Shortest Paths

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Talk Outline

2 Shortest Paths: Bellman-Ford

Talk Outline

2 Shortest Paths: Bellman-Ford

3 Dijkstra's Algorithm

- I'll be experimenting with different teaching methods.
 - Bear with me.

- I'll be experimenting with different teaching methods.
 - Bear with me.
 - Give feedback!

- Bear with me.
- Give feedback!
- Stay healthy

- Bear with me.
- Give feedback!
- Stay healthy
 - Let me know if you're sick & need extra time.

- Bear with me.
- Give feedback!
- Stay healthy
 - Let me know if you're sick & need extra time.
 - Please wear a mask if you interact with others.

- Bear with me.
- Give feedback!
- Stay healthy
 - Let me know if you're sick & need extra time.
 - Please wear a mask if you interact with others.
- Second exam will be take-home

- Bear with me.
- Give feedback!
- Stay healthy
 - Let me know if you're sick & need extra time.
 - Please wear a mask if you interact with others.
- Second exam will be take-home
 - Given out after class on April 8.

- Bear with me.
- Give feedback!
- Stay healthy
 - Let me know if you're sick & need extra time.
 - Please wear a mask if you interact with others.
- Second exam will be take-home
 - Given out after class on April 8.
 - Return before *10am* on Friday, April 10.

• Mute your audio unless you have a question.

Zoom details

- Mute your audio unless you have a question.
- I encourage sharing your video
 - Makes this seem more like a community

Zoom details

- Mute your audio unless you have a question.
- I encourage sharing your video
 - Makes this seem more like a community
- You can "raise your hand" so I know to call on you.

- Mute your audio unless you have a question.
- I encourage sharing your video
 - Makes this seem more like a community
- You can "raise your hand" so I know to call on you.
 - Press "View Participants", then the little blue hand.

- Mute your audio unless you have a question.
- I encourage sharing your video
 - Makes this seem more like a community
- You can "raise your hand" so I know to call on you.
 - Press "View Participants", then the little blue hand.
- Videos will be recorded & available after class.

Talk Outline

• Problem setup:

• Problem setup:

• Given a directed graph G = (V, E)

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \rightarrow v$ has *distance*: $w(u \rightarrow v) \in \mathbb{R}$

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \rightarrow v$ has *distance*: $w(u \rightarrow v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \rightarrow v$ has *distance*: $w(u \rightarrow v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \to v$ has *distance*: $w(u \to v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s
- Goal: for every v, compute $c^*(v)$, the distance of shortest $s \rightsquigarrow v$ path in G.

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \to v$ has *distance*: $w(u \to v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s
- Goal: for every v, compute $c^*(v)$, the distance of shortest $s \rightsquigarrow v$ path in G.
- Output two arrays: dist() and pred().

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \to v$ has *distance*: $w(u \to v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s
- Goal: for every v, compute $c^*(v)$, the distance of shortest $s \rightsquigarrow v$ path in G.
- Output two arrays: dist() and pred().
 - dist $(v) = c^*(v)$ for all v

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \to v$ has distance: $w(u \to v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s
- Goal: for every v, compute $c^*(v)$, the distance of shortest $s \rightsquigarrow v$ path in G.
- Output two arrays: dist() and pred().
 - dist $(v) = c^*(v)$ for all v
 - ▶ pred(s) = NONE

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \to v$ has distance: $w(u \to v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s
- Goal: for every v, compute $c^*(v)$, the distance of shortest $s \rightsquigarrow v$ path in G.
- Output two arrays: dist() and pred().
 - dist $(v) = c^*(v)$ for all v
 - ▶ pred(s) = NONE
 - ▶ $v \leftarrow \operatorname{pred}(v) \leftarrow \operatorname{pred}(\operatorname{pred}(v)) \leftarrow \cdots \leftarrow s$ is shortest $s \rightsquigarrow v$ path.

- Problem setup:
 - Given a directed graph G = (V, E)
 - Each edge $u \to v$ has *distance*: $w(u \to v) \in \mathbb{R}$
 - Distance of path is sum of distance of edges.
 - Given a source s
- Goal: for every v, compute $c^*(v)$, the distance of shortest $s \rightsquigarrow v$ path in G.
- Output two arrays: dist() and pred().
 - dist $(v) = c^*(v)$ for all v
 - pred(s) = NONE
 - ▶ $v \leftarrow \operatorname{pred}(v) \leftarrow \operatorname{pred}(\operatorname{pred}(v)) \leftarrow \cdots \leftarrow s$ is shortest $s \rightsquigarrow v$ path.
- Question: what if $w(u \rightarrow v) = 1$ for all $u \rightarrow v \in E$?

• We maintain a vector dist that satisfies the invariant:

 $\mathsf{dist}(v) \geq c^*(v)$

for all v at all times.

• We maintain a vector dist that satisfies the invariant:

 $\mathsf{dist}(v) \geq c^*(v)$

for all v at all times.

- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred(v) = NONE $\forall v$
 - dist(s) = 0.

• We maintain a vector dist that satisfies the invariant:

 $\mathsf{dist}(v) \geq c^*(v)$

for all v at all times.

- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred(v) = NONE $\forall v$
 - ▶ dist(s) = 0.
- FORDSSSP(s):
 - INITIALIZESSSP(s)
 - Repeat:
 - ★ Pick an edge
 - ★ If it is "tense", *relax* it.

Relaxing an edge

• RELAX
$$(u \rightarrow v)$$
:
• If dist $(v) >$ dist $(u) + w(u \rightarrow v)$:
* dist $(v) \leftarrow$ dist $(u) + w(u \rightarrow v)$
* pred $(v) \leftarrow u$.

Triangle Inequality

For any edge $u \rightarrow v$,

$$c^*(v) \leq c^*(u) + w(u \rightarrow v).$$

Lemma

If $dist(v) \ge c^*(v)$ for all v, then for any edge $u \to v$,

$$c^*(v) \leq dist(u) + w(u \rightarrow v).$$

Hence RELAX preserves the invariant that $dist(v) \ge c^*(v) \forall v$.

Eric Price (UT	Γ Austin)
----------------	-----------

• Invariant: dist $(v) \ge c^*(v)$ for all v at all times.

- Invariant: dist $(v) \ge c^*(v)$ for all v at all times.
- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred(v) = NONE $\forall v$
 - dist(s) = 0.

- Invariant: dist $(v) \ge c^*(v)$ for all v at all times.
- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred(v) = NONE $\forall v$
 - dist(s) = 0.
- FordSSSP(s):
 - INITIALIZESSSP(s)
 - Repeat some number of times:
 - ★ Pick an edge $u \rightarrow v$ (somehow)
 - ★ RELAX $(u \rightarrow v)$
Generic SSSP algorithm

- Invariant: dist $(v) \ge c^*(v)$ for all v at all times.
- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred(v) = NONE $\forall v$
 - ▶ dist(s) = 0.
- FordSSSP(s):
 - INITIALIZESSSP(s)
 - Repeat some number of times:
 - ★ Pick an edge $u \rightarrow v$ (somehow)
 - ★ RELAX $(u \rightarrow v)$
- Relax $(u \rightarrow v)$:

Analysis

- So far: dist $(v) \ge c^*(v)$.
- What we need: eventually $dist(v) = c^*(v)$.

Lemma

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then $dist(u_k) = c^*(u_k)$. Moreover, $u_k \leftarrow pred(u_k) \leftarrow pred(pred(u_k)) \leftarrow \cdots \leftarrow s$ is a shortest $s \rightsquigarrow u_k$ path.

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy.

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy... or is it?

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about negative edges!

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about negative edges!

For the inductive step, assume it holds for all paths of length k - 1.

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about negative edges!

For the inductive step, assume it holds for all paths of length k-1. So the last time $\text{RELAX}(u_{k-1} \rightarrow u_k)$ is called, $\text{dist}(u_{k-1}) = c^*(u_{k-1})$.

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about negative edges!

For the inductive step, assume it holds for all paths of length k - 1. So the last time $\text{RELAX}(u_{k-1} \rightarrow u_k)$ is called, $\text{dist}(u_{k-1}) = c^*(u_{k-1})$. Therefore after this,

$$\mathsf{dist}(u_k) \leq c^*(u_{k-1}) + w(u_{k-1} \rightarrow u_k).$$

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about negative edges!

For the inductive step, assume it holds for all paths of length k - 1. So the last time $\text{RELAX}(u_{k-1} \rightarrow u_k)$ is called, $\text{dist}(u_{k-1}) = c^*(u_{k-1})$. Therefore after this,

$$\mathsf{dist}(u_k) \leq c^*(u_{k-1}) + w(u_{k-1} \rightarrow u_k).$$

Since $u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ is a shortest path, this RHS is $c^*(u_k)$.

Question for you all

Lemma

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

Question for you all

Lemma

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

What happens with negative edges?

Question for you all

Lemma

Let $s = u_0 \rightarrow u_1 \rightarrow \cdots \rightarrow u_{k-1} \rightarrow u_k$ be a shortest $s \rightsquigarrow u_k$ path. After RELAX has been called on every edge of this path in order— $u_0 \rightarrow u_1$, then $u_1 \rightarrow u_2$, until $u_{k-1} \rightarrow u_k$, with arbitrarily many other calls interleaved—then dist $(u_k) = c^*(u_k)$.

What happens with negative edges?

What happens with negative cycles?

Back to the algorithm

- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred $(v) = \text{NONE} \quad \forall v$
 - ▶ dist(s) = 0.
- FORDSSSP(s):
 - INITIALIZESSSP(s)
 - Repeat some number of times:
 - ★ Pick an edge $u \rightarrow v$ (somehow)
 - ★ Relax($u \rightarrow v$)
- RELAX $(u \rightarrow v)$:

Back to the algorithm

- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred $(v) = \text{NONE} \quad \forall v$
 - ▶ dist(s) = 0.
- FORDSSSP(s):
 - INITIALIZESSSP(s)
 - Repeat some number of times:
 - ***** Pick an edge $u \rightarrow v$ (somehow)
 - ★ Relax($u \rightarrow v$)
- Relax $(u \rightarrow v)$:

Back to the algorithm

- INITIALIZESSSP(s):
 - dist $(v) = \infty \quad \forall v$
 - pred(v) = NONE $\forall v$
 - ▶ dist(s) = 0.
- FORDSSSP(s):
 - INITIALIZESSSP(s)
 - Repeat some number of times:
 - ***** Pick an edge $u \rightarrow v$ (somehow)
 - ★ Relax($u \rightarrow v$)
- Relax $(u \rightarrow v)$:

• Lemma states: need to call RELAX *in order* for every shortest path.

 \bullet Lemma states: need to call Relax in order for every shortest path.

- Lemma states: need to call RELAX *in order* for every shortest path.
- Every shortest path has length at most V 1.

- Lemma states: need to call RELAX *in order* for every shortest path.
- Every shortest path has length at most V 1.
- If we relax every edge, we'll surely relax the first edge of the path.

- Lemma states: need to call RELAX *in order* for every shortest path.
- Every shortest path has length at most V 1.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.

- Lemma states: need to call RELAX *in order* for every shortest path.
- Every shortest path has length at most V 1.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.
- Do this V 1 times.

- Lemma states: need to call RELAX *in order* for every shortest path.
- Every shortest path has length at most V 1.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.
- Do this V − 1 times.
- BELLMANFORD(s):
 - INITIALIZESSSP(s)
 - ▶ Repeat V − 1 times:
 - ★ For every edge $u \rightarrow v$ in E: RELAX $(u \rightarrow v)$

- Lemma states: need to call RELAX *in order* for every shortest path.
- Every shortest path has length at most V 1.
- If we relax every edge, we'll surely relax the first edge of the path.
- If we relax every edge again, we'll get the second edge.
- Do this V − 1 times.
- BELLMANFORD(s):
 - INITIALIZESSSP(s)
 - ▶ Repeat V − 1 times:
 - ★ For every edge $u \rightarrow v$ in E: RELAX $(u \rightarrow v)$
- O(EV) time for SSSP.

- Bellman-Ford solves SSSP in O(EV) time.
- It works with negative edges.
- It's the fastest known algorithm in general!
- Can use to find negative cycles:
 - Repeat one more time. If no negative cycles, no edge should change in the Vth iteration.
 - ► Follow the predecessor chain to find a negative cycle.
- Can go faster if edge lengths *nonnegative*: Dijkstra's algorithm.

Talk Outline

2 Shortest Paths: Bellman-Ford

- DIJKSTRA(s):
 - INITIALIZESSSP(s)
 - Repeat V times:
 - * Find the unvisited vertex u of minimal dist(u).
 - ★ For every edge $u \rightarrow v$ out from u: RELAX $(u \rightarrow v)$
- Alternative view: WHATEVERFIRSTSEARCH that visits the *nearest* vertex to s.
- Another alternative view: a small variant on Prim's algorithm.

- 1: function DIJKSTRA(s)
- 2: pred, dist \leftarrow {}, {}
- 3: $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

▷ dist, vertex, pred

- 4: **while** *q* **do**
- 5: d, u, parent \leftarrow q.pop()
- 6: **if** $u \in \text{pred then}$
- 7: continue
- 8: $pred[u] \leftarrow parent$
- 9: $dist[u] \leftarrow d$
- 10: for $u \to v \in E$ do
- 11: $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

Dijkstra's Prim's Algorithm

- 1: function $P_{RIM}(s)$
- 2: pred, dist \leftarrow {}, {}
- 3: $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

▷ dist, vertex, pred

- 4: **while** *q* **do**
- 5: d, u, parent \leftarrow q.pop()
- 6: **if** $u \in \text{pred then}$
- 7: continue
- 8: $pred[u] \leftarrow parent$
- 9: $\operatorname{dist}[u] \leftarrow d$
- 10: for $u \to v \in E$ do
- 11: $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

• Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
 - Time from *E* pushes/pops, for $O(E \log V)$ with binary heap.

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
 - Time from *E* pushes/pops, for $O(E \log V)$ with binary heap.
 - Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E + V \log V)$.

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
 - Time from *E* pushes/pops, for $O(E \log V)$ with binary heap.
 - Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E + V \log V)$.
- Tricky part: correctness.

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
 - Time from *E* pushes/pops, for $O(E \log V)$ with binary heap.
 - Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E + V \log V)$.
- Tricky part: correctness.
- Need to argue: if edge weights nonnegative, for any shortest path, will visit the vertices *in order*.

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
 - Time from *E* pushes/pops, for $O(E \log V)$ with binary heap.
 - ► Modifying the algorithm slightly and using a Fibonacci heap can bring this down to O(E + V log V).
- Tricky part: correctness.
- Need to argue: if edge weights nonnegative, for any shortest path, will visit the vertices *in order*.
 - Bellman-Ford relaxes each edge V times.

- Just like Prim: visits each vertex once and scans through outgoing edges, so looks at each edge once.
 - Time from *E* pushes/pops, for $O(E \log V)$ with binary heap.
 - Modifying the algorithm slightly and using a Fibonacci heap can bring this down to $O(E + V \log V)$.
- Tricky part: correctness.
- Need to argue: if edge weights nonnegative, for any shortest path, will visit the vertices *in order*.
 - Bellman-Ford relaxes each edge V times.
 - Dijkstra only relaxes each edge once, so it better happen at the right time.

Dijkstra's Algorithm: Correctness

• The distances *d* popped from the queue are nondecreasing.

Dijkstra's Algorithm: Correctness

- The distances *d* popped from the queue are nondecreasing.
 - At each step, values pushed aren't smaller than the one just popped.
Dijkstra's Algorithm: Correctness

- The distances *d* popped from the queue are nondecreasing.
 - At each step, values pushed aren't smaller than the one just popped.

Lemma

For any (not necessarily shortest) path $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_j$ of length L_j , then dist $[v_j]$ is at most L_j when it is set.

Dijkstra's Algorithm: Correctness

- The distances *d* popped from the queue are nondecreasing.
 - > At each step, values pushed aren't smaller than the one just popped.

Lemma

For any (not necessarily shortest) path $s = v_0 \rightarrow v_1 \rightarrow \ldots \rightarrow v_j$ of length L_j , then dist $[v_j]$ is at most L_j when it is set.

Proof.

Induct on *j*. For j = 0, trivially true. If true for j - 1, then $dist[v_{j-1}] \le L_{j-1}$. So when v_{j-1} is visited, we will push (d, v_j, v_{j-1}) for

$$d = dist[v_{j-1}] + w(v_{j-1}, v_j) \le L_{j-1} + w(v_{j-1}, v_j) = L_j$$

onto the queue. At some point this gets popped from the queue. Since the distances popped are nondecreasing, the *first* time we pop v_j from the queue it must also be with a distance at most L_j .

• Takes $O(E + V \log V)$ time.

- Takes $O(E + V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.

- Takes $O(E + V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:

- Takes $O(E + V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:
 - Outputs the correct answer always.

- Takes $O(E + V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:
 - Outputs the correct answer always.
 - ▶ Takes $O(E + V \log V)$ time if all edge weights nonnegative.

- Takes $O(E + V \log V)$ time.
- Outputs the correct answer if all edge weights nonnegative.
- Alternative version:
 - Outputs the correct answer always.
 - ▶ Takes $O(E + V \log V)$ time if all edge weights nonnegative.
 - Exponential time in general.

Alternative Dijkstra: correct but slow with negative weights

- 1: function DIJKSTRA(s)
- 2: pred, dist \leftarrow {}, {}
- 3: $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

⊳ dist, vertex, pred

- 4: while *q* do
- 5: d, u, parent \leftarrow q.pop()
- 6: **if** $u \in \text{pred then}$
- 7: continue
- 8: $pred[u] \leftarrow parent$
- 9: $dist[u] \leftarrow d$
- 10: for $u \to v \in E$ do
- 11: $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

Alternative Dijkstra: correct but slow with negative weights

- 1: function DIJKSTRA(s)
- 2: pred, dist \leftarrow {}, {}
- 3: $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

▷ dist, vertex, pred

- 4: while *q* do
- 5: d, u, parent \leftarrow q.pop()
- 6: **if** $d \ge \operatorname{dist}[u]$ then
- 7: continue
- 8: $pred[u] \leftarrow parent$
- 9: $dist[u] \leftarrow d$
- 10: for $u \to v \in E$ do
- 11: $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

• DAGs: DP for O(E) time.

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles
- Dijkstra: $O(E + V \log V)$ time

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles
- Dijkstra: $O(E + V \log V)$ time
 - but only with nonnegative edge weights

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles
- Dijkstra: $O(E + V \log V)$ time
 - but only with nonnegative edge weights
 - either wrong or exponential time with negative edges

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles
- Dijkstra: $O(E + V \log V)$ time
 - but only with nonnegative edge weights
 - either wrong or exponential time with negative edges

Next class:

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles
- Dijkstra: $O(E + V \log V)$ time
 - but only with nonnegative edge weights
 - either wrong or exponential time with negative edges
- Next class:
 - A* search: Dijkstra with a twist

- DAGs: DP for O(E) time.
- Unweighted graphs: BFS for O(E) time.
- Bellman-Ford: O(EV) time
 - Works with negative edge weights
 - Can detect cycles
- Dijkstra: $O(E + V \log V)$ time
 - but only with nonnegative edge weights
 - either wrong or exponential time with negative edges
- Next class:
 - A* search: Dijkstra with a twist
 - Exercises

Eric Price (UT Austin)

Eric Price (UT Austin)