Shortest Paths

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin) Shortest Paths / 24

Talk Outline

@ Logistics

@ Shortest Paths: Bellman-Ford

@ Dijkstra’s Algorithm

Eric Price (UT Austin)

Shortest Paths

Talk Outline

@ Logistics

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.
> Bear with me.

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

o Stay healthy

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

o Stay healthy
> Let me know if you're sick & need extra time.

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

o Stay healthy

> Let me know if you're sick & need extra time.
> Please wear a mask if you interact with others.

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

o Stay healthy

> Let me know if you're sick & need extra time.
> Please wear a mask if you interact with others.

o Second exam will be take-home

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

o Stay healthy

> Let me know if you're sick & need extra time.
> Please wear a mask if you interact with others.

o Second exam will be take-home
» Given out after class on April 8.

Eric Price (UT Austin) Shortest Paths / 24

Welcome to 331 online!

o I'll be experimenting with different teaching methods.

» Bear with me.
» Give feedback!

o Stay healthy

> Let me know if you're sick & need extra time.
> Please wear a mask if you interact with others.

o Second exam will be take-home

» Given out after class on April 8.
» Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths / 24

/oom details

o Mute your audio unless you have a question.

Eric Price (UT Austin) Shortest Paths / 24

/oom details

o Mute your audio unless you have a question.
o | encourage sharing your video
» Makes this seem more like a community

Eric Price (UT Austin) Shortest Paths / 24

/oom details

o Mute your audio unless you have a question.
o | encourage sharing your video
» Makes this seem more like a community
o You can “raise your hand” so | know to call on you.

Eric Price (UT Austin) Shortest Paths / 24

/oom details

o Mute your audio unless you have a question.

o | encourage sharing your video
» Makes this seem more like a community

o You can “raise your hand” so | know to call on you.
> Press “View Participants”, then the little blue hand.

Eric Price (UT Austin) Shortest Paths / 24

/oom details

©

Mute your audio unless you have a question.

©

| encourage sharing your video

» Makes this seem more like a community
o You can “raise your hand” so | know to call on you.
> Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.

(+]

Eric Price (UT Austin) Shortest Paths / 24

Talk Outline

@ Shortest Paths: Bellman-Ford

Single-Source Shortest Paths

o Problem setup:

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
» Given a directed graph G = (V, E)

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
» Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
» Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
» Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
» Given a source s

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
> Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
> Given a source s
o Goal: for every v, compute c*(v), the distance of shortest s ~» v
path in G.

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
> Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
> Given a source s
o Goal: for every v, compute c*(v), the distance of shortest s ~» v
path in G.
o Output two arrays: dist() and pred().

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
> Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
» Given a source s
o Goal: for every v, compute c*(v), the distance of shortest s ~» v
path in G.
o Output two arrays: dist() and pred().
» dist(v) = c*(v) for all v

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
> Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
» Given a source s
o Goal: for every v, compute c*(v), the distance of shortest s ~» v
path in G.
o Output two arrays: dist() and pred().
» dist(v) = c*(v) for all v
> pred(s) = NONE

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
> Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
» Given a source s
o Goal: for every v, compute c*(v), the distance of shortest s ~» v
path in G.
o Output two arrays: dist() and pred().
» dist(v) = c*(v) for all v
> pred(s) = NONE
> v pred(v) < pred(pred(v)) < --- < s is shortest s ~ v path.

Eric Price (UT Austin) Shortest Paths / 24

Single-Source Shortest Paths

o Problem setup:
> Given a directed graph G = (V, E)
» Each edge u — v has distance: w(u — v) € R
» Distance of path is sum of distance of edges.
» Given a source s

o Goal: for every v, compute c*(v), the distance of shortest s ~» v
path in G.
Output two arrays: dist() and pred().

» dist(v) = c*(v) for all v

> pred(s) = NONE

> v pred(v) < pred(pred(v)) < --- < s is shortest s ~ v path.

©

©

Question: what if w(u — v) =1 forallu — v e E?

Eric Price (UT Austin) Shortest Paths / 24

Generic SSSP algorithm

o We maintain a vector dist that satisfies the invariant:

dist(v) > c*(v)

for all v at all times.

Eric Price (UT Austin) Shortest Paths

/24

Generic SSSP algorithm

o We maintain a vector dist that satisfies the invariant:
dist(v) > c*(v)

for all v at all times.
o INITIALIZESSSP(s):
» dist(v) = c0 Vv
» pred(v) = NONE Vv
» dist(s) = 0.

Eric Price (UT Austin) Shortest Paths / 24

Generic SSSP algorithm

o We maintain a vector dist that satisfies the invariant:

dist(v) > c*(v)

for all v at all times.
o INITIALIZESSSP(s):
» dist(v) = c0 Vv
» pred(v) = NONE Vv
» dist(s) = 0.
o FORDSSSP(s):

» INITIALIZESSSP(s)
> Repeat:
* Pick an edge
* If it is “tense”, relax it.

Eric Price (UT Austin)

Shortest Paths / 24

Relaxing an edge

o RELAX(u — v):
> If dist(v) > dist(u) + w(u — v):
* dist(v) « dist(v) + w(u — v)
* pred(v) < u.
Triangle Inequality
For any edge u — v,

c*(v) < c*(u) + w(u — v).

Lemma
If dist(v) > c*(v) for all v, then for any edge u — v,

c*(v) < dist(u) + w(u — v).

Hence RELAX preserves the invariant that dist(v) > c*(v)Vv.

Eric Price (UT Austin) Shortest Paths

/ 24

Generic SSSP algorithm

o Invariant: dist(v) > c¢*(v) for all v at all times.

Eric Price (UT Austin) Shortest Paths / 24

Generic SSSP algorithm

o Invariant: dist(v) > c¢*(v) for all v at all times.
o INITIALIZESSSP(s):

» dist(v) =00 Vv

» pred(v) = NONE Vv

» dist(s) = 0.

Eric Price (UT Austin) Shortest Paths / 24

Generic SSSP algorithm

o Invariant: dist(v) > c¢*(v) for all v at all times.
o INITIALIZESSSP(s):

» dist(v) =00 Vv

» pred(v) = NONE Vv

» dist(s) = 0.
o FORDSSSP(s):

» INITIALIZESSSP(s)
> Repeat some number of times:

* Pick an edge u — v (somehow)
* RELAX(u — v)

Eric Price (UT Austin) Shortest Paths / 24

Generic SSSP algorithm

©

Invariant: dist(v) > c*(v) for all v at all times.
INITIALIZESSSP(s):

» dist(v) =00 Vv

» pred(v) = NONE Vv

©

» dist(s) = 0.
o FORDSSSP(s):
» INITIALIZESSSP(s)
> Repeat some number of times:
* Pick an edge u — v (somehow)
* RELAX(u — v)
o RELAX(u — v):

> If dist(v) > dist(u) + w(u — v):
* dist(v) + dist(u) + w(u — v)
* pred(v) < u.

Eric Price (UT Austin) Shortest Paths / 24

Analysis

o So far: dist(v) > c*(v).
o What we need: eventually dist(v) = c*(v).

Lemma

Let s = ug — uy — -+ — Ux_1 — ug be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(ug).

Moreover, uy < pred(uy) < pred(pred(uy)) < --- < s is a shortest

S ~> Uy path.

Eric Price (UT Austin) Shortest Paths / 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy.

Eric Price (UT Austin) Shortest Paths

/ 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy... or is it?

Eric Price (UT Austin) Shortest Paths

/ 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about
negative edges!

Eric Price (UT Austin) Shortest Paths

/ 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about
negative edges!
For the inductive step, assume it holds for all paths of length k — 1.

Eric Price (UT Austin) Shortest Paths

/ 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about
negative edges!

For the inductive step, assume it holds for all paths of length k — 1. So
the last time RELAX(ux_1 — ug) is called, dist(ux_1) = c¢*(uk—1)-

Eric Price (UT Austin) Shortest Paths

/ 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about
negative edges!

For the inductive step, assume it holds for all paths of length k — 1. So
the last time RELAX(ux_1 — ug) is called, dist(ux_1) = c¢*(uk—1)-
Therefore after this,

dist(uk) < C*(Uk_l) T W(Uk_l = Uk).

Eric Price (UT Austin) Shortest Paths

/ 24

Lemma

Let s = ug — uy — - -+ — Ux_1 — U be a shortest s ~~ uy path.
After RELAX has been called on every edge of this path in

order—ug — u1, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(ux) = c*(uy).

Proof.

Induct on k. Base case (k = 0) is easy... or is it? Be careful about
negative edges!

For the inductive step, assume it holds for all paths of length k — 1. So
the last time RELAX(ux_1 — ug) is called, dist(ux_1) = c¢*(uk—1)-
Therefore after this,

dist(uk) < C*(Uk_l) T W(Uk_l = uk).

Since ug — u; — -+ — ug_1 —> Uk is a shortest path, this RHS is
C*(uk).

Eric Price (UT Austin) Shortest Paths

/ 24

Question for you all

Lemma

Lets =ug— u; — --- — Ux_1 — ug be a shortest s ~» uy path.
After RELAX has been called on every edge of this path in

order—ug — uy, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(uy) = c*(ux).

Eric Price (UT Austin) Shortest Paths / 24

Question for you all

Lemma

Lets =ug— u; — --- — Ux_1 — ug be a shortest s ~» uy path.
After RELAX has been called on every edge of this path in

order—ug — uy, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(uy) = c*(ux).

What happens with negative edges?

Eric Price (UT Austin) Shortest Paths / 24

Question for you all

Lemma

Lets =ug— u; — --- — Ux_1 — ug be a shortest s ~» uy path.
After RELAX has been called on every edge of this path in

order—ug — uy, then uy — up, until ux_1 — ug, with arbitrarily many
other calls interleaved—then dist(uy) = c*(ux).

What happens with negative edges?

What happens with negative cycles?

Eric Price (UT Austin) Shortest Paths

/ 24

Back to the algorithm

o INITIALIZESSSP(s):
» dist(v) =00 Vv
» pred(v) = NONE Vv
» dist(s) = 0.
o FORDSSSP(s):
» INITIALIZESSSP(s)
> Repeat some number of times:
* Pick an edge u — v (somehow)
* RELAX(u — v)
o RELAX(u — v):
> If dist(v) > dist(u) + w(u — v):
* dist(v) < dist(u) + w(u — v)
* pred(v) < u.

Eric Price (UT Austin) Shortest Paths / 24

Back to the algorithm

o INITIALIZESSSP(s):
» dist(v) =00 Vv
» pred(v) = NONE Vv
» dist(s) = 0.
o FORDSSSP(s):
» INITIALIZESSSP(s)
> Repeat some number of times:
* Pick an edge u — v (somehow)
* RELAX(u — v)
o RELAX(u — v):
> If dist(v) > dist(u) + w(u — v):
* dist(v) < dist(u) + w(u — v)
* pred(v) < u.

Eric Price (UT Austin) Shortest Paths / 24

Back to the algorithm

©

INITIALIZESSSP(s):
» dist(v) = co Vv
» pred(v) = NONE Vv
» dist(s) = 0.
FOrRDSSSP(s):

» INITIALIZESSSP(s)
> Repeat some number of times:

©

* Pick an edge u — v (somehow)
* RELAX(u — v)
RELAX(u — v):
> If dist(v) > dist(u) + w(u — v):
* dist(v) < dist(u) + w(u — v)
* pred(v) < u.

©

©

Lemma states: need to call RELAX in order for every shortest path.

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

o Lemma states: need to call RELAX in order for every shortest path.

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

o Lemma states: need to call RELAX in order for every shortest path.

o Every shortest path has length at most V — 1.

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

o Lemma states: need to call RELAX in order for every shortest path.
o Every shortest path has length at most V — 1.

o If we relax every edge, we'll surely relax the first edge of the path.

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

©

Lemma states: need to call RELAX in order for every shortest path.

©

Every shortest path has length at most V — 1.

©

If we relax every edge, we'll surely relax the first edge of the path.

©

If we relax every edge again, we'll get the second edge.

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

©

Lemma states: need to call RELAX in order for every shortest path.

©

Every shortest path has length at most V — 1.

©

If we relax every edge, we'll surely relax the first edge of the path.

©

If we relax every edge again, we'll get the second edge.
Do this V — 1 times.

©

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

o Lemma states: need to call RELAX in order for every shortest path.
o Every shortest path has length at most V — 1.

o If we relax every edge, we'll surely relax the first edge of the path.
o If we relax every edge again, we'll get the second edge.

o Do this V — 1 times.

o BELLMANFORD(s):

» INITIALIZESSSP(s)
> Repeat V — 1 times:

* For every edge u — v in E:
RELAX(u — v)

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

o Lemma states: need to call RELAX in order for every shortest path.
o Every shortest path has length at most V — 1.

o If we relax every edge, we'll surely relax the first edge of the path.
o If we relax every edge again, we'll get the second edge.

o Do this V — 1 times.

o BELLMANFORD(s):

» INITIALIZESSSP(s)
> Repeat V — 1 times:

* For every edge u — v in E:
RELAX(u — v)

o O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths / 24

Bellman-Ford Algorithm

Bellman-Ford solves SSSP in O(EV/) time.
It works with negative edges.

It's the fastest known algorithm in general!

© 06 o o

Can use to find negative cycles:

» Repeat one more time. If no negative cycles, no edge should change in
the V'th iteration.
> Follow the predecessor chain to find a negative cycle.

o Can go faster if edge lengths nonnegative: Dijkstra's algorithm.

Eric Price (UT Austin) Shortest Paths / 24

Talk Outline

e Dijkstra’s Algorithm

Dijkstra’s Algorithm

o DIJKSTRA(S):

» INITIALIZESSSP(s)
» Repeat V times:

* Find the unvisited vertex u of minimal dist(u).
* For every edge u — v out from u:
RELAX(u — v)

o Alternative view: WHATEVERFIRSTSEARCH that visits the nearest
vertex to s.

o Another alternative view: a small variant on Prim’s algorithm.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

1: function DIJKSTRA(S)

2 pred, dist < {}, {}

3 q < PRIORITYQUEUE([(O, s, None)]) > dist, vertex, pred
4 while g do

5: d, u, parent < q.pop()
6 if u € pred then

7 continue

8 pred[u] < parent

0. dist[u] « d

10: for u — v e E do

11: g.push((dist[u] + w(u — v), v, u))
12: return dist, pred

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Prim’s Algorithm

1: function Primv(s)

2 pred, dist <— {}, {}

3 q < PRIORITYQUEUE([(O, s, None)]) > dist, vertex, pred
4 while g do

5: d, u, parent < q.pop()
6 if u € pred then

7 continue

8 pred[u] < parent

0: dist[u] < d

10: for u — v e E do

11: g.push((w(u—v), v, u))
12 return dist, pred

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

» Time from E pushes/pops, for O(E log V) with binary heap.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.
» Time from E pushes/pops, for O(E log V') with binary heap.
> Modifying the algorithm slightly and using a Fibonacci heap can bring
this down to O(E + V log V).

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.
» Time from E pushes/pops, for O(E log V') with binary heap.
> Modifying the algorithm slightly and using a Fibonacci heap can bring
this down to O(E + V log V).

o Tricky part: correctness.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

» Time from E pushes/pops, for O(E log V') with binary heap.
> Modifying the algorithm slightly and using a Fibonacci heap can bring
this down to O(E + V log V).
o Tricky part: correctness.

o Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

» Time from E pushes/pops, for O(E log V') with binary heap.
> Modifying the algorithm slightly and using a Fibonacci heap can bring
this down to O(E + V log V).
o Tricky part: correctness.

o Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

» Bellman-Ford relaxes each edge V times.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm

o Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.
» Time from E pushes/pops, for O(E log V') with binary heap.
> Modifying the algorithm slightly and using a Fibonacci heap can bring
this down to O(E + V log V).

o Tricky part: correctness.

o Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.
» Bellman-Ford relaxes each edge V times.
» Dijkstra only relaxes each edge once, so it better happen at the right
time.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Correctness
o The distances d popped from the queue are nondecreasing.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Correctness

o The distances d popped from the queue are nondecreasing.
> At each step, values pushed aren’'t smaller than the one just popped.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Correctness

o The distances d popped from the queue are nondecreasing.
> At each step, values pushed aren't smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = vo — vi — ... — v; of length
L;, then dist[v;] is at most L; when it is set.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Correctness

o The distances d popped from the queue are nondecreasing.
> At each step, values pushed aren't smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = vo — vi — ... — v; of length
L;, then dist[v;] is at most L; when it is set.

Proof.

Induct on j. For j = 0, trivially true.

If true for j — 1, then dist[v;_1] < Lj_1. So when v;_; is visited, we will
push (d, vj, vj_1) for

d= diSt[Vj—l] + W(‘/j—lv VJ) < Lj—l + W(Vj—lv VJ) = L_I

onto the queue. At some point this gets popped from the queue. Since
the distances popped are nondecreasing, the first time we pop v; from the
queue it must also be with a distance at most L;. O

o

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Conclusion

o Takes O(E + Vlog V) time.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Conclusion

o Takes O(E + Vlog V) time.

o Qutputs the correct answer if all edge weights nonnegative.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Conclusion

o Takes O(E + Vlog V) time.

o Qutputs the correct answer if all edge weights nonnegative.
o Alternative version:

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Conclusion

o Takes O(E + Vlog V) time.

o Qutputs the correct answer if all edge weights nonnegative.
o Alternative version:
» Outputs the correct answer always.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Conclusion

o Takes O(E + Vlog V) time.
o Qutputs the correct answer if all edge weights nonnegative.

o Alternative version:

» Outputs the correct answer always.
» Takes O(E + V log V) time if all edge weights nonnegative.

Eric Price (UT Austin) Shortest Paths / 24

Dijkstra’s Algorithm: Conclusion

o Takes O(E + Vlog V) time.
o Qutputs the correct answer if all edge weights nonnegative.

o Alternative version:

» Outputs the correct answer always.
» Takes O(E + V log V) time if all edge weights nonnegative.
» Exponential time in general.

Eric Price (UT Austin) Shortest Paths / 24

Alternative Dijkstra: correct but slow with negative weights

1: function DIJKSTRA(S)

2 pred, dist < {}, {}

3 q < PRIORITYQUEUE([(O, s, None)]) > dist, vertex, pred
4: while g do

5: d, u, parent < q.pop()
6 if u € pred then

7 continue

8 pred[u] < parent

9: dist[u] < d

10: for u — v e E do

11: g.push((dist[u] + w(u — v), v, u))
12: return dist, pred

Eric Price (UT Austin) Shortest Paths / 24

Alternative Dijkstra: correct but slow with negative weights

1: function DIJKSTRA(S)

2 pred, dist < {}, {}

3 q < PRIORITYQUEUE([(O, s, None)]) > dist, vertex, pred
4: while g do

5: d, u, parent < q.pop()
6 if d > dist[u] then

7 continue

8 pred[u] < parent

9: dist[u] < d

10: for u — v e E do

11: g.push((dist[u] + w(u — v), v, u))
12: return dist, pred

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

o DAGs: DP for O(E) time.

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

o DAGs: DP for O(E) time.
o Unweighted graphs: BFS for O(E) time.

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

o DAGs: DP for O(E) time.

o Unweighted graphs: BFS for O(E) time.
o Bellman-Ford: O(EV) time

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

o DAGs: DP for O(E) time.

o Unweighted graphs: BFS for O(E) time.
o Bellman-Ford: O(EV) time
» Works with negative edge weights

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

o DAGs: DP for O(E) time.

o Unweighted graphs: BFS for O(E) time.
o Bellman-Ford: O(EV) time

» Works with negative edge weights
» Can detect cycles

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

©

DAGs: DP for O(E) time.
Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time

» Works with negative edge weights
» Can detect cycles

Dijkstra: O(E + V' log V) time

©

©

©

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

©

DAGs: DP for O(E) time.
Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time

» Works with negative edge weights
» Can detect cycles

Dijkstra: O(E + V' log V) time
> but only with nonnegative edge weights

©

©

©

Eric Price (UT Austin) Shortest Paths

/ 24

Summary of shortest paths

©

DAGs: DP for O(E) time.
Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
» Works with negative edge weights
» Can detect cycles
Dijkstra: O(E + V' log V) time
> but only with nonnegative edge weights
> either wrong or exponential time with negative edges

©

©

©

Eric Price (UT Austin) Shortest Paths

/ 24

Summary of shortest paths

©

DAGs: DP for O(E) time.
Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
» Works with negative edge weights
» Can detect cycles
Dijkstra: O(E + V' log V) time
> but only with nonnegative edge weights
> either wrong or exponential time with negative edges

©

©

©

Next class:

©

Eric Price (UT Austin) Shortest Paths

/ 24

Summary of shortest paths

©

DAGs: DP for O(E) time.
Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
» Works with negative edge weights
» Can detect cycles
Dijkstra: O(E + V' log V) time
> but only with nonnegative edge weights
> either wrong or exponential time with negative edges

©

©

©

Next class:

©

» A* search: Dijkstra with a twist

Eric Price (UT Austin) Shortest Paths / 24

Summary of shortest paths

©

DAGs: DP for O(E) time.
Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
» Works with negative edge weights
» Can detect cycles
Dijkstra: O(E + V' log V) time
> but only with nonnegative edge weights
> either wrong or exponential time with negative edges

©

©

©

Next class:

©

» A* search: Dijkstra with a twist
> Exercises

Eric Price (UT Austin) Shortest Paths

/ 24

	Logistics
	Shortest Paths: Bellman-Ford
	Dijkstra's Algorithm
	Appendix

