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Humans and other animals learn to form complex categories without
receiving a target output� or teaching signal� with each input pattern� In
contrast� most computer algorithms that emulate such performance assume
the brain is provided with the correct output at the neuronal level or require
grossly unphysiological methods of information propagation� While natural
environments do not contain explicit labeling signals� they do contain im�
portant information in the form of temporal correlations between sensations
to di�erent sensory modalities and humans are a�ected by this correlational
structure �Howells� ����� McGurk and MacDonald� ��	
� MacDonald and
McGurk� ��	�� Zellner and Kautz� ����� Durgin and Pro
tt� ���
� In this
paper� we describe a simple unsupervised neural network algorithm that
also uses this natural structure� Using only the co�occurring patterns of
lip motion and sound signals from a human speaker� the network learns
separate visual and auditory speech classi�ers that perform comparably to
supervised networks�

� Introduction

The ability of humans to form complex categories without explicit supervision has
challenged modelers� On the one hand� classi�cation is simpler if more dimensions
are available to separate the classes� For example� categorizing cows and horses is
simpler if one can also make use of auditory features in addition to visual features� On
the other hand� simple clustering of multi�modality patterns would prevent adequate
performance in the individual modalities� and appropriate density modeling techniques
rapidly become infeasible in high dimensions� Also it is well known that the cerebral
cortex competently classi�es uni�modal stimuli while keeping the di
erent modalities
largely separate� Inspired by this� we describe an algorithm that avoids the intractable
task of modeling cross�modal associations but uses this useful structure to derive its
own internal target signals for classi�ers in the individual modalities� The algorithm
uses natural and neurophysiologically plausible one�way connections for information
transmission� which distinguishes this approach from back�propagation �Rumelhart
et al�� ���	� and also the unsupervised model of Becker and Hinton �Becker and Hinton�
���
� Becker� ���	�� More biologically plausible implementations of the information
theoretic approach are given in �Phillips et al�� ����� Kay et al�� ����� but have not
been demonstrated on real problems with overlapping classes�
The idea behind the algorithm is to minimize the disagreement between the out�

put decisions of two or more classi�ers receiving di
erent forms of input from the same
source �see Figure ��� The key insight is that this can be done without directly connect�
ing all the hidden units to each other and without requiring implausible communication
of error signals backwards along forward connections�






��� Classi�cation

A general way of representing sensory inputs is in terms of n�dimensional points� or
vectors� groups of which can be represented by prototypes or codebook vectors� A simple
classi�cation border between two such codebook vectors representing di
erent classes
is the �n � ���dimensional hyperplane midway between them� With more codebook
vectors representing several classes� non�linear boundaries may be devised by taking
the border from the V oronoi tessellation of these prototype points� Each codebook
vector is assigned a class label and patterns are classi�ed as belonging to the class
of the closest codebook vector� Class boundaries are then the edges of the Voronoi
tessellation that separate codebook vectors of di
erent classes�
In learning algorithms� classi�cation borders are moved indirectly by moving the

codebook vectors� Competitive learning�Grossberg� ���	a� Grossberg� ���	b� Ko�
honen� ���
� Rumelhart and Zipser� ���	� is an unsupervised� biologically plausible
�Coultrip et al�� ���
� Miikkulainen� ����� way of achieving this for easily separable
data clusters� but performs poorly on complicated clusters that are either not well
separated or not well approximated by circularly symmetric distributions� More dif�
�cult categorization problems can be handled if the correct class of each pattern is
known during training� The supervised LVQ
�� algorithm�Kohonen� ����� monitors
and reduces the number of currently misclassi�ed patterns �but see �de Sa and Ballard�
����a� Diamantini and Spalvieri� ������� It can be described informally as�

If the pattern is near a current border� move the codebook vector of the
same class towards the pattern and that of the other class away�

The resulting border movement increases the chances of an incorrectly classi�ed pattern
being correctly classi�ed on a subsequent trial�
When the labels of the sample patterns are given� the supervised goal �assuming

equal costs� is to minimize the probability of misclassi�ed patterns for each modality�
The goal for each modality is to minimize the number of patterns from each class that
fall into Voronoi regions of codebook vectors with other labels� For example� where
P �Ci� is the a priori probability for Class i and p�xjjCi� is the conditional density of the
data from modality j from Class i� the goal for modality � is to minimize �Diamantini
and Spalvieri� �����

E�fw�ig� �
X
k

X
i

��� ��L�w�i�� Ck��P �Ck�
Z
V�i

p�x�jCk�dx� ���

Here i is an index over codebook vectors� L�w�i� gives the label of codebook vector
w�i � V�i represents the Voronoi region around w�i �the volume closer to w�i than any
other codebook vector�� and ��a� b� is de�ned to be � when a � b and � otherwise� The
goal for modality 
 is analogous�

��� Cross�Modal Structure

The formulation expressed by Equation � is explicitly supervised in that the estimation
of the conditional probabilities depends explicitly on class information� That is� in or�
der to estimate the term p�xjCk� it is necessary to know which patterns are from Class
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k� An unsupervised error function must depend only on the whole pattern distribu�
tion p�x�� x�� �

P
k P �Ck�p�x�� x�jCk�� A glance at Figure 
 shows that the structure

in the joint feature space is often more informative than that available to either of
the individual modalities� One solution this suggests is to perform unsupervised clus�
tering or density estimation in the joint space� However simple k�means clustering�
or competitive learning� in the full joint space would require that future patterns for
classi�cation contain all feature dimensions� they are not able to marginalize over the
missing dimensions� The problem is that while we would like to learn from a joint
cross�modal space we would like� after learning� to be able to act on sensory informa�
tion from a single modality� Density modeling methods do this and can handle missing
features on classi�cation� but require �tting many parameters and this is infeasible in
high�dimensional spaces�
An architecture that circumvents these problems is shown in Figure �� The key

organizational feature is that each modality has its own processing stream �or classi��
cation network� but access to each other�s output at a high level�
One way to make use of the cross�modality structure in a network like this is to

cluster the codebook vectors �in their individual spaces� but use the joint structure to
learn the labels of these codebook vectors� This is a two stage clustering algorithm�
First the input patterns in each modality are clustered using a competitive learning
network� After this� the pattern of activation across the output units of the competitive
learning networks �hidden units in Figure �� can be considered new input patterns for
another level of clustering �� By assigning labels to the output units of this second
clustering stage� each codebook vector is labeled indirectly by the label of the output
unit in whose cluster it belongs� This will give the same label to codebook vectors from
the di
erent modalities that tend to co�occur�
While this approach is useful� and we use it for initialization �Step 
 in the algorithm

description on p� ��� the constraining structure in the joint distribution can be used
more powerfully if it is used for better placement of the codebook vectors themselves�

� Minimizing Disagreement

The core idea of our codebook placement algorithm is to minimize the Disagreement

Error�the fraction of patterns classi�ed di
erently by the two networks� The idea is
that two modalities� representing di
erent but co�occurring information from the same
source� teach each other by �nding a local minimum in their output disagreement�
This section develops the derivation of the rules for moving the codebook vectors to
minimize this error measure� The next shows that one can appropriately move the
codebook vectors without directly connecting the codebook vectors to each other and
without requiring neurobiologically implausible propagation of information as required
in algorithms using back�propagation �Rumelhart et al�� ���	� of error signals�

�While eventually the hidden layer activation patterns will be of the ��of�n or winner�take�all form�

for this learning stage we activate the k closest units and anneal k to � throughout learning�
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The Disagreement Error can be written in terms of the codebook vectors as�

E�fw�ig� fw�jg� �
X
i

X
j

��� ��L�w�i�� L�w�j ���Prfx� � V�i�x� � V�jg �
�

That is

E�fw�ig� fw�jg� �
X
k

X
i

X
j

��� ��L�w�i�� L�w�j���P �Ck�
Z
V�i

Z
V�j

p�x�� x�jCk�dx�dx�

���
Note that ��� does not depend on the class information but only on the joint density

of all inputs �over all classes� and thus can be sampled without labels� It is however in
the same form as the supervised equation ��� dealt with in �Diamantini and Spalvieri�
������ Di
erentiating this equation after their treatment of the supervised version
gives

�E

�w�p

�
X
k

X
i�i��p

X
j

��L�w�p�� L�w�j ��� ��L�w�i�� L�w�j ��

jjw�i � w�pjj
���

�P �Ck�
Z
S�i�p

�w�p � x��
Z
V�j

p�x�� x�jCk�dx�dx�

where S�i�p is the boundary surface between V�i and V�p � Similarly�

�E

�w�p

�
X
k

X
i�i��p

X
j

��L�w�p�� L�w�j ��� ��L�w�i�� L�w�j ��

jjw�i � w�pjj
���

�P �Ck�
Z
S�i�p

�w�p � x��
Z
V�j

p�x�� x�jCk�dx�dx�

Using uniform Parzen windows as in �Wassel and Sklansky� ���
� Sklansky and
Wassel� ����� Diamantini and Spalvieri� ����� to approximate the probability distri�
butions in ��� and ��� and considering for each data sample X��n�� X��n� only the
two nearest codebook vectors in each modality gives a particularly simple stochastic
estimate of the derivatives� If jjX��X�i�q jj � ��
� where X�i�q is the projection of the
sample point on the border between its closest codebook vectors w�i and w�q �and w�i

belongs to the same class as the modality 
 codebook vector closest to X�� and w�q

belongs to another class�� then a sample estimate of the derivative in ��� is

�
X�i�q � w�i

��t�jjw�i � w�q jj
�	�

This gives the following simple stochastic approximation �Robbins and Monro�
����� update rules for modality �� If jjX� �X�i�q jj � ��t��
�

w�i�n � �� � w�i�n� � ��t�
X�i�q � w�i�n�

��t�jjw�i�n�� w�q�n�jj
���

w�q�n� �� � w�q�n�� ��t�
X�i�q � w�q�n�

��t�jjw�q�n�� w�i�n�jj
���
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If the pattern falls outside a window of width ��t� about the current border of
the class output by the other modality� no changes are made� For all other indices no
changes in the codebook vector weights are made� The rules for updating the codebook
vectors in Modality 
 are exactly analogous�
These rules amount to�

If the pattern received by a modality is close to a current border� move the
codebook vector of the class that is output by the other modality towards
the pattern� and that of the other class away�

This rule moves the borders to increase the local area assigned to the class output
by the other modality� The Minimizing�Disagreement �M�D� algorithm applies this
rule after each presentation of multimodal stimuli� it can be summarized as follows�

�� Initialize codebook vectors in each modality �unsupervised clustering�


� Initialize codebook vectors labels using unsupervised clustering of the activity
patterns across the codebook vector units �as described at the end of Section ��

�� Repeat for each presentation of input patterns X��n� and X��n� to their respec�
tive modalities

� Find the two nearest codebook vectors in each modality to their respective
input patterns

� Find the hypothesized output class in each modality �as given by the label
of the closest codebook vector�

� For each modality update the codebook vectors according to the rule above

� Update the labels �described below�

The algorithm is moderately sensitive to the initial labeling� so improved results
are often obtained by repeating steps 
 and � with the codebook vectors resulting from
one cycle through the algorithm� As the algorithm results in codebook vectors that
better distinguish between classes� they tend to be easier to label appropriately in the
initial labeling stage� which often leads to better performance after the third stage�
Appendix A and Figure � show more quantitatively how minimizing the disagreement
is related to the classi�cation goal of minimizing the number of misclassi�ed patterns�
The mapping of E with respect to the labels �fL�wi�g� is not continuous and thus

not di
erentiable� However to minimize E with respect to the labels �last point of
Step � above�� one should assign the label for w�i to be the label that labels the most
co�occurring patterns in the other modality�
If we de�ne the mapping W��L�� to be the set of codebook vectors in modality one

for which L�w�i� � L� and let

colabell�w�i� �
X

w�j
�W��Ll�

X
k

P �Ck�
Z
V�i

Z
V�j

p�x�� x�jCk�dx�dx�

	



then
L�w�i� � argmaxl�fcolabell�w�i�g�

We use an on�line algorithm for this� Letting v�l�i� be the weight from codebook
vector w�i� �the winning codebook vector in modality �� to output unit l �the winning
label picked by modality 
��

v�l�i� �n � �� � v�l�i� �n� � ��n�

where the weights coming into each output unit are kept normalized�

v�l�i �
v�l�i
jjv�ljj

�i� l

This normalization means that the algorithm is not minimizing the disagreement
with respect to the output weights but instead clustering the hidden unit representation
using the output class given by the other modality� This objective is better for these
weights as it balances the goal of agreement with the desire to avoid the trivial solution
of all codebook vectors having the same label� Other forms of extra terms to force the
output units to output di
erent classes across the pattern set could also be used� This
is analogous to the individual entropy terms H�Y��� H�Y�� in the IMAX �Becker and
Hinton� ���
� algorithm which force the output units Yi in each modality �i � �� 
� to
span the output space� preventing the trivial solution of both modalities ouputting a
constant�
We could also modify the energy function that the codebook vectors are following

to prevent the hidden units from coding the input space as one class� However� due
to the existence of many reasonable local minima extra terms were not necessary in
the datasets we have encountered� and our foray into adding them with our original
dataset yielded slightly worse performance �probably because the addition of the terms
changes the position of the local minimum�it is no longer minimizing the disagree�
ment�� However it is possible that for problems with more overlap between classes�
terms like this might help if the current algorithm does not perform well�
Figure � illustrates for an easily visualized two class problem how� despite the exis�

tence of the undesirable global minima in disagreement� for enough segregation in the
joint space a local minimum exists between the two classes� An initial border deter�
mined by most simple clustering algorithms would start within the basin of attraction
of this minimum� The �gure shows that an appropriate local minimum exists beyond
the case where clusters could be separated given the individual modalities alone� but
just short of what could be achieved if one could look for clusters in the joint space�
The algorithm is able to extract most of the greater structure in the higher dimen�
sional joint distribution without requiring the extra parameters for modeling in this
large space�

� Network Realization

The M�D algorithm can be realized by the three layer network shown in Figure �
where the codebook vectors are represented by the weights w from the input to the
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hidden units �also called codebook vector units� and the class labels are represented
by the output units� The codebook labels are given implicitly by the weights v and
u� The codebook vector units determine which class is chosen �their label� through
the forward weights v and receive agreement information through the complementary
back�projecting weights u�
Simple feedforward clustering using competitive learning is used to initialize the

codebook vectors w in their respective input pattern spaces and subsequently the
weights to the output units v� During this stage� the back�projecting weights u are
kept consistent with the forward weights v by setting the back�projecting weights to
the active hidden unit to Z� the ��of�n activity vector over the output units driven
by the forward weights from that activated unit� This results in backwards weights of
magnitude � from the output unit activated by the hidden unit and � from the others�
and can be considered a form of fast Hebbian �Hebb� ����� learning�
Next� using the M�D rule� both modalities teach each other� For each paired pattern

presentation� the output units are driven �rst by one modality and then by the other�
The output units are driven by the forward projecting weights v of the current driving
modality� This output then augments the activity in the non�driving modality through
the back�projecting weights u which provide boosted activity to activated units that
agree with the output of the driving modality� �For details see the caption of Figure ���
Figure � shows the case where modality � teaches or drives modality 
� The codebook
vectors in the drivenmodality �w� in the Figure� are updated using a simpli�ed version
of the M�D rule� �This rule� derived from generalizing the ��Dimensional rule� is very
slightly di
erent than the rules ���� and ���� derived from di
erentiating in the multi�
dimensional space but is simpler and has performed as well or better��� Weights are
only updated if the current pattern falls near the middle between two codebook vectors
of di
erent classes �The speci�cation of this �window� and the decrease in learning
step size are as in Kohonen�s supervised algorithm �Kohonen� ������ The window is
decreased with time as in �de Sa and Ballard� ����a��� In this case�

w�i�n � �� �

�������
������

w�i�n� if Y�i � A

w�i�n�� ��n�
�X��n��w�i

�n����

jjX��n��w�i
�n�jj

if A � Y�i � B

w�i�n� if B � Y�i � C

w�i�n� � ��n�
�X��n��w�i

�n����

jjX��n��w�i
�n�jj

if Y�i � C

���

This rule for updating the codebook vectors is a discrete version of the ABS rule
�Artola and Singer� ����� shown in graphical form in the inset in Figure � �In the �gure�
A � ��� B � ���� C � ����� The non�propagating forward �v�� and backward weights
�u�� are also updated at this stage� The backwards weights of the winning driving
unit �u��i � are kept consistent with the forward weights �v�� as in the initialization
stage� and the forward weights of the driven modality �v�� are updated to decrease
the disagreement error by moving towards the output vector �Z� output by the other
�driving� modality �as described earlier�� The forward weights to each output unit are
kept normalized� as discussed previously�
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� Results

The algorithm was demonstrated on the di�cult problem of learning to recognize
consonant�vowel utterances both visually and acoustically�
A speaker was recorded using an �mm camcorder and directional microphone as

he spoke ��� repetitions of �ba�� �va�� �da�� �ga�� and �wa�� The �rst �� samples of
each utterance class formed the training set and the remaining 
� the test set� Each
set of �� utterances �twice through the set� was preceded by a clap using a clapboard
arrangement similar to that used in commercial movie production for matching the vi�
sual and auditory signals� The camera recorded �� frames a second and was positioned
to view the tip of the nose through chin of the speaker�
The acoustic data were low�pass �ltered and utterances were detected using thresh�

old crossings of the smoothed time�domain waveform �using the ESPS software from
Entropic Research Laboratory� Inc��� As some of the consonantal information is low
amplitude �before the threshold crossing�� each utterance was taken from �� msec be�
fore the automatically detected utterance start to �� msec after� These utterances
were then encoded using a 
� channel mel code � over 
� msec windows overlapped by
�� msec� This is a coarse short time frequency encoding� which crudely approximates
peripheral auditory processing� Each feature vector was linearly scaled so that all di�
mensions lie in the range ������� The �nal auditory code is a �
� � �� 
�	 dimension
vector for each utterance� Example auditory feature vectors are shown in Figure ��
The visual data were processed using software designed and written by Ramprasad

Polana �Polana� ������ Visual frames were digitized as 	�� 	� � bit gray�level images
using the Datacube MaxVideo system� The video and auditory tracks were aligned
using the clapboard arrangement and visual detection of the clap was performed man�
ually which allowed alignment to within � video frame ����� second�� The frame of the
clap was matched to the time of the acoustically detected clap allowing the automatic
segmentation obtained from the acoustic signal to be used to segment the video� Seg�
ments were taken as 	 frames before the acoustically determined utterance o
set and �
after� The normal �ow was computed using di
erential techniques between successive
frames� Each pair of frames was then averaged resulting in � frames of motion over
the 	� � 	� pixel grid� The frames were then divided into 
� equal areas ��� �� and
the motion magnitudes within each frame were averaged within each area� The �nal
visual feature vector of dimension �� frames � 
� areas� �
� was linearly normalized
as for the auditory vectors� Example visual feature vectors are shown in Figure ��
The results are shown in Figure 	� After training� the visual network achieved a

classi�cation performance of �� on the test set� while the auditory network had a test
set performance of �� � For comparison� the LVQ
�� algorithm trained on the auditory
data with the same architecture as the auditory subnetwork had a test set classi�cation
of �	 � and the supervised visual network� again with the same architecture as the
corresponding subnet� �� � The performance after the initial unsupervised clustering
was �	 and 		 for the auditory and visual subnets respectively� This was even
though we helped this stage by weighting the auditory activity pattern �� more

�linear spacing below ���� Hz and logarithmic above ���� Hz
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than the visual pattern� Slightly better results are obtained with arti�cially increased
pairing� In these experiments� the dataset was expanded by matching each auditory
pattern of one class of utterances with each visual pattern of that class in the training
set �not just the individual pattern with which it co�occurred�� These latter results
re�ect the expected performance of the M�D algorithm with more data under the
assumption that within an utterance class� the exact auditory and visual patterns are
independent �and thus each auditory pattern is just as likely to have occurred with
each visual pattern in the class��
Results on a preliminary multi�speaker task were not as favorable� This is likely

due to the greatly increased di�culty in the visual classi�cation problem �supervised
test performance on the visual data was about 	� �� It is likely that a di
erent visual
encoding could improve this result or possibly that more data was required as the
arti�cially increased pairing did give results comparable to supervised performance�
�However the argument that this simulates collection of more data is less compelling
in the multi�speaker case��

� Discussion

The fact that both networks are simultaneously learning makes this problem signi��
cantly harder than approaches where one modality trains another�Munro� ����� Car�
penter et al�� ����� Tan� ����� or others that combine two already trained networks
�Yuhas et al�� ����� Stork et al�� ���
�� The approach taken in this work and that
of �Becker and Hinton� ���
� Becker� ���	� Schmidhuber and Prelinger� ����� Phillips
et al�� ����� Kay et al�� ����� is to use the relationships between inputs to di
erent
networks to discover features in the individual networks that could not have been dis�
covered simply by unsupervised learning in the individual spaces� This algorithm is
more restricted than these other similar algorithms as it is limited to classi�cation
problems and uses ��of�n or winner�take�all output encodings� On the other hand it
easily deals with real problems of many input dimensions� to the best of our knowledge�
this is the largest problem attempted with this type of algorithm� It also deals easily�
and has improved performance� with the addition of more modalities �for an example
on a similar precursor algorithm see �de Sa and Ballard� ����b���
One limit of the ��of�n output encoding is that� as the number of output units is

�xed� the number of output classes must be pre�chosen� In our case �ve output units
were used as we were looking for �ve classes� For less output classes� the algorithm
can simply group classes and we would expect no change or even a decrease in the
number of disagreements� For more output classes� we would expect an increase in
the number of disagreements� We have done experiments with 
�����	�� and �� output
classes� On the training data these experiments show a greater increase in the number
of disagreements after �ve classes though the same curve on the test set gave only a
smooth increase in disagreements with class size� Thus it is possible that the number
of classes might be recoverable from the data itself� However this will require further
development�
The algorithm is currently limited to hard winner�take�all decisions� Incorporating
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�soft� output decisions would be an easy modi�cation but making appropriate use of
the resulting extra information to provide better teaching signals to the other modality
is an interesting problem deserving more research� The uncertainty in classi�cation in
the driven hidden layer is re�ected in the windowing � only patterns near a current
border are able to in�uence the border� This decision can be made softer by using
non�uniform Parzen windows�
The M�D algorithm o
ers a straightforward computational model for why neurons

in one sensory modality also respond to inputs to another sensory modality�Morrell�
���
� Fishman and Michael� ����� Sams et al�� ����� Buser and Borenstein� �����
Murata et al�� ��	�� Spinelli et al�� ��	�� Haenny et al�� ����� Maunsell et al�� ������
In fact the algorithm is not limited to di
erent sensory modalities but also can be used
for sub�modal patterns such as color and motion� The key requirement is that there be
some decorrelation of the instances of the di
erent pairs of patterns� The model shows
that without the huge cost of connecting all neurons to all sensory input� one can still
take advantage of the greater structure available in the higher dimensional multi�modal
sensory space� We suggest that cortical back�projections and multi�sensory integration
may be doing more than a
ecting the properties of developed systems but may play
an important role in the learning process itself�

Appendix� Minimizing Disagreement as an Approx�

imation to Minimizing Misclassi�cations

Note that the algorithm to minimize the disagreement corresponds to the LVQ
�� algo�
rithm except that the �label� for each modality�s pattern is the hypothesized output of
the other modality� To understand how making use of this label� through minimizing
the disagreement between the two outputs� relates to the true goal of minimizing mis�
classi�cations in each modality� consider the conditionally independent �within a class�
version of the 
�modality example illustrated in Figure �� As previously mentioned� in
the supervised case �Figure �A� the availability of the actual labels allows sampling of
the actual marginal distributions� For each modality� the number of misclassi�cations
can be minimized by setting the boundaries for each modality at the crossing points
of their marginal distributions�
However in the self�supervised system� the labels are not available� Instead we are

given the output of the other modality� Consider the system from the point of view
of modality 
� Its patterns are labeled according to the outputs of modality �� This
labels the patterns in Class A as shown in Figure �B� Thus from the actual Class A
patterns� the second modality sees the �labeled� distributions shown� Letting a be
the fraction of Class A patterns that are misclassi�ed by modality �� the resulting
distributions of the real Class A patterns seen by modality 
 are ���a�P �CA�p�x�jCA�
and �a�P �CA�p�x�jCA��
Similarly Figure �C shows Modality 
�s view of the patterns from class B �given

Modality ��s current border�� Letting b be the fraction of Class B patterns mis�
classi�ed by modality �� the distributions are given by �� � b�P �CB�p�x�jCB� and
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�b�P �CB�p�x�jCB�� Combining the e
ects on both classes results in the �labeled�
distributions shown in Figure �D� The �apparent Class A� distribution is given by
�� � a�P �CA�p�x�jCA� � �b�P �CB�p�x�jCB� and the �apparent Class B� distribution
by �a�P �CA�p�x�jCA�����b�P �CB�p�x�jCB�� The crossing point of these two distribu�
tions occurs at the value of x� for which ���
a�P �CA�p�x�jCA� � ���
b�P �CB�p�x�jCB��
Comparing this with the crossing point of the actual distributions that occurs at x�
satisfying P �CA�p�x�jCA� � P �CB�p�x�jCB� reveals that if the proportion of Class A
patterns misclassi�ed by modality � is the same as the proportion of Class B patterns
misclassi�ed by modality � �i�e� a � b� the crossing points of the distributions will be
identical� This is true even though the approximated distributions will be discrepant
for all cases where there are any misclassi�ed patterns �a � � OR b � ��� If a � b� the
crossing point will be close�
Simultaneously the second modality is labeling the patterns to the �rst modality�

At each iteration of the algorithm both borders move according to the samples from
the �apparent� marginal distributions�
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Figure Captions

Figure �� Making use of natural correlational structure� The network learns
from the structure inherent in the coherence between the visual and auditory signals�
The feature vectors for classi�cation were taken from �� video frames and ��� msec of
auditory signal�
In the network� an arrow between units denotes full connectivity between these

banks of units� The variables w� u and v represent matrices which store the connec�
tion weights� The variables Xi� Yi� Z store the activity vectors of the various layers�
The modalities minimize their disagreement by teaching or �driving� each other� The
numbered arrows in the network� show the order of propagation of activation when
considering the auditory modality driving the visual driven one�
In the driving hidden layer� the hidden unit with the closest weight vector �codebook

vector� gets activity � �and all others in the layer ��� This ��of�n activity pattern then
serves as the input pattern for the output units� and the output unit with closest
weight vector to this activation vector receives activity � �and all other output units
��� The two closest weight vectors �to their input pattern� in the driven hidden layer
get a forward activity component of �� The backwards weights u are then used to
supplement the activity of those driven units receiving forward activation� Due to the
binary form of the backwards weights u these driven units will have activities of ����or

� The inset shows the update direction for the driven codebook vector weights w
as a function of their unit�s activity level� Positive ordinates represent movement of
the weights towards their inputs� and negative values represent movement away� The
actual update equations are given in Equation ��
Figure 
� A low dimensional� ��class example� The graphs on the left side

represent the probability distributions of patterns to the �rst modality� those on the
right give the same for the second modality� �A� In the supervised case� the individual
density functions associated with each class can be estimated� and the appropriate
border �at the crossing point of the distributions� found� The darker� leftmost curve
within each graph represents the distribution of the patterns from Class CA� b� and b�
represent example �but not optimal� classi�cation borders in their respective modali�
ties� �B� In the absence of class information� the computed density function is the sum
of the individual class densities� The appropriate border may not be obvious �See for
example Modality ��s density on the right�� �C� The higher dimensional joint distribu�
tion p�x�� x�� � P �CA�p�x�� x�jCA� � P �CB�p�x�� x�jCB� has greater structure and is
used to guide the placement of the borders in the individual modalities� The example
shows a case where the two variables are conditionally independent but this is not
required� For better visualization� the joint distribution has been vertically expanded
three times relative to the marginal distributions�
Figure �� The M�D energy function� �A� The joint probability density for a


�Class Low Dimensional problem� The two modalities are conditionally independent
with the individual class distributions in both modalities normally distributed with
standard deviation �� �and means of ���� ���� The dark curve shows the value of the
joint distribution for x� � x�� For this case this is the direction that gives the most
information on separating the classes� �B� The individual modality distribution for one

�	



modality �identical for the other one� for varying standard deviations �	� of the indi�
vidual class densities� As the classes become more di
use �larger 	�� the dip between
the classes gets smaller and the classes are harder to separate� �C� The plot of the joint
density along the plane x� � x�� �the most informative direction� for varying 	� Note
that the classes are more separable� in the higher dimensional joint space for a given 	�
�D� Gives the Minimizing Disagreement Energy �proportion of misclassi�ed patterns�
as a function of border position and 	� Note that for 	 up to almost �	� the correct
dividing borders �b� � b� � �� are a local minimum �along b� � b� is the limiting
direction�� however for more di
use classes� there is no appropriate local minimum !
only the global minima as x�� x� � 	
�
Figure �� Example auditory patterns� The x�axis within each feature vector

represents frequency channels and the y�axis time� The area of the small squares within
the feature vector corresponds to the magnitude and the color that of the sign �white
positive� black negative� of the feature dimension�
Figure �� Example visual patterns� These patterns correspond to the auditory

patterns in Figure �� The x�axis represents spatial positions and the y�axis time� The
area of the small squares within the feature vector corresponds to the magnitude and
the color that of the sign �white positive� black negative� of the feature dimension�
Figure 	� Experimental results in the auditory�visual speech task� The

leftmost bar in each set �labeled V� gives the performance of the visual network and
the rightmost bars �labeled A� show the auditory network�s performance� All bars
represent categorization performance on the test set averaged over �� experiments
from random initial weights� The error bars represent � standard deviation across
the runs� The pair of bars labeled Initial Labeling represent the performance after the
initialization stage of unsupervised clustering in the respective input spaces and output
label space� This gives the categorization ability of unsupervised clustering� The bars
labeled #All�pair combinations� represent the use of an arti�cially increased dataset
obtained by matching each auditory pattern of one class of utterances with each visual
pattern of that class in the training set �not just the individual pattern with which it
co�occurred�� Results for the related supervised algorithm �LVQ
��� �Kohonen� �����
using the same number of codebook vectors are also shown for comparison�
Figure �� An example of the joint and marginal distributions for the

conditionally independent version of the example problem introduced in
Figure �� �For better visualization the joint distribution is expanded vertically twice
as much as the marginal distributions�� The darker gray represents patterns labeled
�A�� while the lighter gray are labeled �B�� �A� shows the labeling for the supervised
case� �B� shows the labeling of Class A patterns as seen by modality 
 given the
modality � border shown� a represents the fraction of the Class A patterns that are
misclassi�ed by modality �� �C� shows the labeling of Class B patterns as seen by
modality 
 given the same modality � border� b represents the fraction of the Class B
patterns that are misclassi�ed by modality �� �D� shows the total pattern distributions
seen by modality 
 given the labels determined by modality �� These distributions can
be considered as the labeled distributions on which modality 
 is performing a form
of supervised learning� �However it is more complicated as modality ��s border is
concurrently in�uenced by the current position of modality 
�s border�� See text for
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more details�
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