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Welcome to 331 online!

I’ll be experimenting with different teaching methods.

I Bear with me.
I Give feedback!

Stay healthy

I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.
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Zoom details

Mute your audio unless you have a question.

I encourage sharing your video

I Makes this seem more like a community

You can “raise your hand” so I know to call on you.

I Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.
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Single-Source Shortest Paths

Problem setup:

I Given a directed graph G = (V ,E )
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s  v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s  v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?
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Generic SSSP algorithm

We maintain a vector dist that satisfies the invariant:

dist(v) ≥ c∗(v)

for all v at all times.

InitializeSSSP(s):

I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):

I InitializeSSSP(s)
I Repeat:

F Pick an edge
F If it is “tense”, relax it.
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Relaxing an edge

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Triangle Inequality

For any edge u → v ,

c∗(v) ≤ c∗(u) + w(u → v).

Lemma

If dist(v) ≥ c∗(v) for all v , then for any edge u → v ,

c∗(v) ≤ dist(u) + w(u → v).

Hence Relax preserves the invariant that dist(v) ≥ c∗(v)∀v .
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Generic SSSP algorithm

Invariant: dist(v) ≥ c∗(v) for all v at all times.

InitializeSSSP(s):

I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):

I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):

I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.
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Analysis

So far: dist(v) ≥ c∗(v).

What we need: eventually dist(v) = c∗(v).

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s  uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).
Moreover, uk ← pred(uk)← pred(pred(uk))← · · · ← s is a shortest
s  uk path.
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After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy.

.. or is it?

Be careful about
negative edges!

For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).
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Question for you all

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s  uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

What happens with negative edges?

What happens with negative cycles?
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Back to the algorithm

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Lemma states: need to call Relax in order for every shortest path.
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Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):

I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV ) time for SSSP.
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Bellman-Ford Algorithm

Bellman-Ford solves SSSP in O(EV ) time.

It works with negative edges.

It’s the fastest known algorithm in general!

Can use to find negative cycles:
I Repeat one more time. If no negative cycles, no edge should change in

the V th iteration.
I Follow the predecessor chain to find a negative cycle.

Can go faster if edge lengths nonnegative: Dijkstra’s algorithm.
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Dijkstra’s Algorithm

Dijkstra(s):
I InitializeSSSP(s)
I Repeat V times:

F Find the unvisited vertex u of minimal dist(u).
F For every edge u → v out from u:

Relax(u → v)

Alternative view: WhateverFirstSearch that visits the nearest
vertex to s.

Another alternative view: a small variant on Prim’s algorithm.
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Dijkstra’s Algorithm

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push( (dist[u] + w(u → v), v , u) )

12: return dist, pred
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Dijkstra’s Prim’s Algorithm

1: function Prim(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push( (dist[u] + w(u → v), v , u) )

12: return dist, pred
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Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV ) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV ).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.
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Dijkstra’s Algorithm: Correctness
The distances d popped from the queue are nondecreasing.

I At each step, values pushed aren’t smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = v0 → v1 → . . .→ vj of length
Lj , then dist[vj ] is at most Lj when it is set.

Proof.

Induct on j . For j = 0, trivially true.
If true for j − 1, then dist[vj−1] ≤ Lj−1. So when vj−1 is visited, we will
push (d , vj , vj−1) for

d = dist[vj−1] + w(vj−1, vj) ≤ Lj−1 + w(vj−1, vj) = Lj

onto the queue. At some point this gets popped from the queue. Since
the distances popped are nondecreasing, the first time we pop vj from the
queue it must also be with a distance at most Lj .
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Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV ) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:

I Outputs the correct answer always.
I Takes O(E + V logV ) time if all edge weights nonnegative.
I Exponential time in general.
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Alternative Dijkstra: correct but slow with negative weights

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push( (dist[u] + w(u → v), v , u) )

12: return dist, pred
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Summary of shortest paths

DAGs: DP for O(E ) time.

Unweighted graphs: BFS for O(E ) time.

Bellman-Ford: O(EV ) time

I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV ) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises
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