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ABSTRACT
We present the first local list-decoding algorithm for the rth

order Reed-Muller code RM(r, m) over F2 for r ≥ 2. Given
an oracle for a received word R : Fm

2 → F2, our random-
ized local list-decoding algorithm produces a list containing
all degree r polynomials within relative distance (2−r − ε)
from R for any ε > 0 in time poly(mr, ε−r). The list size
could be exponential in m at radius 2−r, so our bound is op-
timal in the local setting. Since RM(r, m) has relative dis-
tance 2−r, our algorithm beats the Johnson bound for r ≥ 2.

In the setting where we are allowed running-time polyno-
mial in the block-length, we show that list-decoding is pos-
sible up to even larger radii, beyond the minimum distance.
We give a deterministic list-decoder that works at error rate
below J(21−r), where J(δ) denotes the Johnson radius for
minimum distance δ. This shows that RM(2, m) codes are
list-decodable up to radius η for any constant η < 1

2
in time

polynomial in the block-length.
Over small fields Fq, we present list-decoding algorithms

in both the global and local settings that work up to the
list-decoding radius. We conjecture that the list-decoding
radius approaches the minimum distance (like over F2), and
prove this holds true when the degree is divisible by q − 1.

Categories and Subject Descriptors: E.4: Coding and
Information theory.

General Terms: Algorithms, Theory.

1. INTRODUCTION
Traditional algorithms to decode error-correcting codes

require that the received word is within less than half the
minimum distance of a codeword, so that the codeword can
be uniquely recovered. In the 1950s, Elias [9] and Wozen-
craft [30] introduced the notion of list-decoding in order to
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decode beyond this half-minimum-distance barrier. Instead
of outputting one codeword, a list-decoding algorithm out-
puts all codewords within a specified radius of a received
word. It took over thirty years before Goldreich and Levin
[11] and Sudan [25] gave efficient list-decoding algorithms
for Hadamard codes and Reed-Solomon codes, respectively.
Since these breakthroughs, there has been much progress in
devising list-decoders for various codes, which can decode
beyond half the minimum distance. See the surveys by Gu-
ruswami [13, 14] and Sudan [26] for further details.

This study has had remarkable impact on other areas in
computer science (see [29] and [13, Chapter 12]). In com-
plexity theory, list-decodable codes give a way to amplify a
weakly hard function to an extremely hard function [27, 28].
In cryptography, they give constructions of hard-core pred-
icates from one-way functions [11, 1]. From the perspective
of computational learning, list-decoding Hadamard codes is
equivalent to learning parity functions with queries in the
presence of adversarial noise. Such algorithms lie at the
core of algorithms for learning fundamental concept classes
like decision trees [20] and DNFs [16] (see [22]).

For the applications above, one needs the list-decoders to
satisfy a stronger efficiency requirement: they must work
in a local manner. Here one thinks of the received word R
as a function on a huge domain, say Fm

2 . The algorithm
is given access to an oracle for R, which returns R(x) on
query x ∈ Fm

2 . The list-decoder is required to run in time
poly(m), which means that if the block-length is n, it can

only probe the received word at (log n)O(1) indices.1 In-
deed, the Goldreich-Levin decoder works in this setting. We
henceforth refer to algorithms that work in this restricted
setting as local algorithms, and those that run in time poly-
nomial in the block-length as global algorithms.

Reed-Muller Codes. The message space of the rth-
order Reed-Muller code RM(r, m) consists of degree r poly-
nomials over F2 in m variables. The encoding of a polyno-
mial P is the vector of its evaluations at all points in Fm

2 .
Thus RM(r, m) is an [n, k, d]2 error-correcting code where
n = 2m, k =

∑
i≤r

(
m
i

)
, d = 2m−r. When r = 1, we get

Hadamard codes. This is a fundamental family of error-
correcting codes, see [21, Chapters 13-15]. To quote [21]:

Reed-Muller (or RM) codes are one of the oldest and best
understood families of codes . . . The great merit of RM codes
is that they are relatively easy to decode, using majority-logic

1If the received word does not have description size poly(m),
then the definition becomes more subtle. Since we do not
encounter this setting, we refer the reader to [27] for the
definition.



circuits.
This refers to Reed’s elegant Majority Logic Decoder, which

solves the unique-decoding problem up to error rate 2−(r+1),
or half the minimum distance [21]. This algorithm can
be adapted to work in the local setting up to error rate
2−(r+1) − ε. Following the seminal work of Goldreich-Levin
[11], other list-decoders for Hadamard codes were given by
Kushilevitz-Mansour[20] and Goldreich et al.[12]. The prob-
lem of list-decoding RM codes when r ≥ 2 has been open
for a while and has attracted interest in both coding theory
and computer science; this question has been raised by [24,
6, 7]. It is easy to see that 2−r is an upper bound on the
list-decoding radius in the local setting. Prior to our work,
the best known lower bound seems to have been J(2−r),
where J(δ) = 1

2
(1−

√
1− 2δ) is the Johnson bound for min-

imum distance δ. In the random noise model, Dumer gives
an mO(r) local algorithm that solves the decoding problem
up to an error rate of 1

2
− o(1) [7].

Our Results. We give the first local list-decoding algo-
rithm for RM(r, m) codes for r ≥ 2. Our algorithm runs in

time poly(mr, ε−r) and produces a list of size at most ε−O(r)

containing all codewords within a radius of 2−r−ε from the
received word. At radius 2−r, the list size can be exponen-
tial in m hence our bound is optimal in the local setting.
We show that the list size at distance 2−r − ε is bounded
by ε−O(r), and we exhibit configurations of received words
and codewords showing that this is asymptotically optimal.
Our algorithm shows that RM codes can be locally decoded
well beyond the Johnson bound for r ≥ 2. When r = 2, the
Johnson bound gives 0.146 whereas we show that the radius
approaches 0.25 (see Figure 1).

For r ≥ 2, The problem of Reed-Muller list-decoding is in-
teresting in the global setting, where we allow running time
poly(n) = 2O(m). One could hope to list-decode as long

as the list size remains bounded by 2O(m). Since the total
number of codewords is 2mr

, an upper bound of 2O(m) is
nontrivial. We present a global list-decoder which works up
to an error rate of J(21−r)− ε; the Johnson bound for twice

the minimum distance. The algorithm runs in time ε−O(m)

where n = 2m denotes the block-length. Thus RM(2, m) is
list-decodable in the global setting up to a radius η for any
constant η < 1

2
. For this setting, the best combinatorial and

algorithmic bounds previously known seem to be the John-
son bound J(2−r) and half the minimum distance 2−(r+1)

respectively. Figure 1 summarizes the various bounds for
RM decoding.

Overview of the Algorithm. Our local list-decoder
gives a natural generalization of the Goldreich-Levin (GL)
decoder for linear polynomials to higher degree. We view
the GL decoder as a reduction from list-decoding to unique-
decoding (given the right advice); this view extends natu-
rally to higher degrees and other fields. This view of the GL
algorithm is along the lines of the description in [10] (where
it is attributed to Levin and Rackoff). We recap the GL
decoder below.

Fix a linear polynomial L within distance η = 1
2
− ε from

the received word R. Assume that we guess the correct
values of L on a random subspace A of dimension k. Using
this, we get a self-corrector for any point b ∈ Fn

2 : consider
the k + 1 dimensional subspace A′ spanned by b and the
vectors in A. Since the error rate is 0 on A and close to η
on the affine space b + A (with failure probability O( 1

ε2|A| )
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Figure 1: List-Decoding Reed-Muller codes over F2

by pairwise independence), the overall error-rate on A′ is
likely to be η/2 < 1

4
which is within the unique decoding

radius. Hence we can correct the values on A′ by unique
decoding. Using this self-corrector, there are two ways to
solve the local decoding problem:

1. Set |A| = O(m/ε2). The self-corrector works for any
point with probability 1 − O(1/m). We can self-correct at
e1, · · · , em and interpolate L from these values.

2. Pick |A| = O(1/ε2). The self-corrector works for any
point with constant probability, say 0.9, so we can no longer
use the union bound over m points. However, given interpo-
lating sets that can handle a 0.1 fraction of incorrect values,
we can still recover L. Such sets can be obtained from a
linear code which is uniquely decodable up to error rate 0.1.
The list size is governed by the number of guesses for L
restricted to A. This approach yields the tight bound of
O(ε−2).

Now let us try and generalize this to degree 2. Fix a
quadratic polynomial Q within distance η < 1

4
− ε from the

received word R. Again, if we know restriction of Q to a ran-
dom subspace A, then the error rate over A′ drops to η/2,
which is within the unique-decoding radius for RM(2, m).
Hence we can self-correct on A′ via unique-decoding.

However, using the self-correction to get local-decoding is
now more subtle. The first approach where we take |A| =
O(m2/ε2) is better for the purposes of recovering the poly-
nomial. The second approach where we take |A| = O(ε−2)
gives better bounds on the list size. Further, guessing the re-
striction of Q to |A| is no longer efficient: it gives a running
time which is quasi-polynomial in m and/or ε−1 (ε can be
inverse polynomial in m). Our solution is to use the first ap-
proach for the algorithm, and the second for the combinato-
rial bound. Further we generate the advice algorithmically,
rather than by guessing.

We begin with Approach 1 where |A| = O(m2/ε2). We
observe that Q is likely to be at distance η from R on the
subspace A itself. Hence, rather than guessing the restric-
tion of Q from mO(log m) choices, if we can solve the list-
decoding problem over A, then the restriction of Q is likely
to be in the list. But the decoder for A need not be local,
since A has size O(m2/ε2). Essentially, we have reduced
the local decoding problem to the global decoding problem
over A. We present an algorithm for the global problem,



which for any error-rate η runs in time polynomial in |A|
and the maximum list size possible. For this decoder to run
in time poly(m), we need to bound the list size.

We prove the combinatorial bound in two steps. In the
first step, we use Approach 2 to show that knowing the val-
ues of Q at a random affine space A, where |A| = O(ε−2),

suffices to recover Q. This implies a naive bound of 2(log(ε−1))2

on the list size. We improve this bound to poly(ε−1), using
facts about the weight distribution of Reed-Muller codes.
We show that one can effectively double the distance of the
RM(r, m) codes by deleting relatively few codewords. This
is easy to prove for r = 2; for degree 3 and above it relies on
an elegant result by Kasami and Tokura [19]. This allows
us to apply the Johnson bound for twice the minimum dis-
tance of the original RM code. Our deletion argument can
applied to any linear code where one has good bounds on
the weight-distribution of codewords beyond the minimum
distance and might be useful in other settings. The deletion
argument coupled with our global decoder allows us to solve
the global decoding problem at error-rates approaching 1

2
for quadratic polynomials.

Extension to Other Fields. There is a natural general-
ization of Reed-Muller codes over any finite field Fq; such
codes are referred to as generalized Reed-Muller codes. We
extend our algorithmic results to decoding generalized Reed-
Muller codes over small fields Fq. For RMq(r, m) codes, we
give a randomized local list-decoding algorithm that works
for any error rate η where one can upper bound the list size
by a constant (independent of m). This algorithm combines
ideas from our local list-decoder for F2 and the algorithm for
list-decoding Reed-Muller codes over large fields by Sudan
et al.[27]. We give a deterministic global list-decoder that
runs in time polynomial in both the block-length and the
worst-case list size for any error rate η.

The problem of exactly determining the list-decoding ra-
dius in either setting remains open. We conjecture that in
the local setting, the list-decoding radius lies close to the
minimum distance, as in the F2 case. We prove that this is
indeed the case for all degrees that are divisible by q − 1.
We prove that for any degree r, the list-decoding radius is
at least δq(r − 1)/2; this beats the Johnson bound for suffi-
ciently large r. Figure 2 illustrates our bounds for F3.
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Figure 2: List-Decoding Reed-Muller codes over F3

Related Work. There has been tremendous progress
on list-decoding Reed-Muller codes in the large field setting
where d < q. Two important results in this area include
the Gurswami-Sudan list-decoder for Reed-Solomon codes
that can correct η = 1 −

√
d/q fraction of errors [15], and

the Sudan-Trevisan-Vadhan local list-decoder which corrects
η = 1−

√
2d/q fraction of errors [27]. Pellikaan and Wu give

a reduction from Reed-Muller decoding to Reed-Solomon
decoding when d < q [23], which allows list-decoding up to

η = 1−
√

d/q in the global setting. Other work addressing
the large field setting includes [3, 12]. These results require
d < q as they work by reduction to the univariate case.

A closely related problem that has received considerable
attention lately is that of locally testing RM codes. Blum et
al. [4] give an efficient 3-query tester for Hadamard codes.
Recently, Alon et al.[2] showed that RM codes are locally
testable for r ≥ 2, by giving a test using O(2r) queries that
rejects a received word at distance 2−r form the code with
constant probability. For r = 2, Samorodnitsky gave a tight
analysis of their test and showed that it can detect the pres-
ence of a codeword within a radius of 1

2
−ε [24]. The Gowers

inverse conjecture asserted that a similar result holds true
for all degrees r, but this was recently disproved.

Recent Developments. In this paper, we use a random
subspace A of size O(m/ε2) in the decoding algorithm, but
in the combinatorial arguments, we use A of size O(ε−2).
This was necessary since at the time of this work, we were
unaware of interpolating sets for polynomials of degree 2
and higher that could handle errors. This problem has re-
cently been solved by Dvir and Shpilka, who give an ele-
gant construction of such sets [8]. Their result lets us pick
|A| = O(ε−2) even in the algorithm. However, the combi-
natorial arguments stay the same. Subsequently, we discov-
ered an alternate algorithmic approach which lets one choose
|A| = O(ε−2), but bypasses the need for noise-tolerant in-
terpolating sets, by using a local version of Majority Logic
Decoding. We defer the details to the full version.

We present our local list-decoder for RM codes in Sec-
tion 2, the global list-decoder in Section 3 and the combi-
natorial bounds on list size in Section 4. We present the Fq

results in Section 5.

Preliminaries. Let x,y denote vectors in Fm
2 and d(x,y)

the Hamming distance between them. Let 0 be the all-zeroes
vector. Let n = 2m. We identify vectors in Fn

2 with functions
mapping Fm

2 → F2. Codewords are polynomials of degree
at most r, and the received word is a function R : Fm

2 →
F2. Define the normalized distance between functions as
∆(P, R) = Prx∈Fm

2
[P (x) 6= R(x)]. Let wt(P ) = ∆(P,0) be

the normalized Hamming weight of P . Let `(r, m, η) denote
the maximum number of RM(r, m) codewords in an open
ball of radius η around a received word.

For a set S ⊆ Fm
2 and x ∈ Fm

2 , let x + S = {x + y | y ∈
S}. A set S ∈ {0, 1}m is an interpolating set for degree-
r polynomials if every polynomial P with deg(P ) ≤ r is
uniquely determined by its evaluations at points in S. If S
is an interpolating set for degree-r polynomials, then every
affine translate a + S of S is also an interpolating set. Let
B(c, r) denote the Hamming ball of radius r centered at c:
it is an interpolating set for degree-r polynomials over F2.

Any k + 1 vectors a0,a1, . . . ,ak ∈ Fm
2 define an affine

space A = {a0 +
∑k

i=1 λiai|λi ∈ F2}. We will sample a
random k-dimensional affine subspace by choosing a1, . . . ,ak



to be linearly independent, and then choosing a0 randomly.
We define the normalized Hamming distance between two
functions P and R over A as ∆A(P, R) = Prx∈A[P (x) 6=
R(x)]. For a polynomial P , let PA denote its restriction to
the subspace A, so that deg(PA) ≤ deg(P ). We use the
following Subspace Sampling Lemma repeatedly, and defer
the (standard) proof.

Lemma 1. (Subspace Sampling Lemma) Fix f : Fm
2 →

{0, 1}. For a random k-dimensional affine subspace A of Fm
2 ,

with probability at least 1− 1
ε22k ,

Ex∈A[f(x)] < Ex∈Fm2 [f(x)] + ε.

2. A LOCAL LIST-DECODER

Problem 1. (Local List-Decoding) Given oracle ac-
cess to R : Fm

2 → F2, find a list L = {P1, · · · , P`} of all
polynomials Pi s.t deg(Pi) ≤ r and ∆(Pi, R) ≤ 2−r − ε in
time poly(mr, `(r, m, 2r − ε)).

In Section 4, we will show that for any r, `(r, m, 2−r−ε) ≤
2(2r+5ε−2)4r. Set L = 2(2r+5ε−2)4r and B = |B(a, r)| so
that B = O(mr).

Algorithm 1. Local-Decode(R, r, 2−r − ε)

1. Pick a random k-dimensional affine space

A where 2k > cLBε−2.

2. Run Global-Decode(RA, r, 2−r− ε
2
) on A to get

list LA.

3. For each Q ∈ LA,

a. Set R(x) = Q(x) for x ∈ A.

b. For b ∈ B(0, r),
Unique-decode R on A′ = A ∪ (b + A)

to get Q′.

Set P (b + a0) = Q′(b + a0).
c. Interpolate P from the values P (b+a0).
d. If ∆(P, R) < 2−r − ε

2
, add P to L?.

4. Output the List L?.

We present the Global List-Decoder in Section 3. We
solve the Unique-Decoding problem using Majority Logic
Decoding. In Step 3b, if unique-decoding fails, we set P (b+
a0) arbitrarily.

Theorem 2. Algorithm 1 returns a list of size poly(ε−1)
containing all polynomials such that ∆(P, R) < 2−r − ε with
probability 1−O(1/c).

Proof: Let L denote the true list of all polynomials P such
that ∆(P, R) < 2−r − ε, so that |L| ≤ L. Fix P ∈ L. Over
a random choice of A, for every b ∈ B(0, r), the affine space
b + A is random. Hence

Pr
A

[
∆b+A(P, R) ≥ 2−r − ε

2

]
≤ 4

ε22k
.

By the union bound, the condition ∆b+A(P, R) < 2−r − ε
2

holds over the choice A for every polynomial P ∈ L and
b ∈ B(0, r) with probability

1− 4LB

ε22k
≥ 1− 4

c

We call such a subspace A good. Assuming A is good, fix
a polynomial P ∈ L. The restriction PA will belong to the
list LA recovered in Step 2 (assuming we can do global list-
decoding).

In Step 3, when the algorithm sets R(x) = PA(x) for
x ∈ A, we have the correct values of P for the subspace A,
so ∆A(P, R) = 0. Now our aim is to self-correct the values
at b + A for b ∈ B(0, r). It might happen that b + A = A,
in which case we are done. Otherwise A and b + A are
disjoint. Since A′ = A ∪ (b + A), we get

∆A′(P, R) =
∆A(P, R) + ∆b+A(P, R)

2
=

∆b+A(P, R)

2
.

Since A is good, ∆b+A(P, R) < 2−r, hence ∆A′(P, R) <

2−(r+1), which is within the unique decoding radius, we will
recover Q′ = PA′ in Step 3a. We have self-corrected P
over all the subspaces b + A for b ∈ B(0, r), which includes
the interpolating set B(a0, r). Therefore we can recover the
polynomial P in Steps 3b, 3c.

This shows that if A is good, then L ⊆ L?. We need to
show that L? does not contain too many other polynomials.
For this, observe that |L?| ≤ |LA| since L? contains at most
one polynomial for each Q ∈ LA. Also |LA| ≤ `(r, k, 2−r −
ε/2). By random sampling, one can estimate ∆(P, R) and
discard any polynomials any P ∈ L? where ∆(P, R) > 2−r−
ε/2.

To analyze the running time, we need to give an effi-
cient global list-decoder, and prove the combinatorial list
size bounds that were used in the analysis. We address these
issues in Sections 3 and 4 respectively, and then analyze the
time complexity in Theorem 13.

3. A GLOBAL LIST-DECODER
We present a global list-decoder with a strong guarantee:

for any error rate η, its running time is polynomial in both
the block-length and maximum list size possible for error η.

Problem 2. (Global List-Decoding) Given a received
word R : Fm

2 → F2, produce a list L = {P1, · · · , P`} of
all degree r polynomials such that ∆(Pi, R) ≤ η in time
poly(2m, `(r, m, η)).

We think of the input space as an affine space A of dimen-
sion m, and R : A → F2 as a function on it. Parametrize
A by X1, . . . , Xm, we can partition it into A0 = {x ∈
Fm

2 |xm = 0} and A1 = {x ∈ Fm
2 |xm = 1}. For any

received word R and polynomial P in the list, we have
∆(P, R) = 1

2
(∆A0(P, R) + ∆A1(P, R)) < η. If we fix b

so that ∆Ab(P, R) ≤ ∆A1−b(P, R) then ∆Ab(P, R) ≤ η and
∆A1−b(P, R) ≤ 2η. Since the error-rate over Ab does not
increase but the dimension reduces to m− 1, we can use re-
cursion. By list-decoding R over Ab we find a list Lb of poly-
nomials which includes PAb . By enumerating over all poly-
nomials in the list, we can assume that we know PAb . We
can write PA(X1, . . . , Xm) = PAb(X1, . . . , Xm−1) + (Xm +
b)Q′(X1, . . . , Xm−1). We will try to recover Q′ from A1−b

using R + PAb as the received word. While the error rate
doubles to 2η, deg(Q′) ≤ r−1, hence the minimum distance
also doubles, allowing us to use recursion.



Algorithm 2. Global-Decode(A, R, r, η)

For b ∈ F2,

Set Lb = Global-Decode(Ab, RAb , r, η).
For each Q ∈ Lb,

Set L1−b = Global-Decode(A1−b, RA1−b +Q, r−
1, 2η).

For each Q′ ∈ L1−b,

Set P (X1, . . . , Xm) = Q(X1, . . . , Xm−1) +
(Xm + bm)Q′(X1, . . . , Xm−1)

If ∆A(P, R) < η, add P to L.
Return L.

The base case of the algorithm is reached when 2m · η < 1
or when r = 1. In the former case, the error-rate is 0, so the
polynomial can be recovered by interpolation. In the latter
case we can use the Goldreich-Levin algorithm or even brute
force search. The following lemma shows that the list size
does not increase during the recursive calls.

Lemma 3. For any m, r and η, `(r − 1, m − 1, 2η) ≤
`(r, m, η).

Proof: Let R ∈ Fm−1
2 be a received word and {P1, . . . , P`}

be a list of polynomials in X1, . . . , Xm−1 of degree r−1 such
that ∆(P, R) < 2η. Define the polynomials {P ′

1, . . . , P
′
`} in

X1, . . . , Xm and the received word R′ ∈ Fm
2 as

P ′
i (X1, . . . , Xm) = XmPi(X1, . . . , Xm−1),

R′(X1, . . . , Xm) = XmR(X1, . . . , Xm−1).

It is easy to see that ∆(R′, P ′
i ) < η which proves the claim.

Theorem 4. Algorithm 2 runs in time 23m · `(r, m, η)r

and returns a list of all polynomials P such that deg(P ) ≤ r
and ∆(P, R) < η.

Proof: The running time T (r, m, η) satisfies

T (r, m, η) ≤ 2(T (r, m− 1, η) + `(r, m, η)T (r − 1, m− 1, 2η)

+`(r, m, η)`(r − 1, m− 1, 2η)2m)

Let ` = `(r, m, η). Then by Lemma 3, we can write

T (r, m, η) ≤ 2(T (r, m− 1, η) + `T (r − 1, m− 1, 2η) + `22m)

We will prove that T (r, m, η) < 23m`r by double induction
of m and r. The base case r = 1 is easy to verify. For the
inductive case r ≥ 2, we have

T (r, m, η) ≤ 2(23(m−1)`r + `23(m−1)`r−1 + 2m`2)

= 2(23m−2`r + 2m`2) < 23m`r.

It is easy to verify the correctness of the algorithm by in-
duction.

4. COMBINATORIAL BOUNDS
Since we have shown that the running times of our de-

coders depend polynomially on the list size, we now bound
the list size. We prove our bound in two steps. In the first
dimension-reduction step, we show that to bound the list size
for error-rate 2−r − ε for m-dimensional spaces, it suffices

to prove a bound for subspaces of dimension O(log(ε−1))
and error-rate 2−r. In the second step, we use properties of
the weight-distribution of RM codes to show that it is pos-
sible to nearly double the minimum distance of RM codes
by deleting relatively few codewords. We apply the Johnson
bound to this code and infer bounds for the original RM
code.

4.1 Dimension Reduction

Problem 3. (Bounded Distance Decoding) Given
a received word R : Fm

2 → F2, produce a polynomial P of
degree r such that ∆(P, R) ≤ η.

For any polynomial P s.t. ∆(P, R) ≤ 2−r−ε, we show that
our algorithm returns that specific polynomial P with prob-
ability at least p, which implies that `(r, m, 2−r − ε) ≤ 1

p
.

We use Algorithm 1 with some modifications. We pick a
random subspace A with |A| = O(ε−2), and guess the re-
striction of P to A. If this succeeds, we can only guarantee
that self-correction works for a random point with constant
probability. But running self-correction at every point in
Fm

2 , followed by unique decoding will recover R with rea-
sonable probability. The algorithm is inefficient, but suffices
for a combinatorial bound.

Fix a polynomial P so that ∆(P, R) < (2−r − ε). We say
that a k-dimensional affine subspace A is good for P if the
following conditions hold:
1. The subspace A has low error rate with respect to P :
∆A(P, R) < 2−r.
2. Most affine shifts of A have low error with respect to P :
Prb∈Fm

2
[∆b+A(P, R) ≥ 2−r] < 2−(r+1).

One can use the Subspace Sampling Lemma to prove that
if 2k > 2r+3ε−2, a random k-dimensional affine space A is
good for P with probability at least 1

2
.

Algorithm 3. Recover(R, r, 2−r − ε)

1. Pick a random k-dimensional affine sub-

space A where 2k > 2r+3ε−2.

2. Find list L of all Q s.t. deg(Q) ≤ r and

∆A(Q, R) < 2−r.

Choose PA randomly from L.
Set R(x) = PA(x) for x ∈ A.

3. For each b ∈ Fm
2 ,

a. Let A′ = A ∪ (b + A). Run unique

decoding on RA′ to get Q′.

b. Set P (b + a0) = Q′(b + a0).
4. Run unique decoding on P and output the

result.

Theorem 5. Let 2k > 2r+3ε−2 and fix a polynomial P
so that ∆(P, R) < 2−r − ε. Algorithm 3 recovers P with
probability at least (2`(r, k, 2−r))−1.

Proof: In Step 1, we pick a good subspace for P with
probability at least 1

2
. Assume that this happens. In Step

2, we aim to correct the values of R on A. We construct a list
of at most ` = `(r, k, 2−r) polynomials Q of degree r so that
∆A(Q, R) < 2−r using brute force. Since A is good for P ,



this list contains the polynomial PA. We guess the correct
polynomial with probability 1

`
. Assuming this happens, we

correct the values of R on A, and so ∆A(P, R) = 0.
In Step 3, we aim to correct the values of R on most points

b ∈ Fm
2 . If b is such that ∆b+A(P, R) < 2−r,

∆A′(P, R) =
1

2
(∆A(P, R) + ∆b+A(P, R))

=
1

2
∆b+A(P, R) < 2−(r+1)

Since this is less than the unique decoding radius, we will
recover Q′ = PA′ in Step 3a. and assign the correct value
to b + a0 in Step 3b. Since A is good for P , self-correction
fails for no more than 2−(r+1) fraction of b ∈ Fm

2 which is
within the unique decoding radius. Hence we can recover
P using Unique Decoding in Step 4. Overall the algorithm
succeeds with probability 1

2`
.

Corollary 6. For any ε > 0 and k s.t. 2k > 2r+3ε−2,
`(r, m, 2−r − ε) ≤ 2`(r, k, 2−r).

The total number of degree r polynomials on a k-dimensional
subspace is bounded by 2kr

. This shows that `(r, m, 2−r −
ε) ≤ O(2log(ε−1)r

). While this suffices to prove that the list
size is constant for ε constant, it does not imply a poly(m)
bound when ε = 1/ poly(m). In the next section, we address
this by showing that the list size is bounded by poly(ε−1).

4.2 Combinatorial Bounds via Deletion
We prove a lemma which implies better bounds on the

list-decoding radius of any linear code which has few low-
weight codewords. We state it over F2 for simplicity, but it
can be applied to linear codes any finite field. We will use
the Johnson bound [17, 18], which applies to arbitrary codes,
including non-linear ones. Define J(α) = 1

2
(1−

√
1− 2α).

Lemma 7. (Johnson Bound) Let C ⊆ {0, 1}n be a code
with distance δn. For any R ∈ {0, 1}n,
1. The number of C ∈ C such that ∆(R, C) < J(δ) − γ is
bounded by c(γ) = O(γ−2).
2. The number of C ∈ C such that ∆(R, C) < J(δ) is
bounded by 2n.

For a linear code C ⊂ {0, 1}n and α ∈ [0, 1], Let A(α)
denote the number of codewords in C of normalized weight
less than α.

Lemma 8. Let C ⊆ {0, 1}n be a linear code. For any
α ∈ [0, 1] and any R ∈ {0, 1}n,
1. The number of C ∈ C such that ∆(R, C) < J(α) − γ is
bounded by A(α) · c(γ).
2. The number of C ∈ C such that ∆(R, C) < J(α) is
bounded by 2A(α)n.

Proof: Let L = {C1, . . . , CL} be the list of codewords
such that ∆(R, Ci) < J(α) − ε. We greedily prune L to
get a new list L? so that any two codewords on L? satisfy
∆(P, Q) ≥ α. Pick a codeword C ∈ L, add it to L? and
delete all codewords D ∈ L such that ∆(C, D) < α. We
charge the deleted codewords to C. Repeat until there are
no codewords left in L. Every pair of codewords in L? is
at distance at least αn. The linearity of C implies that at
most A(α) deleted codewords are charged to any C ∈ L?, so
|L| ≤ |L?| ·A(α). We can think of L? as a (non-linear) code
with minimum distance αn. Applying the Johnson bound
with received word R and list L? completes the proof.

Linearity is only needed to bound the number of codeword
within distance α from an arbitrary codeword. One can
recover the Johnson bound from Lemma 8 by setting α = δ
and A(δ) = 1. To apply this lemma we need bounds on the
weight distribution of Reed-Muller codes.

4.3 Weight Distribution of Reed-Muller codes
When r = 2, we can completely describe the weight-

distribution of Reed-Muller codes using the notion of rank
of a quadratic form [21]. For r ≥ 3, the weight distribu-
tion of RM codes is not well understood (to the best of
our knowledge) , see [21, Research Problem 15.1]. However,
an elegant result of Kasami and Tokura which characterizes
RM codewords with weight less than twice the minimum
distance suffices for us.

Theorem 9. [19] (Kasami-Tokura) Let r ≥ 2. Let P
be a polynomial with deg(P ) ≤ r such that wt(P ) < 21−r.
Then under an invertible affine transformation, P can be
written as either

P (Y1, . . . , Yr+t) = Y1 · · ·Yr−t(Yr−t+1 · · ·Yr + Yr+1 · · ·Yr+t)
(1)

where 3 ≤ t ≤ r and t + r ≤ m, or

P (Y1, . . . , Yr+2t−2) = Y1 · · ·Yr−2(Yr−1Yr + Yr+1Yr+2+

· · ·+ Yr+2t−3Yr+2t−2) (2)

where 2 ≤ 2t ≤ m− r + 2.

Corollary 10. For RM(r, m), A(21−r−ε) ≤ ε−2(m+1).

Proof: Consider P of the form of Equation 1. One can
show that wt(P ) = 21−r(1−2−t). If wt(P ) < 21−r−ε, then
t ≤ log(ε−1) − r. Such P is specified by the choices of the
affine forms Y1, . . . , Yr+t. There are at most 2m+1 choices
for each Yi. Hence the total number of polynomials of this
form is bounded by

N1 =
∑

t≤log(ε−1)−r

2(m+1)(r+t) < 2ε−(m+1).

Consider P of the form of Equation 2. One can again show
that wt(P ) = 21−r(1 − 2−t), hence t ≤ log(ε−1) − r. The
polynomial is specified by the choice of at most r + 2t affine
forms. Hence the number of such polynomials is bounded
by

N2 =
∑

t≤log(ε−1)−r

2(m+1)(r+2t) < 21−r(m+1)ε−2(m+1).

Thus A(21−r − ε) ≤ N1 + N2 ≤ ε−2(m+1).

While r does not appear explicitly on the RHS, the bound
is interesting when ε < 2−r. We now derive bounds on list
size. In what follows, we think of r as a constant, and we
want asymptotic bounds in terms of m and ε.

Theorem 11. For RM(r, m) codes, for any ε > 0:

`(r, m, 2−r − ε) ≤ 2(2r+5ε−2)4r = O(ε−8r) (3)

`(r, m, J(21−r)− ε) ≤ (2ε2)−2m−O(1) (4)

Proof: To prove Equation 3, pick k so that 2r+4ε−2 > 2k ≥
2r+3ε−2. By Corollary 6, `(r, m, 2−r − ε) ≤ 2 · `(r, k, 2−r),
so we focus on bounding `(r, k, 2−r). Set α = 21−r−2−2r+1,



so that J(α) = 2−r. Applying Corollary 10 with ε = 2−2r+1

gives A(α) ≤ 2 · 2(4r−2)(k+1). Applying part 2 of Lemma 8,

`(r, k, 2−r) ≤ A(α)2k+1 = 2 · 2(4r−1)(k+1) < 2(2r+5ε−2)4r.

To prove Equation 4, we apply part 1 of Lemma 8 with
α = 21−r − ε′, to get

`(r, m, J(21−r − ε′)) ≤ A(α)c(ε′) = ε′−2m−O(1).

A simple calculation shows that J(21−r − ε′) ≥ J(21−r) −√
ε′/2. Setting ε′ = 2ε2 gives the desired result.

We show that Equation 3 is tight: at error-rate 2−r the list
size is exponential in m, so it is impossible to have a local-
decoder running in time poly(m). Further, the list size at
radius 2−r − ε grows as ε−r. In contrast, it is unclear at
what distance, the list size goes from 2O(m) to 2ω(m).

Theorem 12. For RM(r, m) codes:

`(r, m, 2−r) ≥ 2r(m−r) (5)

`(r, m, 2−r − ε) ≥ ε−r2−(r+r2) (6)

Proof: Equation 5 is folklore ([24]); take R to be the all
0s vector. The codewords will be the indicator vectors for
vector spaces of dimension m − r. Fix a vector space Vi

where dim(Vi) = m − r. Define Pi(x) to be 1 iff x ∈ Vi.
It is clear that ∆(Pi, R) = 2−r and that the various Pis are
distinct. To show that deg(Pi) = r, take L1, · · · , Lr to be
the rows of a parity check matrix for Vi. Then

Pi(x) =

r∏
j=1

(1 + Lj(x)).

The list size equals the number of subspaces of Fm
2 of dimen-

sion m− r, which is at least 2r(m−r).
To prove Equation 6, pick the k so that 2ε ≥ 2−k >

ε. Our codewords and received word will be functions on
Fk

2 . Take the received word to be 1 at 0k and 0 elsewhere.
As before, we take the polynomials to be the indicators of
subspaces of dimension k − r. It follows that ∆(P, R) =
2−r − 2−k ≤ 2−r − ε. The list size is lower bounded by

2r(k−r) ≥ (2ε)−r2−r2
= Ω(ε−r).

4.4 Putting It Together

Theorem 13. Algorithm 1 solves the Local List-Decoding
problem for RM(r, m) codes up to error rate η = 2−r − ε in
time poly(mr, ε−r).

Proof: We have already proved correctness in Theorem 2,
so we only need to bound the runtime. Since L = O(ε−8r)
(Equation 3) and B = O(mr), so the subspace A chosen in
Step 1 is of size 2k = O((m/ε)r). In Step 2, we run Algo-
rithm 2 on A, with error-rate η = 2−r − ε/2. We can bound
the list size as LA ≤ O(ε−8r) by Equation 3, thus by Theo-
rem 4, this step takes time poly(mr, ε−r). In step 3, we run
unique decoding O(mr) times for each polynomial in LA.
Overall the running time is bounded by poly(mr, ε−r).

In the Global List-Decoding scenario, Algorithm 2 can re-
ceiver codewords up to error rate J(21−r)− ε in time poly-
nomial in the block-length (the polynomial depends on ε).

Theorem 14. For any ε > 0, Algorithm 1 solves the
Global List-Decoding problem for RM(r, m) codes up to error

rate η = J(21−r)− ε in time 2O(m log(ε−1)).

Proof: By Equation 4, the list size is bounded by `(r, m, η) ≤
2O(m log(ε−1)). By Theorem 4, the running time of Algorithm
2 is polynomial in 2m and `, which implies the claim.

5. EXTENSION TO SMALL FIELDS
In this section, we consider Reed-Muller codes over arbi-

trary fields Fq. The field size q is considered a constant. The
message space of the code RMq(r, m) consists of all polyno-
mials P : Fm

q → Fq of degree at most r. The degree in
each variable Xi denoted degi(P ) is at most q − 1. Thus
RMq(r, m) is an [n, k, d]q error-correcting code where n =
qm and k equals the number of monomials in Fq[X1, . . . , Xm]
with deg(M) ≤ r. Let d(r, m) denote its minimum distance.
The following bound (famous as the Schwartz-Zippel Lemma
when r < q) is proved using induction.

Lemma 15. If r = a(q − 1) + b where a ≥ 0 and 1 ≤ b ≤
q − 1, then

δq(r) = min
m

d(r, m)

qm
=

1

qa

(
1− b

q

)
.

One can think of δq(r) as the fractional minimum distance
for m ≥ r

q−1
. If m < r

q−1
, there are no polynomials P of

degree r with degi(P ) ≤ q − 1.

5.1 On the List-Decoding Radius of RMq(r, m)

We generalize our arguments for the F2 case to show the
that the list-decoding radius of RMq(r, m) codes is at least
the unique-decoding radius for RMq(r − 1, m) codes. De-
fine `q(r, m, η) to be the maximum list size possible for
RMq(r, m) codes with error-rate η.

Theorem 16. For any degree r and ε > 0, there exists a
constant c(ε, q, r) such that

`q(r, m,
δq(r − 1)

2
− ε) < c(ε, q, r).

As in Theorem 5, we prove this bound by giving an al-
gorithm. The idea behind the algorithm is to reconstruct
the polynomial from its values on a random subspace, plus
its derivatives along random directions. Similar ideas are
used in the recent work of Bogdanov and Viola [5]. For any

b ∈ Fm
q , define the derivative P (b) of P along b as

P (b)(x) = P (x + b)− P (x) (7)

It is easy to verify that deg(P (b)) ≤ r − 1.



Algorithm 4. Recover(R, r, δq(r − 1)/2− ε)

1. Pick a random k-dimensional affine sub-

space A where qk > Cε−2.

2. Guess the polynomial PA.

3. For each b ∈ Fm
q ,

a. Define S : A → Fq as S(a) =
R(b + a)− PA(a).

b. Run unique decoding on S to get P (b).

c. Set P (b + a0) = P (b)(a0) + PA(a0).
4. Run unique decoding on P and output the

result.

In Step 3c, the point a0 can be an arbitrary point in A.
The algorithm tries to guess P on a random subspace A
of constant dimension; assume that this succeeds. Step 3
is a self-correction step where for every b ∈ Fm

q , we try to

recover P (b) restricted to the subspace A. Note that for
a ∈ A, P (b)(a) = P (a + b) − P (a) whereas the received
word we have is S(a) = R(a+b)−PA(a). Since we guessed
PA correctly, we have the correct value of P for all a ∈ A.
The Subspace Sampling Lemma guarantees that (for most
b), R and P disagree on less than δq(r − 1)/2 fraction of

points in b+A. Thus ∆A(S, P (b)) < δq(r−1)/2. But since

deg(P (b)) ≤ r− 1, this is good enough for unique-decoding.

Finally by Equation 7, knowing P (a) and P (b)(a) suffices to
recover P (b + a).

Lemma 17. Fix P so that ∆(P, R) < δq(r − 1)/2 − ε.
Algorithm 4 recovers P with probability at least 1

c(ε,q,r)
.

Proof: The total number of degree r polynomials over A
is a constant (depending on ε, q, r). Thus there is a constant
probability of guessing PA correctly in Step 2. Assume this
happens.

By the Subspace Sampling Lemma, for large enough C,
the condition ∆b+A(R, P ) < δq(r − 1)/2 holds for more
than 1− δq(r)/2 fraction of points b ∈ Fm

q . For such b, the

received word S defined in Step 3a satisfies ∆(S, P (b)) <

δq(r − 1)/2. Since deg(P (b)) ≤ r − 1, we recover P (b) in
Step 3b and self-correction succeeds at b in Step 3c. Since
the fraction of bad bs is bounded by δq(r)/2, we recover P
in Step 4.

Theorem 16 follows immediately from Lemma 17. By
Lemma 15, how this bound compares to the minimum dis-
tance of the code depends on the congruence class of r mod-
ulo q − 1.

Corollary 18. Let r ≡ b mod q−1 where 1 ≤ b ≤ q−1.

`q(r, m,
q − b + 1

2(q − b)
δq(r)− ε) < c(ε, q, r) (8)

In particular, if (q−1)|r, then `q(r, m, δq(r)−ε) < c(ε, q, r).

Proof: From Lemma 15, it follows that δq(r−1) = q−b+1
q−b

δ(r).
Plugging this into Theorem 16 gives Equation 8. In particu-
lar, when (q−1)|r, then b = q−1 so δq(r−1) = 2δq(r).

Equation 8 gives a lower bound on the list-decoding radius
lying between q

2(q−1)
δq(r) and δq(r). It is easy to show that

δq(r) is an upper bound on the list-decoding radius (in the

local setting). But unlike in the F2 case, over Fq, the bound
given by Equation 8 is not always tight. The Johnson bound
implies that the list size can be bounded by a constant as
long as η < Jq(δq(r))− ε where

Jq(δ)
∆
=

q − 1

q

(
1−

√
1− q

q − 1
δ

)
. (9)

It is easy to see that δ
2

< Jq(δ) < δ for 0 < δ < q−1
q

. These
two bounds are incomparable; the Johnson bound is better
for large q and small r, whereas for every Fq, Equation 8 is
better for sufficiently large degree r. We conjecture that the
true list-decoding radius for Fq lies close to the minimum
distance for all degrees.

Conjecture 1. For the field Fq, and ε > 0, there exists
c(q, ε, r) such that for all m and r,

`q(r, m, δq(r)− ε) ≤ c(q, ε, r).

Conjecture 1 holds when r = 1 by the Johnson bound and
when (q − 1)|r by Corollary 18.

5.2 Algorithms for List-Decoding over Fq

We now consider the algorithmic problem in both local
and global settings. Like in the F2 case, our global list-
decoder over Fq runs in time polynomial in the block-length
and worst case list size for any error-rate η.

It is easy to convert Algorithm 4 to an efficient list-decoder
that works up to radius δq(r−1)/2, by taking |A| = poly(m)
and replacing the guessing step by the global list-decoder.
This is not entirely satisfactory since this bound is not tight
for all r; however, we do not know the correct bound. Rather,
we give a local list-decoder which works at any error rate η
where we can upper bound the list size by a constant (in-
dependent of m). To make this precise, for any constant
`, we define ηq(r, `) to be the largest error-rate η so that
`q(r, m, η) ≤ ` for all m. It is easy to see that for any ` ≥ 1,
ηq(r, `) lies between δq(r)/2 and δq(r). Our local list-decoder
takes as input ` and a lower bound η < ηq(r, `). It solves
the problem up to error rate η − ε in time poly(ε−1, `, m).

5.2.1 A Local List-Decoder for RMq(r, m)

Algorithm 5. Local-Decode(R, r, `, η − ε)

1. Pick a hitting set B by sampling B =
c1

(
m
≤r

)
log q points from Fm

q .

2. Pick a random k-dimensional affine space A

where qk > c2
`2B
ε2 .

3. Run Global-Decode(A, R, r, η) to get list

L(A).
4. For each Q ∈ L(A),
a. For b ∈ B,
Run Global-Decode(A⊕ b, R, r, η) to get L(b).
Choose Q′ ∈ L(b) such that Q′

A = Q.

Set P (b + a0) = Q′(b + a0).
b. Interpolate P from the values at a0 + B.
c. If ∆(P, R) < η − ε

2
, add P to L.

5. Output the List L.

Our algorithm combines ideas from Algorithm 1 and the
List-decoder for Reed-Muller codes over large fields due to



Sudan et al. (STV) [27]. Given an affine space A and a vec-
tor b, let A ⊕ b be the affine space given by {a + λb|a ∈
A, λ ∈ Fq}. We will use a randomly sampled interpolat-
ing set for degree r polynomials. A random subset of B =
c
(

m
≤r

)
log q points in Fm

q is an interpolating set for degree-r

polynomials over Fq with high probability.
Our algorithm takes the received word and parameters

r, `, η < ηq(r, `) and ε as inputs. It picks a random subspace
A of size O(`2mrε−2) as input and tries to recover P from its
evaluations over a0 +B, for some a0 ∈ A. We run the global
List-Decoder on the affine subspace A⊕b (containing a0+b)
for every b ∈ B. This gives us a list of at most ` possibilities
for the restriction of P to that subspace. The Subspace
Sampling Lemma implies that this list is likely to contain
the restriction of every polynomial P satisfying ∆(P, R) ≤
η − ε; it could also contain some other polynomials. Now
the problem is to assign values to points in a0 + B in a co-
ordinated manner, so that we choose the correct polynomial
from among the ` choices at every point.

We solve this co-ordination problem using ideas from the
STV algorithm. We run the global list-decoder on A and
choose a polynomial Q from this list, and think of this as PA.
We use this as advice to make co-ordinated choices for points
in a0 + B. From each list L(b), we choose the polynomial
whose restriction to A is Q and use it to assign a value to
a0 +b. We show that if Q is actually the restriction of some
polynomial P with ∆(P, R) < η − ε, then this restriction
exists for every b ∈ B and it is unique. This is because the
set B is chosen randomly, so A is a random k-dimensional
affine subspace of b+A, and any two polynomials from the
list of ` candidates are unlikely to agree on A. This is similar
to the STV algorithm where the value of the polynomial at
a point is used as advice to solve a similar co-ordination
problem. We defer the analysis to the full version.

5.2.2 A Global List-Decoder for RMq(r, m)

We give an algorithm that can solve the list-decoding
problem up to any error rate η in time polynomial in the
block-length and `q(r, m, η), extending Algorithm 2 which
solves the F2 case. Along the way, we also solve the unique
decoding problem.

Let A be an m-dimensional affine space A parametrized
by X1, . . . , Xm. Fix a received word R, and a polynomial
P so that ∆(P, R) ≤ η. We can partition A into q affine
spaces of dimension m − 1 each based on the value of Xm.
Number these spaces A0, . . . ,Aq−1 where

∆A0(P, R) ≤ · · · ≤ ∆Aq−1(P, R) (10)

Lemma 19. For each i ∈ {0, . . . , q − 1},

∆Ai(P, R) ≤ q

q − i
∆A(P, R) (11)

Proof: Let ∆A(P, R) = η. Note that

η =
1

q

∑
k

∆Ak (P, R).

Assume for contradiction that for some i ∈ {0, . . . , q − 1},
∆Ai(P, R) > q

q−i
η. Then ∆Aj (P, R) > q

q−i
η for all j ≥ i,

hence
∑q−1

k=0 ∆Ak (P, R) > qη which is a contradiction.

We now describe the algorithm. Fix the permutation
a0, . . . , aq−1 of Fq so that Ai = {x ∈ A | xm = ai}. We

can write the polynomial P as

P (X1, . . . , Xm) =

q−1∑
j=0

Pj(X1, . . . , Xm−1) ·
j−1∏
k=0

(Xm − ak).

(12)

Our algorithm tries to recover P0, . . . , Pq−1 in that order
from the affine spaces A0, . . . ,Aq−1. As the index i in-
creases from 0 to q−1, the error-rate increases. But deg(Pi)
decreases, resulting in an increase in the the list-decoding
radius, which compensates for the increased error-rate.

Algorithm 6. Global-Decode(A, R, r, η)
1. For all orderings A0, . . . ,Aq−1,

2. For i = 0, . . . , q − 1,
3. Let

Ri =
RAi −

∑i−1
j=0 Pj ·

∏j−1
k=0(ai − ak)∏i−1

k=0(ai − ak)
.

4. Set Li = Global-Decode(Ai, Ri, r − i, q
q−i

η).

5. Enumerate over all possible Pi ∈ Li.

6. Let P (X1, . . . , Xm) =
∑q−1

j=0 Pj(X1, . . . , Xm−1) ·∏j−1
k=0(Xm − ak).

7. If ∆A(P, R) < η, add P to L.
8. Return L.

In the base case when m = 1, we just use brute-force
search. The analysis is in two steps: we first prove that the
list L contains every polynomial close to R, then we bound
the running time.

Theorem 20. Fix a polynomial P with deg(P ) = r such
that ∆(P, R) ≤ η. Then P ∈ L.

Proof: Fix an ordering of subspaces satisfying Equation
11. Write the polynomial P in the form of Equation 12. We
will show using induction on m that Pi ∈ Li, which will
imply that P ∈ L. The base case when m = 1 is trivial.

Note that P restricted to A0 is just P0. Note that deg(P0) =
r, dim(A0) = m − 1 and ∆A0(P0, R0) ≤ ∆A(P, R) ≤ η.
Hence by the inductive assumption P0 ∈ L0.

Now assume that we have correctly recovered P0, . . . , Pi−1.
We compute P restricted to Ai as

PAi = P (X1, . . . , Xm−1, ai)

=

i∑
j=0

Pj(X1, . . . , Xm−1) ·
j−1∏
k=0

(ai − ak).

Hence we have

Pi =
PAi −

∑i−1
j=0 Pj ·

∏j−1
k=0(ai − ak)∏i−1

k=0(ai − ak)

Ri =
RAi −

∑i−1
j=0 Pj ·

∏j−1
k=0(ai − ak)∏i−1

k=0(ai − ak)
.

By Equation 11, ∆Ai(Ri, Pi) = ∆Ai(R, P ) ≤ q
q−i

η. Hence
the polynomial Pi will be one of the polynomials in the list
Li returned in Step 4. This completes the induction, so the
claim is proved.



Theorem 21. The running time of Algorithm 6 is bounded
by (q!)mq2m`q(r, m, η)r+q.

Proof: We claim that for any r, m and η,

`q(r − i, m− 1,
q

q − i
η) ≤ `q(r, m, η). (13)

Let R be a received word and {P1, . . . , P`′} a list of `′ =
`q(r−1, m−1, q

q−i
η) polynomials in m−1 variables such that

∆(Pi, R) ≤ q
q−i

η. Let S(Xm) be a univariate polynomial of

degree i with i roots so that Prx[S(x) 6= 0] = q−i
q

. Define

R′(X1, . . . , Xm) = R(X1, · · · , Xm−1)S(Xm)

P ′
i (X1, . . . , Xm) = Pi(X1, · · · , Xm−1)S(Xm).

Then it follows that ∆(R′, P ′
i ) ≤ η while deg(P ′

i ) = r. This
proves Equation 13. From here, it is easy to bound the
running time using a simple recurrence.
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