman operator
for a sampled transition. Assume that a transition (si, si+1) and associated reward ri are
observed, then:

T̂ πV (si) = ri + γV (si+1) (6)

An optimal policy π∗ maximizes the associated value function for each state: π∗ ∈
argmaxπ∈P(A)S V π. The associated optimal value function, noted V ∗, satisfies the nonlinear
Bellman optimality equation:

V ∗(s) = max
a∈A

Es′|s,π[R(s, a, s′) + γV ∗(s′)] (7)

= max
a∈A

∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)) (8)
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Notice that if the optimal value function is unique, it is not the case for the optimal policy.
For this, consider an MDP with one state, two actions, each one providing the same reward:
any policy is optimal. Let define the Bellman optimality operator T ∗:

T ∗ : V ∈ RS → T ∗V ∈ RS : T ∗V (s) = max
a∈A

Es′|s[R(s, a, s′) + γV (s′)] (9)

The operator T ∗ is a contraction and V ∗ is its unique fixed-point:

V ∗ = T ∗V ∗ (10)

Remark that a sampled Bellman optimality operator cannot be defined for the value func-
tion, as the maximum depends on the expectation.

The state-action value (or Q-) function provides an additional degree of freedom on the
choice of the first action to be applied. This provides useful in a model-free context. It is
defined as the expected cumulative reward starting in a state s, taking an action a and then
following the policy π:

Qπ(s, a) = E[
∞∑
i=0

γiri|s0 = s, a0 = a, π] (11)

The state-action value function Qπ also satisfies the linear Bellman evaluation equation:

Qπ(s, a) = Es′,a′|s,a,π[R(s, a, s′) + γQπ(s′, a′)] (12)

=
∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γ
∑
a′∈A

π(a′|s′)Qπ(s′, a′)) (13)

It is clear that value and state-action value functions are directly linked:

V π(s) = Ea|s,π[Qπ(s, a)] (14)

A Bellman evaluation operator related to the Q-function can also be defined. By a slight
abuse of notation, it is also noted T π, the distinction being clear from the context.

T π : Q ∈ RS×A → T πQ ∈ RS×A : T πQ(s, a) = Es′,a′|s,π[R(s, a, s′) + γQ(s′, a′)] (15)

This operator is also a contraction and Qπ is its unique fixed-point:

Qπ = T πQπ (16)

Similarly to what has been done for the value function, a sampled Bellman evaluation is also
introduced. For a transition (si, ai, si+1, ai+1) and the associated reward ri, it is defined as:

T̂ πQ(si, ai) = ri + γQ(si+1, ai+1) (17)

The optimal state-action value function Q∗ satisfies the nonlinear Bellman optimality
equation too:

Q∗(s, a) = Es′|s,a[R(s, a, s′) + γ max
a′∈A

Q∗(s′, a′)] (18)

=
∑
s′∈S

p(s′|s, a)(R(s, a, s′) + γ max
a′∈A

Q∗(s′, a′)) (19)
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The associated Bellman optimality operator is defined as (with the same slight abuse of
notation):

T ∗ : Q ∈ RS×A → T ∗Q ∈ RS×A : T ∗Q(s, a) = Es′|s,a[R(s, a, s′) + γ max
a′∈A

Q(s′, a′)] (20)

This is still a contraction and Q∗ is its unique fixed-point:

Q∗ = T ∗Q∗ (21)

Contrary to the optimality operator related to the value function, here the maximum does
not depend on the expectation, but the expectation depends on the maximum. Conse-
quently, a sampled Bellman optimality operator can be defined. Assume that a transition
(si, ai, si+1) and associated reward ri are observed, it is given by:

T̂ ∗Q(si, ai) = ri + γ max
a∈A

Q(si+1, a) (22)

As mentioned in Section 1, an important subtopic of reinforcement learning is to estimate
the (state-action) value function of a given policy or directly the Q-function of the optimal
policy from samples, that is observed trajectories of actual interactions. This article focuses
on parametric approximation: the estimate value (resp. state-action value) function is of the
form V̂θ (resp. Q̂θ), where θ is the parameter vector; this estimate belongs to an hypothesis
space H = {V̂θ (resp. Q̂θ)|θ ∈ Rp} which specifies the architecture of the approximation.
For example, if the state space is sufficiently small an exact tabular representation can be
chosen for the value function. The estimate is thus of the form V̂θ(s) = eT

s θ with es being
an unitary vector which is equal to one in the component corresponding to state s and zero
elsewhere. More complex hypothesis spaces can be envisioned, such as neural networks.
However, notice that some of the approaches reviewed in this paper do not allow handling
nonlinear representations.

Estimating a function from samples is a common topic of supervised learning. How-
ever, estimating a (state-action) value function is a more difficult problem. Indeed, values
are never directly observed, just rewards which define them. Therefore supervised learning
techniques cannot be directly applied to learn such a function. This article reviews state of
the art value function (parametric) approximators by grouping them into three categories.
First, bootstrapping approaches consist in treating value function approximation as a su-
pervised learning problem. As values are not directly observable, they are replaced by an
estimate computed using a sampled Bellman operator (bootstrapping refers to replacing
an unobserved value by an estimate). Second, residual approaches consist in minimizing
the square error between the (state-action) value function and its image through a Bell-
man operator. Practically, a sampled operator is used, which leads to biased estimates.
Third, projected fixed-point approaches minimize the squared error between the (state-
action) value function and the projection of the image of this function under the (sampled)
Bellman operator onto the hypothesis space.

Notice that if this paper focuses on how learning the (state-action) value function from
samples, it is not concerned with how this samples are generated. Otherwise speaking,
the control problem is not addressed, as announced before. Extension of the proposed
algorithms to eligibility traces are not considered too (but this is briefly discussed in the
conclusion).
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3. Bootstrapping Approaches

Bootstrapping approaches deal with (state-action) value function approximation as a su-
pervised learning problem. The (state-action) value of interest is assumed to be observed,
and corresponding theoretical cost functions are considered, given that the (state-action)
value function of a given policy π is evaluated or that the optimal Q-function is directly
estimated (the optimal value function estimation is not considered because it does not allow
defining an associated sampled Bellman optimality operator):

JV π(θ) = ‖V π − V̂θ‖2 (23)

JQπ(θ) = ‖Qπ − Q̂θ‖2 (24)

JQ∗(θ) = ‖Q∗ − Q̂θ‖2 (25)

Related algorithms depend on what cost function is minimized (actually on what associated
empirical cost function is minimized) and how it is minimized (gradient descent or recur-
sive least-squares approaches in the subsequent reviewed methods). However, resulting
algorithms make use of a (state-action) value which is actually not observed. Bootstrap-
ping consists in replacing this missing observation by a pseudo-observation computed by
applying a sampled Bellman operator to the current estimate of the (state-action) value
function.

3.1 Bootstrapped Stochastic Gradient Descent

Algorithms presented in this section aim at estimating respectively the value function of
a given policy (TD), the Q-function of a given policy (SARSA) or directly the optimal
state-action value function (Q-learning) by combining the bootstrapping principle with a
stochastic gradient descent over the associated empirical cost function (Sutton and Barto,
1998).

3.1.1 TD with Function Approximation

TD with function approximation (TD-VFA) aims at estimating the value function V π of a
fixed policy π. Its objective function is the empirical cost function linked to (23). Let the
notation vπ

j depict a (possibly noisy, as long as the noise is additive and white) observation
of V π(sj). The empirical cost is:

ĴV π(θ) =
∑

j

(
vπ
j − V̂θ(sj)

)2
(26)

More precisely, TD with function approximation minimizes this empirical cost function
using a stochastic gradient descent: parameters are adjusted by an amount proportional to
an approximation of the gradient of cost function (23), only evaluated on a single training
example. Let αi be a learning rate satisfying the classical stochastic approximation criterion:

∞∑
i=1

αi = ∞,
∞∑
i=1

α2
i < ∞ (27)
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Parameters are updated according to the following Widrow-Hoff equation, given the ith

observed state si:

θi = θi−1 −
αi

2
∇θi−1

(
vπ
i − V̂θ(si)

)2
(28)

= θi−1 + αi

(
∇θi−1

V̂θ(si)
) (

vπ
i − V̂θi−1

(si)
)

(29)

However, as mentioned above, the value of the state si is not observed. It is where the boot-
strapping principle applies. The unobserved value vπ

i is replaced by an estimate computed
by applying the sampled Bellman evaluation operator (6) to the current estimate V̂θi−1

(si).
Assume that not only the current state is observed, but the whole transition (si, si+1) (sam-
pled according to policy π) as well as associated reward ri. The corresponding update rule
is therefore:

θi = θi−1 + αi

(
∇θi−1

V̂θ(si)
) (

T̂ πV̂θi−1
(si)− V̂θi−1

(si)
)

(30)

= θi−1 + αi

(
∇θi−1

V̂θ(si)
) (

ri + γV̂θi−1
(si+1)− V̂θi−1

(si)
)

(31)

The idea behind using this sampled operator (and more generally behind bootstrapping)
is twofold: if parameters are perfectly estimated and if the value function belongs to the
hypothesis space, this provides an unbiased estimate of the actual value (the value function
being the fixed point of the unsampled operator) and this estimate provides more infor-
mation as it is computed using the observed reward. Under some assumptions, notably a
linear parameterization hypothesis, TD with function approximation can be shown to be
convergent, see Tsitsiklis and Van Roy (1997). However, this is no longer the case when it is
combined with a nonlinear function approximator, see Tsitsiklis and Van Roy (1997) again
for a counterexample. Despite this, one of the important success of reinforcement learning
is based on TD with neural network-based function approximation (Tesauro, 1995).

3.1.2 SARSA with Function Approximation

SARSA with function approximation (SARSA-VFA) aims at estimating the Q-function of
a fixed policy π. Notice that usually SARSA is presented combined with an ε-greedy policy,
which is a control component. This paper focuses on the pure estimation problem, therefore
SARSA should be here really understood as Q-function evaluation, independently from the
control scheme. Notice also that an MDP defines a valued Markov chain over the state-
action space, therefore value and Q-function evaluation are two very close problems. Let
qπ
j be a (possibly noisy, as long as the noise is additive and white) observation of Qπ(sj).

The considered algorithm aims at minimizing the following empirical cost function, linked
to (24):

ĴQπ(θ) =
∑

j

(
qπ
j − Q̂θ(sj , aj)

)2
(32)

SARSA with function approximation also minimizes the related empirical cost function
using a stochastic gradient descent. Parameters are thus updated as follows, given the ith
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state-action pair (si, ai):

θi = θi−1 −
αi

2
∇θi−1

(
qπ
i − Q̂θ(si, ai)

)2
(33)

= θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

qπ
i − Q̂θi−1

(si, ai)
)

(34)

As before, qπ
i is not observed and it is replaced by an estimate computed by applying the

sampled Bellman evaluation operator to the current estimate Q̂θi−1
(si, ai). Assume that

the whole transition (si, ai, si+1, ai+1), ai+1 being sampled according to policy π, as well as
associated reward ri are observed. Parameters are therefore updated according to:

θi = θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

T̂ πQ̂θi−1
(si, ai)− Q̂θi−1

(si, ai)
)

(35)

= θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

ri + γQ̂θi−1
(si+1, ai+1)− Q̂θi−1

(si, ai)
)

(36)

From a practical point of view, using the Q-function instead of the value function is of
interest because it does not require the model (transition probabilities and reward function)
to be known in order to derive a greedy policy. Convergence results holding for TD with
function approximation apply rather directly to SARSA with function approximation.

3.1.3 Q-learning with Function Approximation

Q-learning with function approximation (QL-VFA) aims at estimating directly the optimal
state-action value function Q∗. Let q∗j be a (possibly noisy, as long as the noise is additive
and white) observation of Q∗(sj). This algorithm aims at minimizing the empirical cost
function linked to (25):

ĴQ∗(θ) =
∑

j

(
q∗j − Q̂θ(sj , aj)

)2
(37)

The same approach is used, and parameters are recursively estimated using a stochastic
gradient descent. Given the ith state-action pair (si, ai), parameters should be updated
according to:

θi = θi−1 −
αi

2
∇θi−1

(
q∗i − Q̂θ(si, ai)

)2
(38)

= θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

q∗i − Q̂θi−1
(si, ai)

)
(39)

As for preceding algorithms, the bootstrapping principle is applied to estimate the unob-
served q∗i value, using the sampled Bellman optimality operator now. Assume that the
transition (si, ai, si+1) as well as associated reward ri are observed. Notice that Q-learning
with function approximation is an off-policy algorithm, which means that it can evaluate a
policy (the optimal one in this case) from samples generated according to a different pol-
icy. Practically, transitions can be sampled according to any sufficiently explorative policy.
Parameters are updated according to:

θi = θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

T̂ ∗Q̂θi−1
(si, ai)− Q̂θi−1

(si, ai)
)

(40)

= θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

ri + γ max
a∈A

Q̂θi−1
(si+1, a)− Q̂θi−1

(si, ai)
)

(41)

10



A Brief Survey of Parametric Value Function Approximation

Under some assumptions, notably a linear parameterization hypothesis, Q-learning with
function approximation can be shown to be convergent (Melo et al., 2009).

3.1.4 An Unified View

These algorithms can be formalized using the same unified notation. First, value and Q-
function evaluation (TD and SARSA with function approximation) are somehow redundant.
As V π(s) = Ea|π,s[Qπ(s, a)], any algorithm aiming at estimating a Q-function can easily
be specialized to the related value function, as long as the policy is known (this therefore
notably does not apply to Q-learning with function approximation). Practically, it consists
in replacing the Q-function by the value function and state-action pairs by states. Conse-
quently, value function estimation is not considered anymore in this paper. Let T̂ denote
either the evaluation or the optimality operator, depending on the context. Let also qj be
either qπ

j or q∗j , also depending on the context. SARSA and Q-learning with function ap-
proximation aim at minimizing the following empirical cost function, which is instantiated
by specifying if evaluation or direct optimization is considered:

Ĵ(θ) =
∑

j

(
qj − Q̂θ(sj , aj)

)2
(42)

As before, parameters are estimated using a stochastic gradient descent and by applying
the bootstrapping principle, which leads to the following update:

θi = θi−1 + αi

(
∇θi−1

Q̂θ(si, ai)
) (

T̂ Q̂θi−1
(si, ai)− Q̂θi−1

(si, ai)
)

(43)

A practical algorithm is instantiated by specifying which of the sampled Bellman operator
is used for T̂ , that is T̂ π or T̂ ∗. Algorithms have been detailed so far, for the sake of clarity.
However, in the rest of this article this summarizing point of view is adopted. Notice also
that this update is actually a Widrow-Hoff equation of the following form:

θi = θi−1 + Kiδi (44)

In this expression, δi = T̂ Q̂θi−1
(si, ai) − Q̂θi−1

(si, ai) is the so-called temporal difference
(TD) error, which is the reward prediction error given the current estimate of the state
action value function, and which depends on what Bellman operator is considered, and
Ki = αi∇θi−1

Q̂θ(si, ai) is a gain indicating in what direction the parameter vector should
be corrected in order to improve the estimate. Most of (online) algorithms presented in this
paper satisfy a Widrow-Hoff update.

3.2 Fixed-point Kalman Filter (a Bootstrapped Least-Squares Approach)

The fixed-point Kalman Filter (FPKF) of Choi and Van Roy (2006) also seeks at minimizing
the empirical cost function linking (actually unobserved) state-action values to the estimated
Q-function (still with a bootstrapping approach):

Ĵi(θ) =
i∑

j=1

(
qj − Q̂θ(sj , aj)

)2
(45)
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However, the parameterization is assumed to be linear and a (recursive) least-squares ap-
proach is adopted instead of the stochastic gradient descent used for preceding algorithms.
The considered hypothesis space is of the form

H = {Q̂θ : (s, a) ∈ S ×A → φ(s, a)T θ ∈ R|θ ∈ Rp} (46)

where φ(s, a) is a feature vector (to be chosen beforehand). For a given state-action couple
(sj , aj), φ(sj , aj) is shortened as φj . The corresponding empirical objective function can
thus be rewritten as:

Ĵi(θ) =
i∑

j=1

(
qj − φT

j θ
)2

(47)

Thanks to linearity in parameters, this cost function is convex and has a unique minimum:

θi = argmin
θ∈Rp

Ĵi(θ) (48)

This optimization problem can be solved analytically by zeroing the gradient of Ĵi(θ); this
is the principle of the least-squares method. Parameters are thus estimated as:

θi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φjqj (49)

Let write P−1
i =

∑i
j=1 φjφ

T
j . The Sherman-Morrison formula allows updating directly the

inverse of a rank-one perturbed matrix:

Pi = Pi−1 −
Pi−1φiφ

T
i Pi−1

1 + φT
i Pi−1φi

(50)

This allows estimating parameters recursively:

θi = θi−1 +
Pi−1φi

1 + φT
i Pi−1φi

(
qi − Q̂θi−1

(si, ai)
)

(51)

As for algorithms presented in Section 3.1, the bootstrapping principle is applied and the
unobserved qi state-action value is replaced by the estimate T̂ Q̂θi−1

(si, ai):

θi = θi−1 +
Pi−1φi

1 + φT
i Pi−1φi

(
T̂ Q̂θi−1

(si, ai)− Q̂θi−1
(si, ai)

)
(52)

As for algorithms of Section 3.1, this equation is actually a Widrow-Hoff update (44). The
temporal difference error is still δi = T̂ Q̂θi−1

(si, ai)−Q̂θi−1
(si, ai) (this prediction error term

is actually common to all algorithms aiming at estimating the state-action value function
which can be expresse as a Widrow-Hoff update). The gain depends on the fact that a
least-squares minimization has been considered:

Ki =
Pi−1φi

1 + φT
i Pi−1φi

(53)

12
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If the sampled Bellman evaluation operator is considered, this update rule specializes as:

θi = θi−1 +
Pi−1φi

1 + φT
i Pi−1φi

(
ri + γφT

i+1θi−1 − φT
i θi−1

)
(54)

If the sampled Bellman optimality operator is considered, this update rule specializes as:

θi = θi−1 +
Pi−1φi

1 + φT
i Pi−1φi

(
ri + γ max

a∈A

(
φ(si+1, a)T θi−1

)
− φT

i θi−1

)
(55)

This algorithm can be shown to be convergent under some assumptions, for both sampled
operators (evaluation and optimality). See Choi and Van Roy (2006) for details.

4. Residual Approaches

Residual approaches aim at finding an approximation of the fixed-point of one of the Bellman
operators by minimizing the distance between the (state-action) value function and its image
through one of the Bellman operators. The associated cost function is:

J(θ) = ‖Q̂θ − TQ̂θ‖2 (56)

Practically, learning is done using samples and the Bellman operator is replaced by a sam-
pled Bellman operator, the model (particularly transition probabilities) being not known.
The associated empirical cost function is therefore:

Ĵ(θ) =
∑

j

(
Q̂θ(sj , aj)− T̂ Q̂θ(sj , aj)

)2
(57)

A common drawback of all approaches aiming at minimizing this cost function is that they
produce biased estimates of the (state-action) value function. Basically, this is due to the
fact that the expectation of a square is not the square of the expectation:

E[(Q̂θ(s, a)− T̂ Q̂θ(s, a))2] = (Q̂θ(s, a)− TQ̂θ(s, a))2 + Var(T̂ Q̂θ(s, a)) (58)

There is an unwanted variance term acting as a penalty factor which favorises smooth
functions. If such penalties are commonly used for regularization, this one is harmful here
as it cannot be controlled. See Antos et al. (2008) for a discussion of this aspect. All
methods presented below can be modified so as to handle this problem, this will be shortly
discussed. However, it is important to note that any algorithm aiming at minimizing this
cost presents this bias problem.

4.1 Residual Stochastic Gradient Descent

So-called residual algorithms (R-SGD for residual stochastic gradient descent) have been
introduced by Baird (1995). Their principle is to minimize the empirical cost function (57)
using a stochastic gradient descent. The corresponding update rule is therefore:

θi = θi−1 + αi

(
∇θi−1

(
Q̂θ(si, ai)− T̂ Q̂θ(si, ai)

)) (
T̂ Q̂θi−1

(si, ai)− Q̂θi−1
(si, ai)

)
(59)
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Here again, this update is actually a Widrow-Hoff equation (44) with δi = T̂ Q̂θi−1
(si, ai)−

Q̂θi−1
(si, ai) and Ki = αi∇θi−1

(Q̂θ(si, ai)− T̂ Q̂θ(si, ai)). If the sampled Bellman evaluation
operator is considered, gain and temporal difference error are given by:

Ki = αi∇θi−1

(
Q̂θ(si, ai)− γQ̂θ(si+1, ai+1)

)
(60)

δi = ri + γQ̂θi−1
(si+1, ai+1)− Q̂θi−1

(si, ai) (61)

A first problem arises when the sampled Bellman optimality operator is considered. In this
case, gain and TD error are:

Ki = αi∇θi−1

(
Q̂θ(si, ai)− γ max

a∈A
Q̂θ(si+1, a)

)
(62)

δi = ri + γ max
a∈A

Q̂θi−1
(si+1, a)− Q̂θi−1

(si, ai) (63)

In this case, the gradient of the max operator must be computed: ∇θi−1
(maxa∈A Q̂θ(si+1, a)).

This is far from being straightforward, and Baird (1995) does not propose a solution to this
issue, even if he introduces this update rule1. Another problem is that these algorithms com-
pute biased estimates of the (state-action) value function, as explained above. This is inher-
ent to all approaches minimizing a residual cost function using a sampled Bellman operator.
In order to handle this problem, Baird (1995) proposes to use a double sampling scheme.
Let consider the Bellman evaluation operator. Two transitions are independently generated
from the state-action couple (si, ai): (si, ai, r

′
i, s

′
i+1, a

′
i+1) and (si, ai, r

′′
i , s′′i+1, a

′′
i+1). One of

these transitions is used to compute the gain, and the other one to compute the TD error:

Ki = αi∇θi−1

(
ri + γQ̂θ(s′i+1, a

′
i+1)− Q̂θ(si, ai)

)
(64)

δi = ri + γQ̂θi−1
(s′′i+1, a

′′
i+1)− Q̂θi−1

(si, ai) (65)

These two transitions being sampled independently, taking the expectation of Kiδi leads to
the use of the true (that is unsampled) Bellman operator, without variance term contrary
to the use of the same transition in both gain and TD error:

E[Kiδi] = αi

(
∇θi−1

(
Q̂θ(si, ai)− T πQ̂θ(si, ai)

)) (
Q̂θi−1

(si, ai)− T πQ̂θi−1
(si, ai)

)
(66)

However, this suggests that transitions can be sampled on demand (for example using a
simulator), which can be a strong assumption.

4.2 Residual Least-Squares

In this section, methods based on a least-squares minimization of cost function (57) are
reviewed. The Gaussian Process Temporal Differences (Engel et al., 2003) algorithm mini-
mizes it by assuming a linear parameterization as well as the Bellman evaluation operator,
and the Kalman Temporal Differences framework (Geist et al., 2009; Geist and Pietquin,
2010b) generalizes it to nonlinear parameterizations as well as to the Bellman optimality
operator thanks to a statistical linearization (Anderson, 1984).

1. Actually, maxa∈A Q̂θ(si+1, a) is generally non-differentiable respectively to θ. A solution could be to rely
on Fréchet sub-gradients.
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4.2.1 Gaussian Process Temporal Differences

Engel et al. (2003) introduced the so-called Gaussian Process Temporal Differences (GPTD)
framework. The underlying principle is to model the value function as a Gaussian process
(that is a set of jointly Gaussian random variables, random variables being here values of
each state). A generative model linking rewards to values through the sampled Bellman
evaluation operator and an additive noise is set, the Gaussian distribution of a state’s value
conditioned on past observed rewards is computed by performing Bayesian inference, and
the value of this state is estimated as the mean of this Gaussian distribution. The as-
sociated variance quantifies the uncertainty of this estimate. Notice that the optimality
operator cannot be considered in this framework because of a mandatory linearity assump-
tion (linearity of the generative model). A problem is that the considered Gaussian process
is actually a vector with as many components as the number of states encountered during
learning. To alleviate this problem, Engel et al. (2003) propose an online sparsification
scheme. It relies on the fact that the covariance matrix of any Gaussian process actually
defines a Mercer kernel which can be viewed as an inner product in a high (possibly infi-
nite) dimensional Hilbert space (Scholkopf and Smola, 2001). Using an approximate linear
independence argument, the sparsification procedure only retains states (observed during
learning) which help defining an approximate basis in this Hilbert space.

This sparsification scheme actually constructs online a kernel-based linear parametric
representation. As announced in Section 2, this paper focuses on (pure) parametric repre-
sentations. However, if sparsification is done in a preprocessing step or if the representation
is considered asymptotically (after an infinite number of interactions), the GPTD value
function representation can be seen as a parametric one. Moreover, Engel (2005) pro-
poses a parametric version of the Gaussian Process Temporal Differences framework (not
necessarily assuming that the linear parameterization is based on Mercer kernels). It is
the view adopted here (feature selection is an important topic, however this paper focuses
on learning the parameters of a representation, not on learning the representation itself).
The (parametric) GPTD algorithm is now derived more formally, however from a different
(least-squares-based) point of view. Validity of the oncoming derivation relies strongly on
the link between Bayesian inference, Kalman (1960) filtering and recursive least-squares
under Gaussian and linear assumptions (Chen, 2003).

The (parametric) GPTD algorithm actually minimizes a cost function close to (57)
using a classical linear least-squares approach. To apply it, linearity is mandatory. The
state-action value function is assumed linear, Q̂θ(sj , aj) = φ(sj , aj)T θ = φT

j θ, and only the
(sampled) Bellman evaluation operator is considered. An observation model (actually the
sampled Bellman evaluation equation) using a not necessarily unitary noise ni is considered:

rj = φT
j θ − γφT

j+1θ + nj (67)

Notice that this equation actually models the temporal difference error as a white noise:

rj = φT
j θ − γφT

j+1θ + nj ⇔ nj = T̂ Q̂θ(sj , aj)− Q̂θ(sj , aj) (68)
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Let write Pnj the variance of nj , its effect is to weight square terms in the minimized cost
function, this is the slight difference with cost (57):

Ji(θ) =
i∑

j=1

1
Pnj

(
rj + γφT

j+1θ − φT
j θ

)2
(69)

Let note ∆φj = φj − γφj+1. The unique parameter vector minimizing the above convex
cost-function can be computed analytically:

θi = argmin
θ∈Rp

Ji(θ) (70)

=

 i∑
j=1

1
Pnj

∆φj∆φT
j

−1
i∑

j=1

1
Pnj

∆φT
j rj (71)

Let write Pi = (
∑i

j=1 ∆φj∆φT
j )−1. Thanks to the Sherman-Morrison formula, Pi can be

computed iteratively and parameters can be estimated recursively. Let θ0 and P0 be some
priors, the (parametric) GPTD algorithm is given by these two equations:

θi = θi−1 +
Pi−1∆φi

Pni + ∆φT
i Pi−1∆φi

(
ri −∆φT

i θi−1

)
(72)

Pi = Pi−1 −
Pi−1∆φi∆φT

i Pi−1

Pni + ∆φT
i Pi−1∆φi

(73)

One can recognize the temporal difference error δi = ri − ∆φT
i θi−1 and a gain Ki =

Pi−1∆φi

Pni+∆φT
i Pi−1∆φi

, to be linked again with the generic Widrow-Hoff update (44). Notice
that Pi is actually a variance matrix quantifying the uncertainty over current parameters
estimation (it is the variance of the parameter vector conditioned on past i observed re-
wards). This is not clear from the proposed least-squares-based derivation, however it is
direct by adopting a Bayesian (or even pure Kalmanian) perspective. Remark that this
interpretation of Pi as being a variance matrix can provide useful for handling the dilemma
between exploration and exploitation, as noted by Engel (2005) (even if no specific scheme
is proposed).

As all other residual methods, GPTD produces biased estimates of the value function
when transitions are stochastic. To alleviate this problem, Engel et al. (2005) introduced a
colored noise instead of the classical white noise assumption (a noise being white if ∀i 6= j,
ni and nj are independent, and a colored noise is any non-white noise). This noise allows
removing the bias, but it also induces a memory effect which prevents from learning in an
off-policy manner, much like eligibility traces does (e.g., see Precup et al. (2000)). Note also
that this leads to minimize another cost function, linking states’ estimates to Monte Carlo
samples of the discounted return (Engel et al., 2005). These developments are interesting,
but not pursued here.

4.2.2 Kalman Temporal Differences

Geist et al. (2009) (see also Geist and Pietquin (2010b) for an extended version) introduced
the so-called Kalman Temporal Differences (KTD) framework, which can be seen as a gen-
eralization of the GPTD framework. They start by noting that the (state-action) value
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function to be estimated is generally not stationary. This is mainly due to two reasons.
First, the system to be controlled can be non-stationary. More important, (state-action)
value function estimation generally occurs as a part of a generalized policy iteration pro-
cess. Each time the policy is modified, the associated (state-action) value function to be
estimated changes too, hence non-stationarity. This has also been discussed by Phua and
Fitch (2007) before. The idea behind KTD is to cast (state-action) value function approx-
imation in the Kalman filtering paradigm. Parameters are modeled as random variables
following a random walk (this allows handling non-stationarities). These hidden param-
eters have to be tracked from observed rewards and transitions, the link between them
being a sampled Bellman equation. KTD algorithms are derived by finding the best linear
estimator minimizing the expectation of parameters conditioned on past observed rewards.
Moreover, they make use of an efficient derivative-free approximation scheme, the unscented
transform (UT) of Julier and Uhlmann (1997). This allows considering both nonlinear pa-
rameterizations and the Bellman optimality operator. Compared to GPTD, KTD handles
nonlinearities and non-stationarities, however it is a pure parametric approach (even if
the online kernel-based linear parameterization construction of Engel et al. (2003) can be
adapted to this framework). See Geist and Pietquin (2010b) for the original derivation
of the KTD framework. Here it is derived using a statistically linearized recursive least-
squares point of view. It is slightly restrictive, as the non-stationarities handling aspect is
somehow lost (as introducing GPTD from a pure parametric least-squares perspective is
also limiting). However, it allows linking more easily KTD to GPTD and to other residual
approaches, and thus this provides a more unified view. Moreover, statistically linearized
recursive least-squares and unscented Kalman filtering are strongly linked, the second being
a generalization of the first. See Geist and Pietquin (2010e) for details.

As the GPTD framework, KTD also seeks at minimizing cost function (57), not nec-
essarily considering a unitary noise variance too. Let write T̂Q(si, ai) = ri + γP̂Q(si, ai)
with:

P̂Q(si, ai) =

{
Q(si+1, ai+1) (if sampled Bellman evaluation operator)
maxa∈A Q(si+1, a) (if sampled Bellman optimality operator)

(74)

Estimated parameters should satisfy:

θi = argmin
θ∈Rp

Ĵi(θ) with Ĵi(θ) =
i∑

j=1

1
Pnj

(
rj −

(
Q̂θ(sj , aj)− γP̂ Q̂θ(sj , aj)

))2
(75)

Contrary to GPTD, KTD does not assume a linear parameterization nor the sampled eval-
uation operator. Instead, it makes use of a derivative-free approximation scheme (the
derivative-free aspect allows considering the sampled optimality operator), the so-called
statistical linearization (Anderson, 1984). The quantity to be linearized is the following
observation model (to be considered as a function of θ, the state-action couple being fixed);

rj = Q̂θ(sj , aj)− γP̂ Q̂θ(sj , aj) + nj (76)

Assume that it is evaluated in n sampled parameter vectors θ(k) of associated weights wk

(how to sample them practically and efficiently being addressed later):(
θ(k), r

(k)
j = Q̂θ(k)(sj , aj)− γP̂ Q̂θ(k)(sj , aj)

)
1≤k≤n

(77)
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The following statistics of interest are defined:

θ̄ =
n∑

k=1

wkθ
(k), r̄j =

n∑
k=1

wkr
(k)
j (78)

Pθ =
n∑

k=1

wk

(
θ(k) − θ̄

) (
θ(k) − θ̄

)T
(79)

Pθrj
=

n∑
k=1

wk

(
θ(k) − θ̄

) (
r
(k)
j − r̄j

)T
= P T

rjθ (80)

Prj =
n∑

k=1

wk

(
r
(k)
j − r̄j

)2
(81)

Statistical linearization consists in linearizing the nonlinear observation model (76) around
θ̄ (with Pθ being actually the spread of sampling) by adopting a statistical point of view. It
finds a linear model rj = Ajθ + bj + uj , uj being a noise, by minimizing the sum of squared
errors between values of nonlinear and linearized functions in the regression points:

(Aj , bj) = argmin
A,b

n∑
k=1

(
e
(k)
j

)2
with e

(k)
j = r

(k)
j −

(
Aθ(k) + b

)
(82)

The solution of this optimization problem is given by (Anderson, 1984):

Aj = PrjθP
−1
θ and bj = r̄j −Aj θ̄ (83)

Moreover, it is easy to check that the covariance matrix of the error is given by:

Pej =
n∑

k=1

(
e
(k)
j

)2
= Prj −AjPθA

T
j (84)

The nonlinear observation model (76) can thus be replaced by the following equivalent linear
observation model:

rj = Ajθ + bj + uj with uj = ej + nj (85)

Notice that the linearization error is taken into account through the noise ej . Noises ej

and nj being independent, the variance of Puj is given by Puj = Pej + Pnj . Given this
statistically linearized observation model, the least-squares problem can be rewritten in a
linear form:

θi = argmin
θ∈Rp

 i∑
j=1

1
Puj

(rj −Ajθ − bj)
2

 (86)

=

 i∑
j=1

1
Puj

AT
j Aj

−1
i∑

j=1

Aj (rj − bj) (87)

With this cost function, the higher is the statistical linearization error of a given transition
(quantified by Puj through Pej ), the less the corresponding square term contributes to the
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cost. Using the Sherman-Morrison formula, a recursive formulation of this estimation can
be obtained (expressing directly the gain Ki and assuming some priors θ0 and P0):

Ki =
Pi−1A

T
i

Pui + AiPi−1AT
i

(88)

θi = θi−1 + Ki (ri − bi −Aiθi−1) (89)

Pi = Pi−1 −Ki

(
Pui + AiPi−1A

T
i

)
KT

i (90)

Here again, the gain’s magnitude is directly linked to the linearization error, and large errors
will results in small updates.

How to actually sample parameter vectors in order to perform statistical linearization is
addressed now. With this recursive estimation, θi−1 (the previous estimate) and Pi−1 (the
associated uncertainty matrix as explained in Section 4.2.1) are known, and the issue is to
compute Ai and bi. A first thing is to choose around what point to linearize and with which
magnitude. It is legitimate to sample around the previous estimate θi−1 and with a spread
related to the uncertainty of these estimates. Otherwise speaking, n parameter vectors
are sampled such that θ̄i = θi−1 and Pθi

= Pi−1. Notice that θ̄i, the point around what
linearization is performed in order to update parameters, is different from θi, the updated
parameter vector. There remains the choice of how parameter vectors are sampled. A
natural idea would be to assume a Gaussian distribution of mean θi−1 and variance Pi−1

and to compute statistics of interest (78-81) using a Monte Carlo approach. However,
this would be particularly inefficient. Actually, the problem of sampling these points can
be stated as follows: how to sample a random variable (here the parameter vector) of
known mean and variance (here θi−1 and Pi−1) in order to compute accurate estimates
of first and second order moments of a nonlinear mapping of this random variable (here
Q̂θ(si, ai)−γP̂ Q̂θ(si, ai)). The unscented transform of Julier and Uhlmann (1997) provides
a solution to this problem. It consists in sampling deterministically a set of n = 2p + 1
so-called sigma-points as follows (p being the number of parameters):

θ
(k)
i = θi−1 k = 0 (91)

θ
(k)
i = θi−1 +

(√
(p + κ)Pi−1

)
k

1 ≤ k ≤ p (92)

θ
(k)
i = θi−1 −

(√
(p + κ)Pi−1

)
k−p

p + 1 ≤ k ≤ 2p (93)

as well as associated weights:

w0 =
κ

p + κ
and wk =

1
2(p + κ)

∀k > 0 (94)

where κ is a scaling factor controlling the accuracy of the unscented transform (Julier and
Uhlmann, 2004) and (

√
(p + κ)Pi−1)k is the kth column of the Cholesky decomposition of

the matrix (p + κ)Pi−1. Image of each of these sigma-points is computed:

r
(k)
i = Q̂

θ
(k)
i−1

(si, ai)− γP̂ Q̂
θ
(k)
i−1

(si, ai), 0 ≤ k ≤ 2p (95)

Sigma-points, their images and associated weights can then be used to compute statistics
of interest (78-81), which are in turn used to compute linearization terms Ai and bi (83) as
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well as noise variance Pei (84). Notice that other approximation schemes can be considered
instead of the UT, such as the scaled unscented transform (Julier, 2002), approximation
schemes based on Sterling interpolation (Nørgård et al., 2000) or more generally sigma-
point-based transforms (van der Merwe, 2004). The KTD algorithm can also be expressed
directly as a function of the statistics of interest (which only need a few algebraic manipu-
lation):

Ki =
Pθiri

Pui + Pri

(96)

θi = θi−1 + Ki (ri − r̄i) (97)

Pi = Pi−1 −Ki (Pvi + Pri) KT
i (98)

Once again, Ki is a gain and ri− r̄i a temporal difference error, to be linked to the Widrow-
Hoff update (44). KTD generalizes GPTD in the sens that it allows handling nonlinearities:
nonlinear parameterization thanks to the linearization, and the (sampled) Bellman optimal-
ity operator thanks to the fact that this linearization scheme does not rely on a gradient
computation. Notice that KTD reduces to GPTD if a linear parameterization as well as
the sampled Bellman evaluation operator are considered (this is not difficult to check, the
unscented transform being no longer an approximation in the case of a linear mapping).

As other residual approaches, KTD suffers from the bias problem when system transi-
tions are stochastic. In order to handle this issue, Geist and Pietquin (2010a) also use a
colored noise model (based on the idea of eligibility traces), which is actually a generaliza-
tion of the noise proposed by Engel et al. (2005). However, as mentioned in Section 4.2.1,
this induces some memory effects which prevent from learning in an off-policy manner.
Consequently, the sampled Bellman optimality operator can no longer be considered in this
setting, because of its off-policy aspect. Using a colored noise also leads to minimize a dif-
ferent cost function. These developments are interesting, however as for GPTD they are not
pursued here, see corresponding papers. Notice that the available uncertainty information
(matrix Pi) can provide useful for the dilemma between exploration and exploitation (Geist
and Pietquin, 2010c).

5. Projected Fixed-point Approaches

Projected fixed-point approaches seek at minimizing the distance between the estimated
state-action value function and the projection (the projection being noted Π) of the image
of this function under a Bellman operator onto the hypothesis space H:

J(θ) = ‖Q̂θ −ΠTQ̂θ‖2 with Πf = argmin
f̂∈H

‖f − f̂‖2 (99)

This is illustrated in Figure 1. The state-action value function estimate Q̂θ lies in the
hypothesis space H. Its image under a Bellman operator TQ̂θ does not necessarily lies
on this hypothesis space. Residual approaches of Section 4 try to minimize the distance
between these two functions, that is the dotted line in Figure 1, with the drawback that using
a sampled Bellman operator leads to biased estimates, as discussed before. The function
TQ̂θ can be projected onto the hypothesis space, this projection minimizing the distance
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between TQ̂θ and the hypothesis space (the solid line in Figure 1). Projected fixed-point
methods aim at minimizing the distance between this projection and Q̂θ, represented by a
dashed line in Figure 1.

Figure 1: Projected fixed-point principle.

5.1 Least-Squares-based Approaches

In this section are reviewed approaches which use a least-squares approach to minimize the
empirical cost linked to (99):

θi = argmin
θ∈Rp

i∑
j=1

(
Q̂θ(sj , aj)− Q̂ωθ

(sj , aj)
)2

(100)

with ωθ = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂ Q̂θ(sj , aj)

)2
(101)

Obviously, cost related to (100) is minimized for θ = ωθ (admitting that this equation has
a solution). Therefore, nested optimization problems (100) and (101) can be summarized
as θi = ωθi

:

θi = argmin
ω∈Rp

i∑
j=1

(
Q̂ω(sj , aj)− T̂ Q̂θi

(sj , aj)
)2

(102)

Notice that as θi appears in both sides of this equation, this is not a pure quadratic cost
function. The least-squares temporal differences (LSTD) algorithm of Bradtke and Barto
(1996) assumes a linear parameterization and the (sampled) Bellman evaluation operator in
order to solve the above optimization problem. The statistically linearized LSTD (slLSTD)
algorithm of Geist and Pietquin (2010d) generalizes it to nonlinear parameterization and to
the (sampled) Bellman optimality operator thanks to a statistical linearization process (the
generalization from LSTD to slLSTD being quite close to the generalization from GPTD
to KTD).

5.1.1 Least-Squares Temporal Differences

The LSTD algorithm has been originally introduced by Bradtke and Barto (1996). The
starting point of their derivation is the minimization of a residual cost function. Using a
sampled Bellman operator (which leads to biased estimate, as explained in Section 4) can be
interpreted as a correlation between the noise and inputs in the corresponding observation
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model (therefore the noise is not white, which is a mandatory assumption for least-squares).
This correlation can be shown to cause a bias (in this case, the bias presented in Section 2).
A classic method to cope with this problem are instrumental variables (Söderström and
Stoica, 2002). Bradtke and Barto (1996) use instrumental variables to modify the least-
squares problem, which leads to the LSTD algorithm. This point of view is historical.
Later, it has been interpreted as a projected fixed-point minimization by Lagoudakis and
Parr (2003), and it is the point of view adopted here.

LSTD assumes a linear parameterization as well as the sampled Bellman evaluation
operator. Using the same notations as before, optimization problem (102) can be rewritten
as:

θi = argmin
ω∈Rp

i∑
j=1

(
rj + γφT

j+1θi − φT
j ω

)2
(103)

Thanks to linearity in ω (linear parameterization assumption), this can be analytically
solved:

θi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φj

(
rj + γφT

j+1θi

)
(104)

Thanks to linearity in θi (linear parameterization and evaluation operator assumptions),
the parameter vector can be isolated:

θi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φj

(
rj + γφT

j+1θi

)
(105)

⇔

 i∑
j=1

φjφ
T
j

 θi =
i∑

j=1

φjrj + γ

 i∑
j=1

φjφ
T
j+1

 θi (106)

⇔ θi =

 i∑
j=1

φj (φj − γφj+1)
T

−1
i∑

j=1

φjrj (107)

Equation (107) defines the (batch) LSTD estimate. Thanks to the Sherman-Morrison for-
mula, a recursive form of this estimation process can be obtained (assuming that priors θ0

and M0 are defined beforehand):

Ki =
Mi−1φi

1 + (φi − γφi+1)
T Mi−1φi

(108)

θi = θi−1 + Ki

(
ri + γφT

i+1θi−1 − φT
i θi−1

)
(109)

Mi = Mi−1 −Ki

(
MT

i−1 (φi − γφi+1)
)T

(110)

Once again, Ki is a gain and ri + γφT
i+1θi−1 − φT

i θi−1 a temporal difference error, to be
linked to the Widrow-Hoff update (44).
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5.1.2 Statistically Linearized Least-Squares Temporal Differences

The slLSTD algorithm (Geist and Pietquin, 2010d) generalizes LSTD: it does not assume a
linear parameterization nor the Bellman evaluation operator. The corresponding optimiza-
tion problem is therefore:

θi = argmin
ω∈Rp

i∑
j=1

(
rj + γP̂ Q̂θi

(sj , aj)− Q̂ω(sj , aj)
)2

(111)

How slLSTD generalizes LSTD is very close to how KTD generalizes GPTD: a statisti-
cal linearization is performed, which allows solving this optimization problem analytically.
Equation (111) can be linked to the following observation model (nj being here a unitary
white and centered observation noise):

rj + γP̂ Q̂θi
(sj , aj) = Q̂ω(sj , aj) + nj (112)

The noise is chosen unitary to strengthen parallel to LSTD, but extension to non-unitary
noise is straightforward (it would lead to scale each square term of the cost function by
the inverse of the associated variance Pni , equal to one here). As for KTD, a statistical
linearization is performed. However, here two different quantities have to be linearized:
Q̂ω(sj , aj) and P̂ Q̂θi

(sj , aj).
Assume that n parameter vectors ω(k) of associated weights wk are sampled, and that

their images are computed (how to sample them is addressed later, but note that the
unscented transform will be used):(

ω(k), q
(k)
j = Q̂ω(k)(sj , aj)

)
1≤k≤n

(113)

Let define the following statistics:

ω̄ =
n∑

k=1

wkω
(k), q̄j =

n∑
k=1

wkq
(k)
j (114)

Pω =
n∑

k=1

wk

(
ω(k) − ω̄

) (
ω(k) − ω̄

)T
(115)

Pωqj =
n∑

k=1

wk

(
ω(k) − ω̄

) (
q
(k)
j − q̄j

)T
= P T

qjω (116)

Pqj =
n∑

k=1

wk

(
q
(k)
j − q̄j

)2
(117)

Using the statistical linearization process explained in Section 4.2.2, the following linear
observation model is obtained:

Q̂ω(sj , aj) = Ajω + bj + ej (118)

with Aj = PqjωP−1
ω , bj = q̄j −Ajω̄ and Pej = Pqj −AjPωAT

j (119)

Recall that the noise ej is centered and can be sampled as e
(k)
j = q

(k)
j − (Ajω

(k) + bj).
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The term P̂ Q̂θi
(sj , aj) also needs to be linearized. Assume that n parameter vectors

θ
(k)
i of associated weights wk are sampled, and that their images are computed (here again,

how to sample them is addressed later).(
θ
(k)
i , p(k)

qj
= P̂ Q̂

θ
(k)
i

(sj , aj)
)

1≤k≤n
(120)

Let define the following statistics:

θ̄i =
n∑

k=1

wkθ
(k)
i , p̄qj =

n∑
k=1

wkp
(k)
qj

(121)

Pθi
=

n∑
k=1

wk

(
θ
(k)
i − θ̄i

) (
θ
(k)
i − θ̄i

)T
(122)

Pθipqj
=

n∑
k=1

wk

(
θ
(k)
i − θ̄i

) (
p(k)

qj
− p̄qj

)T
= P T

pqj θi
(123)

Ppqj
=

n∑
k=1

wk

(
p(k)

qj
− p̄qj

)2
(124)

Notice that θ̄i is not equal to θi a priori. Using the statistical linearization process explained
in Section 4.2.2, the following linear observation model is obtained:

P̂ Q̂θi
(sj , aj) = Cjθi + dj + εj (125)

with Cj = Ppqj θi
P−1

θi
, dj = p̄qj − Cj θ̄i and Pεj = Ppqj

− CjPθi
CT

j (126)

Recall that the noise εj is centered and can be sampled as ε
(k)
j = p

(k)
qj − (Cjθ

(k)
i + dj).

Linearized models (118) and (125) can be injected into observation model (112):

rj + γ (Cjθ + dj + εj) = Ajω + bj + ej + nj (127)
⇔ rj + γ (Cjθi + dj) = Ajω + ej − γεj + nj (128)

The linearization error is taken into account in the centered noise uj of variance Puj :

uj = nj + ej − γεj and Puj = E[u2
j ] (129)

This equivalent observation model leads to the following optimization problem, which can
be solved analytically:

θi = argmin
ω∈Rp

i∑
j=1

1
Puj

(rj + γ (Cjθi + dj)− (Ajω + bj))
2 (130)

=

 i∑
j=1

1
Puj

AT
j Aj

−1
i∑

j=1

1
Puj

AT
j (rj + γCjθi + γdj − bj) (131)

⇔ θi =

 i∑
j=1

1
Puj

AT
j (Aj − γCj)

−1
i∑

j=1

1
Puj

Aj (rj + γdj − bj) (132)
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Similarly to what happen with KTD, the statistical linearization error is taken into account
through the noise variance Puj . The Sherman-Morrison formula allows again deriving a
recursive estimation of θi. Assume that some priors θ0 and M0 are chosen, the slLSTD
algorithm is defined as:

Ki =
Mi−1A

T
i

Pui + (Ai − γCi) Mi−1AT
i

(133)

θi = θi−1 + Ki (ri + γdi − bi − (Ai − γCi) θi−1) (134)

Mi = Mi−1 −Ki

(
MT

i−1 (Ai − γCi)
T
)T

(135)

Given this recursive formulation, there still remains to choose how to sample parameter
vectors (related to ω and θi) in order to compute Ai, bi, Ci, di and Pui .

The unscented transform, described in Section 4.2.2, is used to sample these parameter
vectors. The parameter vector ω to be considered is the solution of Equation (130), that
is the solution of the fixed-point problem θi = ωθi

. In this recursive estimation context, it
is legitimate to linearize around the last estimate θi−1. The mean being chosen, the only
remaining choice is the associated variance Pi−1. Geist and Pietquin (2010d) use the same
variance matrix as would have been provided by a statistically linearized recursive least-
squares (Geist and Pietquin, 2010e) used to perform supervised learning of the approximate
state-action value function given true observations of the Q-values. The fact that the un-
observed state-action values are not used to update the variance matrix tends to legitimate
this choice. The associated matrix update is:

Pi = Pi−1 −
Pi−1A

T
i AiPi−1

1 + AiPi−1AT
i

(136)

These choices being made, Ai and bi can be computed. A first step is to compute the set
of sigma-points as well as associated weights wk:{

ω
(k)
i , 0 ≤ k ≤ 2p

}
=

[
θi−1 θi−1 ±

(√
(p + κ)Pi−1

)
j

]
(137)

Images of these sigma-points are also computed:{
q
(k)
i = Q̂

ω
(k)
i

(si, ai), 0 ≤ k ≤ 2p
}

(138)

Statistics of interest are given by Equations (114-117), they are used to compute Ai and bi

(see Section 4.2.2):
AT

i = P−1
i−1Pωqi and bi = q̄i −Aiθi−1 (139)

The variance matrix update simplifies as:

Pi = Pi−1 − Pωqi (1 + Pqi)
−1 P T

ωqi
(140)

The inverse of the Pi−1 matrix is necessary to compute Ai, it can be maintained recursively
thanks to the Sherman-Morrison formula:

P−1
i = P−1

i−1 +
P−1

i−1PωqiP
T
ωqi

P−1
i−1

1 + Pqi − P T
ωqi

P−1
i−1Pωqi

(141)
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The same approach is used to compute Ci and di, coming from the statistical lineariza-
tion of P̂ Q̂θi

(si, ai). As before, the linearization is performed around the last estimate
θi−1 and considering the matrix variance Σi−1 provided by a statistical linearized recursive
least-squares that would perform a supervised regression of P̂ Q̂θi

:

Σi = Σi−1 −
Σi−1C

T
i CiΣi−1

1 + CiΣi−1CT
i

(142)

A first step is to compute the set of sigma-points as well as associated weights wk:{
θ
(k)
i , 0 ≤ k ≤ 2p

}
=

[
θi−1 θi−1 ±

(√
(p + κ)Σi−1

)
j

]
(143)

Images of these sigma-points are also computed:{
p(k)

qi
= P̂ Q̂

θ
(k)
i

(si, ai), 0 ≤ k ≤ 2p
}

(144)

Statistics of interest are given by Equations (121-124), they are used to compute Ci and di

(see Section 4.2.2 again):

CT
i = Σ−1

i−1Σθipqi
and di = p̄qi − Ciθi−1 (145)

The variance matrix update simplifies as:

Σi = Σi−1 − Pθipqi

(
1 + Ppqi

)−1
P T

θipqi
(146)

The inverse of the Σi−1 matrix is necessary to compute Ai, it can be maintained recursively
thanks to the Sherman-Morrison formula:

Σ−1
i = Σ−1

i−1 +
Σ−1

i−1Pθipqi
P T

θipqi
Σ−1

i−1

1 + Ppqi
− P T

θipqi
Σ−1

i−1Pθipqi

(147)

A last thing is to compute the variance Pui of the noise ui = ni + ei− γεi. The noise ni

is independent of others, and the variance of ei − γεi can be computed using the UT:

Pui = E[(ni + ei − γεi)2] (148)

= 1 +
2p∑

k=0

wk

(
e
(k)
i − γε

(k)
i

)
(149)

with e
(k)
i = q

(k)
i −Aiω

(k)
i − bi = q

(k)
i − q̄i −Ai

(
ω

(k)
i − θi−1

)
(150)

and ε
(k)
j = p(k)

qi
− Ciθ

(k)
i − di = p(k)

qi
− p̄qi − Ci

(
θ
(k)
i − θi−1

)
(151)

All what is needed for a practical algorithm has been presented so far. In an initialization
step, priors θ0, M0, P0 and Σ0 are chosen and P−1

0 and Σ−1
0 are computed. At time step

i, a transition and the associated reward are observed. The two sets of sigma-points are
computed from θi−1, Pi−1 and Σi−1. Using these sigma-points and their images, statistics
of interest q̄i, Pωqi , Pqqi , p̄qi , Pθpqi

, Ppqpqi
and Pui are computed and used to compute
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quantities linked to statistical linearization. Parameters are then updated according to
Equations (153-135), which simplifies as follows (given analytical expressions of bi and di):

Ki =
Mi−1A

T
i

Pui + (Ai − γCi) Mi−1AT
i

(152)

θi = θi−1 + Ki (ri + γp̄qi − q̄i) (153)

Mi = Mi−1 −Ki

(
MT

i−1 (Ai − γCi)
T
)T

(154)

Therefore, it is not necessary to compute bi and di. Notice that once again, this satisfies the
Widrow-Hoff update, with a gain Ki and a temporal difference error ri + γp̄qi − q̄i (which
depends on θi−1). Finally, matrices Pi−1, P−1

i−1, Σi−1 and Σ−1
i−1 are updated. Notice that it

can be easily shown that with a linear parameterization and the (sampled) Bellman evalu-
ation operator, slLSTD indeed reduces to LSTD (this relies on the fact that the unscented
transform is no longer an approximation for a linear mapping).

5.2 Stochastic Gradient Descent-based Approaches

Algorithms presented in this section aim at minimizing the same cost function, that is :

Ji(θ) = argmin
θ∈Rp

i∑
j=1

(
Q̂θ(sj , aj)− Q̂ωθ

(sj , aj)
)2

with Q̂ωθ
= ΠT̂ Q̂θ (155)

However, here a stochastic gradient descent approach is considered instead of the least-
squares approach of the above section. Algorithms presented in Section 5.2.1, namely Gra-
dient Temporal Difference 2 (GTD2) and Temporal Difference with Gradient Correction
(TDC) of Sutton et al. (2009), assume a linear parameterization and the (sampled) Bell-
man evaluation operator. Algorithms presented in Section 5.2.2, namely nonlinear GTD2
(nlGTD2) and nonlinear TD (nlTDC) of Maei et al. (2009), extend them to the case of a
nonlinear parameterization. The (linear) TDC algorithm has also been extended to eligi-
bility traces (Maei and Sutton, 2010) and to the Bellman optimality operator (Maei et al.,
2010), these extensions being briefly presented in Section 5.2.3.

5.2.1 Gradient Temporal Difference 2, Temporal Difference with Gradient
Correction

GTD 2 and TDC algorithms of Sutton et al. (2009) aim at minimizing cost function (155)
while considering the Bellman evaluation operator, and they differs on the route taken to
express the gradient followed to perform the stochastic gradient descent. Both methods rely
on a linear parameterization, and are based on a reworked expression of the cost function.
Let Q̂θ and Q̂ωθ

be respectively:

Q̂θ =
(
Q̂θ(s1, a1) . . . Q̂θ(si, ai)

)T
(156)

Q̂ωθ
=

(
Q̂ωθ

(s1, a1) . . . Q̂ωθ
(si, ai)

)T
(157)

Cost function (155) can be rewritten as:

Ji(θ) =
(
Q̂θ − Q̂ωθ

)T (
Q̂θ − Q̂ωθ

)
(158)

27



Geist and Pietquin

Let also Φi (respectively Φ′i) be the p× i matrix which columns are the features φ(sj , aj)
(respectively φ(sj+1, aj+1)):

Φi =
[
φ(s1, a1) . . . φ(si, ai)

]
(159)

Φ′i =
[
φ(s2, a2) . . . φ(si+1, ai+1)

]
(160)

Let Ri be the set of observed rewards:

Ri =
(
r1 . . . ri

)T (161)

As the parameterization is linear and as the Bellman evaluation is considered, the Q-values
and their images through the sampled operator are given as:

Q̂θ = ΦT
i θ (162)

T̂ Q̂θ = Ri + γ
(
Φ′i

)T
θ (163)

Q̂ωθ
is the projection of T̂ Q̂θ onto the hypothesis space:

ωθ = argmin
ω∈Rp

((
Ri + γ

(
Φ′i

)T
θ − ΦT

i ω
)T (

Ri + γ
(
Φ′i

)T
θ − ΦT

i ω
))

(164)

=
(
ΦiΦT

i

)−1
Φi

(
Ri + γ

(
Φ′i

)T
θ
)

(165)

Therefore, by writing Πi = ΦT
i

(
ΦiΦT

i

)−1 Φi the projection operator, Q̂ωθ
satisfies:

Q̂ωθ
= ΦT

i ωθ = ΠiT̂ Q̂θ (166)

Cost function (158) can thus be rewritten as:

Ji(θ) =
(
ΦT

i θ −Πi

(
Ri + γ

(
Φ′i

)T
θ
))T (

ΦT
i θ −Πi

(
Ri + γ

(
Φ′i

)T
θ
))

(167)

Before developing this expression, two remarks of importance have to be made. First,
ΠiΦT

i θ = ΦT
i θ. As Q̂θ belongs to the hypothesis space, it is invariant under the projection

operator. This can also be easily checked algebraically in this case. Second, ΠiΠT
i =

Πi. This is a basic property of a projection operator, which can also be easily checked
algebraically here. Using these relationships, the cost can rewritten as:

Ji(θ) =
(
ΠiΦT

i θ −Πi

(
Ri + γ

(
Φ′i

)T
θ
))T (

ΠiΦT
i θ −Πi

(
Ri + γ

(
Φ′i

)T
θ
))

(168)

=
(
ΦT

i θ −Ri − γ
(
Φ′i

)T
θ
)T

ΠiΠT
i

(
ΦT

i θ −Ri + γ
(
Φ′i

)T
θ
)

(169)

=
(
ΦT

i θ −Ri − γ
(
Φ′i

)T
θ
)T

Πi

(
ΦT

i θ −Ri + γ
(
Φ′i

)T
θ
)

(170)

=
(
Φi

(
ΦT

i θ −Ri − γ
(
Φ′i

)T
θ
))T (

ΦiΦT
i

)−1
(
Φi

(
ΦT

i θ −Ri − γ
(
Φ′i

)T
θ
))

(171)

Let δj(θ) = rj + γφT
j+1θ − φT

j θ be the temporal difference error, Ji(θ) is finally given as:

Ji(θ) =

 i∑
j=1

φjδj(θ)

T  i∑
j=1

φjφ
T
j

−1  i∑
j=1

φjδj(θ)

 (172)
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Notice that a Gradient Temporal Difference (GTD) algorithm has been introduced by Sut-
ton et al. (2008) by considering a slightly different cost function:

J ′i(θ) =

 i∑
j=1

φjδj(θ)

T  i∑
j=1

φjδj(θ)

 (173)

This explains why the algorithm of Sutton et al. (2009) is called GTD2, and it is not further
developed here.

The negative gradient of cost function (172) is given by:

−1
2
∇θJi(θ) =

 i∑
j=1

(φj − γφj+1) φT
j

  i∑
j=1

φjφ
T
j

−1  i∑
j=1

δj(θ)φj

 (174)

In order to avoid a bias problem, a second modifiable parameter vector ω ∈ Rp is used
to form a quasi-stationary estimate of the term (

∑i
j=1 φjφ

T
j )−1(

∑i
j=1 δj(θ)φj), this being

called the weight-doubling trick. Parameter vector θ is updated according to a stochastic
gradient descent:

θi = θi−1 + αi (φi − γφi+1) φT
i ωi−1 (175)

Their remains to find an update rule for ωi. In order to obtain a O(p) algorithm, Sutton
et al. (2009) estimate it using a stochastic gradient descent too. One can remark that ωi is
actually the solution of a linear least-squares optimization problem:

ωi =

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

δj(θ)φj (176)

= argmin
ω∈Rp

i∑
j=1

(
φT

j ω − δj(θ)
)2

(177)

This suggests the following update rule for ωi (minimization of Equation (177) using a
stochastic gradient descent):

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
(178)

Learning rates satisfy the classical stochastic approximation criterion. Moreover, they are
chosen such that βi = ηαi with η > 0. The GTD2 algorithm is thus given by:

θi = θi−1 + αi (φi − γφi+1) φT
i ωi−1 (179)

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
(180)

with δi(θ) = ri + γφT
i+1θ − φT

i θ (181)

Under some assumptions, this algorithm can be shown to be convergent, see Sutton et al.
(2009).
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By expressing the gradient in a slightly different way, another algorithm called TDC can
be derived, the difference being how the θ parameter vector is updated. Starts from (174):

−1
2
∇θJi(θ) =

 i∑
j=1

(φj − γφj+1) φT
j

  i∑
j=1

φjφ
T
j

−1  i∑
j=1

δj(θ)φj

 (182)

=

 i∑
j=1

φjφ
T
j − γ

i∑
j=1

φj+1φ
T
j

  i∑
j=1

φjφ
T
j

−1  i∑
j=1

δj(θ)φj

 (183)

=

 i∑
j=1

δj(θ)φj

− γ

 i∑
j=1

φj+1φ
T
j

  i∑
j=1

φjφ
T
j

−1  i∑
j=1

δj(θ)φj

 (184)

This gives rise to the following update for θ, ω being updated as before:

θi = θi−1 + αiφiδi(θi−1)− αiγφi+1φ
T
i ωi−1 (185)

This algorithm is called TD with gradient correction because the first term, αiφiδi(θi−1),
is the same as for TD with function approximation (see Section 3.1), and the second term,
−αiγφi+1φ

T
i ωi−1, acts as a correction. For TDC, learning rates αi and βi are chosen such as

satisfying the classic stochastic approximation criterion, and such that limi→∞
αi
βi

= 0. This
means that θi is updated on a slower time-scale. The idea behind this is that ωi should look
stationary from the θi point of view. The TDC algorithm can be summarized as follows:

θi = θi−1 + αiφiδi(θi−1)− αiγφi+1φ
T
i ωi−1 (186)

ωi = ωi−1 + βiφi

(
δi(θi−1)− φT

i ωi−1

)
(187)

with δi(θ) = ri + γφT
i+1θ − φT

i θ (188)

This algorithm can also be shown to be convergent under some assumptions, see Sutton
et al. (2009) again.

5.2.2 Nonlinear Gradient Temporal Difference 2, Nonlinear Temporal
Difference with Gradient Correction

Maei et al. (2009) extend GTD2 and TDC algorithms to the case of a general nonlinear
parameterization Q̂θ, as long as it is differentiable respectively to θ. The corresponding
hypothesis space H = {Q̂θ|θ ∈ Rp} is a differentiable submanifold onto which projecting is
not computationally feasible. They assume that the parameter vector θ is slightly updated
in one step (given that learning rate are usually small), which causes the surface of the
submanifold to be close to linear. Therefore, projection is done onto the tangent plane
defined as T H = {(s, a) ∈ S × A → ωT∇θQ̂(s, a)|ω ∈ Rp}. The corresponding projection
operator Πθ

i can be obtained as in Section 5.2.1, the tangent space being an hyperplane:

Πθ
i =

(
Φθ

i

)T
(

Φθ
i

(
Φθ

i

)T
)−1

Φθ
i (189)

with Φθ
i =

[
∇θQ̂θ(s1, a1) . . . ∇θQ̂θ(si, ai)

]
(190)
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The corresponding cost function can therefore be derived as in Section 5.2.1, with basically
feature vectors φ(s, a) being replaced by linearized features φθ(s, a) = ∇θQ̂θ(s, a):

Ji(θ) =

 i∑
j=1

φθ
jδj(θ)

T  i∑
j=1

φθ
j

(
φθ

j

)T

−1  i∑
j=1

φθ
jδj(θ)

 (191)

with φθ
j = ∇θQ̂θ(sj , aj) (192)

and δj(θ) = rj + γQ̂θ(sj+1, aj+1)− Q̂θ(sj , aj) (193)

Maei et al. (2009) show (see the paper for details) that the gradient of this cost function is
given as:

−1
2
∇θJi(θ) =

 i∑
j=1

(
φθ

j − γφθ
j+1

) (
φθ

j

)T

 ωi + h(θ, ωi) (194)

=

 i∑
j=1

δj(θ)φθ
j

− γ

 i∑
j=1

φθ
j+1

(
φθ

j

)T

 ωi + h(θ, ωi) (195)

with ωi =

 i∑
j=1

φθ
j

(
φθ

j

)T

−1  i∑
j=1

δj(θ)φθ
j

 (196)

and h(θ, ω) = −
i∑

j=1

(
δj(θ)−

(
φθ

j

)T
ω

) (
∇2Q̂θ(sj , aj)

)
ω (197)

GTD2 and TDC are generalized to nlGTD2 and nlTDC using a stochastic gradient descent
on the above cost function. Parameter vector ωi is updated as in Section 5.2.1:

ωi = ωi−1 + βiφ
θi−1

i

(
δi(θi−1)−

(
φ

θi−1

i

)T
ωi−1

)
(198)

The nonlinear GTD2 algorithm performs a stochastic gradient descent according to (194):

θi = θi−1 + αi

((
φ

θi−1

i − γφ
θi−1

i+1

) (
φ

θi−1

i

)T
ωi−1 − hi

)
(199)

with hi =
(

δi(θi−1)−
(
φ

θi−1

i

)T
ωi−1

) (
∇2

θi−1
Q̂θ(si, ai)

)
ωi−1 (200)

Learning rates are chosen as for the NTD algorithm, that is satisfying the classic stochastic
approximation criterion and such that limi→∞

αi
βi

= 0, which means that θ is updated on
a slower timescale than ω. The nonlinear TDC algorithm performs a stochastic gradient
descent according to (195):

θi = θi−1 + αi

(
φ

θi−1

i δi(θi−1)− γφ
θi−1

i+1

(
φ

θi−1

i

)T
ωi−1 − hi

)
(201)

with hi =
(

δi(θi−1)−
(
φ

θi−1

i

)T
ωi−1

) (
∇2

θi−1
Q̂θ(si, ai)

)
ωi−1 (202)

Learning rate are chosen as above. Both nlGTD2 and nlTDC can be shown to be convergent
under some assumptions, see Maei et al. (2009) for details.
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5.2.3 Extension of TDC

The TDC algorithm (see Section 5.2.1) has been extended to eligibility traces by Maei and
Sutton (2010). Moreover, this algorithm, called GQ(λ), allows off-policy learning, that is
learning the value of one target policy while following another behaviorial policy. This
new algorithm (for which some convergence guarantees can be provided) still minimizes
the empirical cost function linked to (99). However, instead of the T π Bellman operator
considered so far, an eligibility-based T π

λ operator is used (λ being the eligibility factor),
this operator being defined as the expected λ-return. See Maei and Sutton (2010) for more
details. Using eligibility traces induce a memory effect which prevents from learning in an
off-policy manner without caution, see Precup et al. (2000) for example. To cope with this
problem, Maei and Sutton (2010) use ideas from the importance sampling2 field (as Precup
et al. (2000) actually). They present GQ(λ) as an extension of Q-learning, which can be
misleading. Actually, they consider off-policy learning (with a known, fixed, target policy),
but not the Bellman optimality operator.

Nevertheless, the TDC algorithm has also been extended to this operator by Maei et al.
(2010) (this new algorithm being called Greedy-GQ). To do so, they consider the Bell-
man evaluation operator T πθ for a policy πθ which depends on the currently estimated
state-action value function (through parameters θ). Therefore, the considered policy is
non-stationary (it evolves with parameters’ estimation). If πθ is greedy respectively to the
learnt value function, then it is equivalent to considering the Bellman optimality opera-
tor. However, in this case, there are some non-differentiability problems (due to the max
operator), and Maei et al. (2010) relies on the Fréchet sub-gradient (roughly speaking a
generalization of the gradient for non-differentiable functions) to provide their algorithm.
They also consider the case where πθ is a stochastic Gibbs policy built upon the currently
estimated value function. In this case, there are no differentiability problems. Maei et al.
(2010) provide a convergence analysis for these algorithms.

5.3 Iterated solving-based approaches

Methods presented so far in Section 5 aim at minimizing the distance between the state-
action value function and the projection of the image of this function under a Bellman
operator onto the hypothesis space:

J(θ) = ‖Q̂θ −ΠTQ̂θ‖2 (203)

This can be interpreted as trying to find a fixed-point of the operator ΠT , which is the
composition of the projection operator Π and of one of the Bellman operator T . Assuming
that this operator is a contraction (which is not always the case, it depends on the projection
operator), there exists a unique fixed-point which can be found by iterating the application
of the ΠT operator:

Q̂θi
= ΠTQ̂θi−1

(204)

Methods presented in this section adopt this point of view to provide algorithms.

2. Generally speaking, importance sampling refers to technics allowing to compute some statistics linked
to a random variable using samples drawn from another random variable. This is exactly the problem
caused by learning in an off-policy manner while using eligibility traces.
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5.3.1 Fitted-Q

Fitted-Q is a batch algorithm. It assumes that a set of N transitions is available beforehand:

{(sj , aj , rj , sj+1, aj+1)}1≤j≤N (205)

A initial Q-function Q̂θ0 is (more or less arbitrary) initialized, and estimates are refined by
iterating the ΠT operator:

Q̂θi
= ΠT̂ Q̂θi−1

, ∀i > 0 (206)

Some remarks of importance have to be made here. A sampled Bellman operator is used,
because as usual transition probabilities are not known. Most of time, fitted-Q suggests
the sampled Bellman optimality operator, but this approach is of course still valid for the
sampled Bellman evaluation operator. The Π operator indeed represents any supervised
learning algorithm (which can be more or less directly seen as a projection). Notice that
the representation of the estimated state-action value function is not necessarily parametric
(e.g., if a support vector machine is used as the supervised learning algorithm).

A practical example is given now. Assume that at iteration i the estimate Q̂θi−1
is

available. A first thing is to compute the image of this estimate trough the sampled Bell-
man (here optimality) operator. This consists in computing the following training base,
composed of state-action couples and estimated associated optimal Q-values:{

(sj , aj , rj + γ max
a∈A

Q̂θi−1
(sj+1, a))

}
1≤j≤N

(207)

A supervised learning algorithm is then used on this set, associating inputs (sj , aj) to
estimated outputs rj + γ maxa∈A Q̂θi−1

(sj+1, a). For example, if the parameterization is
linear and if the supervised learning algorithm is the classic least-squares regression, the
new parameter vector is given by:

θi =

 N∑
j=1

φjφ
T
j

−1
N∑

j=1

φj

(
rj + γ max

a∈A

(
φ(sj+1, a)T θi−1

))
(208)

This iteration is repeated until a stopping criterion is met (e.g., a maximum number of
steps or little changes in the representation).

The fitted-Q idea probably dates back to Samuel (1959). Its convergence properties
have been analyzed by Gordon (1995), who reasons on the contraction property of the ΠT
operator. Munos (2007) analyses its performance bounds in Lp norm. This is particularly
judicious: if performance bounds of supervised learning algorithms are very often analyzed
in Lp norm, this is not the case for (approximate) dynamic programming which is most of
the time analyzed in L∞ norm. Fitted-Q has been considered with many different function
approximators. For example, see Ormoneit and Sen (2002) for fitted-Q with a kernel-based
regression, Riedmiller (2005) for fitted-Q with neural networks trained by retro-propagation
or Ernst et al. (2005) for fitted-Q with tree-based methods.
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5.3.2 Least-Squares Policy Evaluation

The least-squares policy evaluation (LSPE) has been proposed3 by Nedić and Bertsekas
(2003). They introduce it directly using the concept of eligibility traces, but this aspect is
left apart in this article. The LSPE algorithm can be roughly seen as a fitted-Q algorithm
using a linear parameterization, the (sampled) Bellman evaluation operator and for which a
new training sample is added to the training set at each iteration. Thanks to linearity (linear
parameterization and evaluation operator), an efficient online algorithm can be obtained.

The LSPE algorithm solves recursively Q̂θi
= ΠiT̂ Q̂θi−1

, the Πi projection operator
being defined in Section 5.2.1. Given linearity, this can be rewritten as:

θi = argmin
θ∈Rp

i∑
j=1

(
φT

j θ − rj − γφT
j+1θi−1

)2
(209)

=

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φj

(
rj + γφT

j+1θi−1

)
(210)

= θi−1 +

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

φj

(
rj − (φj − γφj+1)

T θi−1

)
(211)

All terms involved can be computed recursively and efficiently, using the Sherman-Morrison
formula for the inverse matrix:

B−1
i =

 i∑
j=1

φjφ
T
j

−1

= B−1
i−1 −

B−1
i−1φiφ

T
i B−1

i−1

1 + φT
i B−1

i−1φi

(212)

Ai =
i∑

j=1

φj (φj − γφj+1)
T = Ai−1 + φi (φi − γφi+1)

T (213)

bi =
i∑

j=1

φjrj = bi−1 + φiri (214)

The LSPE update can therefore be expressed in a form close to a Widrow-Hoff update:

θi = θi−1 + B−1
i (bi −Aiθi−1) (215)

Actually, the way LSPE is presented here differs from Nedić and Bertsekas (2003) in the
sense that the B−1

i matrix is originally scaled with a learning rate. The algorithm presented
here is the case where the learning rate is chosen constant and equal to one. This algorithm
(with a constant learning rate equal to one) is shown to be convergent by Bertsekas et al.
(2004). Notice that ideas behind LSPE have other applications (Bertsekas and Yu, 2007)
and can also be linked to variational inequalities (Bertsekas, 2009).

3. Actually, if the name LSPE has been introduced by Nedić and Bertsekas (2003) (in a multistep value-
iteration context), the related algorithm has first been introduced by Bertsekas and Ioffe (1996), where
it is built upon λ-policy-iteration.
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5.3.3 Q-learning for optimal stopping problems

The Q-learning for optimal stopping problems (Q-OSP) proposed by Yu and Bertsekas
(2007) extends LSPE to the (sampled) Bellman optimality operator, the parameterization
being still linear. They present this algorithm in the case of optimal stopping problems,
which are a restrictive class of Markovian decision processes. However, it is presented here
in the general case.

The derivation of this algorithm is the same as for the LSPE one, by considering the
optimality operator instead of the evaluation one:

θi = argmin
θ∈Rp

i∑
j=1

(
φT

j θ − rj − γ max
a∈A

(
φ(sj+1, a)T θi−1

))
(216)

=

 i∑
j=1

φjφ
T
j

−1
i∑

j=1

(
rj + γ max

a∈A

(
φ(sj+1, a)T θi−1

))
(217)

The matrix (
∑i

j=1 φjφ
T
j )−1 can still be computed recursively and efficiently, however this

is not the case for the term
∑i

j=1(rj + γ maxa∈A(φ(sj+1, a)T θi−1)) which requires remem-
bering the whole trajectory and needs to be computed at each iteration. Yu and Bertsekas
(2007) show this algorithm to be convergent for optimal stopping problems and under some
assumptions, and they also propose some more computationally efficient variations for the
same restrictive class of MDP.

6. Conclusion

This article has reviewed a large part of the state of the art in (state-action) value function
approximation. Basically, it has been shown that all these approaches can be categorized
in three main classes, given the considered cost function (related to bootstrapping, residual
or projected fixed-point). In each of these groups, they can be categorized given that the
cost function is minimized using a stochastic gradient descent or a recursive least-squares
approach (except fitted-Q, which can be considered with any supervised learning algorithm).
Projected fixed-point approaches can be divided into two approaches, given that the cost
function is directly minimized or that the underlying possible fixed-point is searched for
using an iterative scheme. All of this is summarized in Table 1. A link between Widrow-
Hoff update and most of reviewed methods has also be drawn through this article.

A point not discussed so far is the computational (and memory) complexity of the re-
viewed algorithms. There are basically two cases. For stochastic gradient descent-based
algorithms, complexity is in O(p), and for recursive least-squares-based approach, complex-
ity is in O(p2). Notice that for algorithms handling the Bellman optimality operator, these
complexities have to be scaled by the number of actions (because of the max computation).
Exceptions (to the two above cases) are fitted-Q (which complexity depends on the consid-
ered supervised learning scheme) and Q-OSP (which is moreover linear in the length of the
trajectory). Considering the sample efficiency of these algorithms, second order approaches
are usually more efficient.

All algorithms for value function approximation have not been discussed here. Notably,
most of the presented ones have been extended to eligibility traces. Basically, methods
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bootstrapping residual projected fixed-point
direct / iterated

stochastic TD-VFA R-SGD (nl)GTD2
gradient SARSA-VFA (nl)TDC
descent QL-VFA GQ(λ)

Greedy-GQ
(recursive) FPKF GPTD LSTD LSPE

least-squares KTD slLSTD Q-OSP
other fitted-Q

Table 1: Summary.

presented here are based on a one step prediction (the reward plus the estimate of the
value function in the transition state), whereas eligibility traces are based on a weighted
average of multiple step predictions, see Sutton and Barto (1998). Such an approach as a
clear advantage for methods based on stochastic gradient descent, as it speed up learning.
However, for least-squares-based approaches, this advantage is less clear, notably because
these methods are generally much more sample efficient, see Boyan (1999) for example.
Moreover, eligibility traces present a (possibly severe) drawback: they induces a memory
effect which prevents off-policy learning without caution. Off-policy learning is actually still
possible, but it implies to add some importance sampling scheme, see Precup et al. (2000)
for example. By the way, using eligibility traces can be expressed as using a modified
T λ Bellman operator (see Maei and Sutton (2010) for example), and the work presented
here can globally be extended to this case. Other approaches extend algorithms presented
here. For example, LSTD has been kernelized (Xu et al., 2007) as well as LSPE (Jung
and Polani, 2007). A variation of LSTD has been proposed by Geramifard et al. (2006)
who use the sparsity of used feature vectors to reduce the computational complexity. The
LSTD algorithm has also been extended to L2 regularization in reproducing kernel Hilbert
spaces (Farahmand et al., 2008) as well as to L1 regularization (Kolter and Ng, 2009). These
are some examples among other.
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