Problem Set 2

CS 331

Due Wednesday, February 5

1. (Exercise 37 from http://jeffe.cs.illinois.edu/teaching/algorithms/ book/03-dynprog.pdf)

You have mined a large slab of marble from a quarry. For simplicity, suppose the marble slab is a rectangle measuring m inches in height and n inches in width. You want to cut the slab into smaller rectangles of various sizes - some for kitchen counter tops, some for large sculpture projects, others for memorial headstones. You have a marble saw that can make either horizontal or vertical cuts across any rectangular slab. At any time, you can query the spot price $P[x, y]$ of an x-inch by y-inch marble rectangle, for any positive integers x and y . These prices depend on customer demand, and people who buy marble counter tops are weird, so don't make any assumptions about them; in particular, larger rectangles may have significantly smaller spot prices. Given the array of spot prices and the integers m and n as input, describe an algorithm to compute how to subdivide an $m \times n$ marble slab to maximize your profit.
2. (Fibonacci numbers) There's a Jupyter Notebook linked from the class webpage, at https://www.cs.utexas.edu/~ecprice/courses/331/ psets/fib.ipynb. Run through it, then answer the questions at the end. Don't wait till the last day to do this: setting up the required libraries may take some time.

