
Shortest Paths

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 1

/ 24

Talk Outline

1 Logistics

2 Shortest Paths: Bellman-Ford

3 Dijkstra’s Algorithm

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 2

/ 24

Talk Outline

1 Logistics

2 Shortest Paths: Bellman-Ford

3 Dijkstra’s Algorithm

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 3

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.

I Bear with me.
I Give feedback!

Stay healthy

I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.

I Give feedback!

Stay healthy

I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy

I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy

I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy
I Let me know if you’re sick & need extra time.

I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy
I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy
I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home

I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy
I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home
I Given out after class on April 8.

I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Welcome to 331 online!

I’ll be experimenting with different teaching methods.
I Bear with me.
I Give feedback!

Stay healthy
I Let me know if you’re sick & need extra time.
I Please wear a mask if you interact with others.

Second exam will be take-home
I Given out after class on April 8.
I Return before 10am on Friday, April 10.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 4

/ 24

Zoom details

Mute your audio unless you have a question.

I encourage sharing your video

I Makes this seem more like a community

You can “raise your hand” so I know to call on you.

I Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 5

/ 24

Zoom details

Mute your audio unless you have a question.

I encourage sharing your video
I Makes this seem more like a community

You can “raise your hand” so I know to call on you.

I Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 5

/ 24

Zoom details

Mute your audio unless you have a question.

I encourage sharing your video
I Makes this seem more like a community

You can “raise your hand” so I know to call on you.

I Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 5

/ 24

Zoom details

Mute your audio unless you have a question.

I encourage sharing your video
I Makes this seem more like a community

You can “raise your hand” so I know to call on you.
I Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 5

/ 24

Zoom details

Mute your audio unless you have a question.

I encourage sharing your video
I Makes this seem more like a community

You can “raise your hand” so I know to call on you.
I Press “View Participants”, then the little blue hand.

Videos will be recorded & available after class.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 5

/ 24

Talk Outline

1 Logistics

2 Shortest Paths: Bellman-Ford

3 Dijkstra’s Algorithm

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 6

/ 24

Single-Source Shortest Paths

Problem setup:

I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)

I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R

I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.

I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().

I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().
I dist(v) = c∗(v) for all v

I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().
I dist(v) = c∗(v) for all v
I pred(s) = None

I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().
I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Single-Source Shortest Paths

Problem setup:
I Given a directed graph G = (V ,E)
I Each edge u → v has distance: w(u → v) ∈ R
I Distance of path is sum of distance of edges.
I Given a source s

Goal: for every v , compute c∗(v), the distance of shortest s v
path in G .

Output two arrays: dist() and pred().
I dist(v) = c∗(v) for all v
I pred(s) = None
I v ← pred(v)← pred(pred(v))← · · · ← s is shortest s v path.

Question: what if w(u → v) = 1 for all u → v ∈ E?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 7

/ 24

Generic SSSP algorithm

We maintain a vector dist that satisfies the invariant:

dist(v) ≥ c∗(v)

for all v at all times.

InitializeSSSP(s):

I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):

I InitializeSSSP(s)
I Repeat:

F Pick an edge
F If it is “tense”, relax it.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 8

/ 24

Generic SSSP algorithm

We maintain a vector dist that satisfies the invariant:

dist(v) ≥ c∗(v)

for all v at all times.

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):

I InitializeSSSP(s)
I Repeat:

F Pick an edge
F If it is “tense”, relax it.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 8

/ 24

Generic SSSP algorithm

We maintain a vector dist that satisfies the invariant:

dist(v) ≥ c∗(v)

for all v at all times.

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat:

F Pick an edge
F If it is “tense”, relax it.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 8

/ 24

Relaxing an edge

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Triangle Inequality

For any edge u → v ,

c∗(v) ≤ c∗(u) + w(u → v).

Lemma

If dist(v) ≥ c∗(v) for all v , then for any edge u → v ,

c∗(v) ≤ dist(u) + w(u → v).

Hence Relax preserves the invariant that dist(v) ≥ c∗(v)∀v .

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 9

/ 24

Generic SSSP algorithm

Invariant: dist(v) ≥ c∗(v) for all v at all times.

InitializeSSSP(s):

I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):

I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):

I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 10

/ 24

Generic SSSP algorithm

Invariant: dist(v) ≥ c∗(v) for all v at all times.

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):

I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):

I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 10

/ 24

Generic SSSP algorithm

Invariant: dist(v) ≥ c∗(v) for all v at all times.

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):

I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 10

/ 24

Generic SSSP algorithm

Invariant: dist(v) ≥ c∗(v) for all v at all times.

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 10

/ 24

Analysis

So far: dist(v) ≥ c∗(v).

What we need: eventually dist(v) = c∗(v).

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).
Moreover, uk ← pred(uk)← pred(pred(uk))← · · · ← s is a shortest
s uk path.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 11

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy.

.. or is it?

Be careful about
negative edges!

For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy... or is it?

Be careful about
negative edges!
For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy... or is it? Be careful about
negative edges!

For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy... or is it? Be careful about
negative edges!
For the inductive step, assume it holds for all paths of length k − 1.

So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy... or is it? Be careful about
negative edges!
For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).

Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy... or is it? Be careful about
negative edges!
For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

Proof.

Induct on k . Base case (k = 0) is easy... or is it? Be careful about
negative edges!
For the inductive step, assume it holds for all paths of length k − 1. So
the last time Relax(uk−1 → uk) is called, dist(uk−1) = c∗(uk−1).
Therefore after this,

dist(uk) ≤ c∗(uk−1) + w(uk−1 → uk).

Since u0 → u1 → · · · → uk−1 → uk is a shortest path, this RHS is
c∗(uk).

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 12

/ 24

Question for you all

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

What happens with negative edges?

What happens with negative cycles?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 13

/ 24

Question for you all

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

What happens with negative edges?

What happens with negative cycles?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 13

/ 24

Question for you all

Lemma

Let s = u0 → u1 → · · · → uk−1 → uk be a shortest s uk path.
After Relax has been called on every edge of this path in
order—u0 → u1, then u1 → u2, until uk−1 → uk , with arbitrarily many
other calls interleaved—then dist(uk) = c∗(uk).

What happens with negative edges?

What happens with negative cycles?

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 13

/ 24

Back to the algorithm

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Lemma states: need to call Relax in order for every shortest path.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 14

/ 24

Back to the algorithm

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Lemma states: need to call Relax in order for every shortest path.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 14

/ 24

Back to the algorithm

InitializeSSSP(s):
I dist(v) =∞ ∀v
I pred(v) = None ∀v
I dist(s) = 0.

FordSSSP(s):
I InitializeSSSP(s)
I Repeat some number of times:

F Pick an edge u → v (somehow)
F Relax(u → v)

Relax(u → v):
I If dist(v) > dist(u) + w(u → v):

F dist(v)← dist(u) + w(u → v)
F pred(v)← u.

Lemma states: need to call Relax in order for every shortest path.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 14

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):

I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):

I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):

I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):

I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):

I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):
I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Lemma states: need to call Relax in order for every shortest path.

Every shortest path has length at most V − 1.

If we relax every edge, we’ll surely relax the first edge of the path.

If we relax every edge again, we’ll get the second edge.

Do this V − 1 times.

BellmanFord(s):
I InitializeSSSP(s)
I Repeat V − 1 times:

F For every edge u → v in E :
Relax(u → v)

O(EV) time for SSSP.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 15

/ 24

Bellman-Ford Algorithm

Bellman-Ford solves SSSP in O(EV) time.

It works with negative edges.

It’s the fastest known algorithm in general!

Can use to find negative cycles:
I Repeat one more time. If no negative cycles, no edge should change in

the V th iteration.
I Follow the predecessor chain to find a negative cycle.

Can go faster if edge lengths nonnegative: Dijkstra’s algorithm.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 16

/ 24

Talk Outline

1 Logistics

2 Shortest Paths: Bellman-Ford

3 Dijkstra’s Algorithm

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 17

/ 24

Dijkstra’s Algorithm

Dijkstra(s):
I InitializeSSSP(s)
I Repeat V times:

F Find the unvisited vertex u of minimal dist(u).
F For every edge u → v out from u:

Relax(u → v)

Alternative view: WhateverFirstSearch that visits the nearest
vertex to s.

Another alternative view: a small variant on Prim’s algorithm.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 18

/ 24

Dijkstra’s Algorithm

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push((dist[u] + w(u → v), v , u))

12: return dist, pred

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 19

/ 24

Dijkstra’s Prim’s Algorithm

1: function Prim(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push((dist[u] + w(u → v), v , u))

12: return dist, pred

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 19

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.

I Modifying the algorithm slightly and using a Fibonacci heap can bring
this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.

I Dijkstra only relaxes each edge once, so it better happen at the right
time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm

Just like Prim: visits each vertex once and scans through outgoing
edges, so looks at each edge once.

I Time from E pushes/pops, for O(E logV) with binary heap.
I Modifying the algorithm slightly and using a Fibonacci heap can bring

this down to O(E + V logV).

Tricky part: correctness.

Need to argue: if edge weights nonnegative, for any shortest path,
will visit the vertices in order.

I Bellman-Ford relaxes each edge V times.
I Dijkstra only relaxes each edge once, so it better happen at the right

time.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 20

/ 24

Dijkstra’s Algorithm: Correctness
The distances d popped from the queue are nondecreasing.

I At each step, values pushed aren’t smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = v0 → v1 → . . .→ vj of length
Lj , then dist[vj] is at most Lj when it is set.

Proof.

Induct on j . For j = 0, trivially true.
If true for j − 1, then dist[vj−1] ≤ Lj−1. So when vj−1 is visited, we will
push (d , vj , vj−1) for

d = dist[vj−1] + w(vj−1, vj) ≤ Lj−1 + w(vj−1, vj) = Lj

onto the queue. At some point this gets popped from the queue. Since
the distances popped are nondecreasing, the first time we pop vj from the
queue it must also be with a distance at most Lj .

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 21

/ 24

Dijkstra’s Algorithm: Correctness
The distances d popped from the queue are nondecreasing.

I At each step, values pushed aren’t smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = v0 → v1 → . . .→ vj of length
Lj , then dist[vj] is at most Lj when it is set.

Proof.

Induct on j . For j = 0, trivially true.
If true for j − 1, then dist[vj−1] ≤ Lj−1. So when vj−1 is visited, we will
push (d , vj , vj−1) for

d = dist[vj−1] + w(vj−1, vj) ≤ Lj−1 + w(vj−1, vj) = Lj

onto the queue. At some point this gets popped from the queue. Since
the distances popped are nondecreasing, the first time we pop vj from the
queue it must also be with a distance at most Lj .

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 21

/ 24

Dijkstra’s Algorithm: Correctness
The distances d popped from the queue are nondecreasing.

I At each step, values pushed aren’t smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = v0 → v1 → . . .→ vj of length
Lj , then dist[vj] is at most Lj when it is set.

Proof.

Induct on j . For j = 0, trivially true.
If true for j − 1, then dist[vj−1] ≤ Lj−1. So when vj−1 is visited, we will
push (d , vj , vj−1) for

d = dist[vj−1] + w(vj−1, vj) ≤ Lj−1 + w(vj−1, vj) = Lj

onto the queue. At some point this gets popped from the queue. Since
the distances popped are nondecreasing, the first time we pop vj from the
queue it must also be with a distance at most Lj .

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 21

/ 24

Dijkstra’s Algorithm: Correctness
The distances d popped from the queue are nondecreasing.

I At each step, values pushed aren’t smaller than the one just popped.

Lemma

For any (not necessarily shortest) path s = v0 → v1 → . . .→ vj of length
Lj , then dist[vj] is at most Lj when it is set.

Proof.

Induct on j . For j = 0, trivially true.
If true for j − 1, then dist[vj−1] ≤ Lj−1. So when vj−1 is visited, we will
push (d , vj , vj−1) for

d = dist[vj−1] + w(vj−1, vj) ≤ Lj−1 + w(vj−1, vj) = Lj

onto the queue. At some point this gets popped from the queue. Since
the distances popped are nondecreasing, the first time we pop vj from the
queue it must also be with a distance at most Lj .

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 21

/ 24

Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:

I Outputs the correct answer always.
I Takes O(E + V logV) time if all edge weights nonnegative.
I Exponential time in general.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 22

/ 24

Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:

I Outputs the correct answer always.
I Takes O(E + V logV) time if all edge weights nonnegative.
I Exponential time in general.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 22

/ 24

Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:

I Outputs the correct answer always.
I Takes O(E + V logV) time if all edge weights nonnegative.
I Exponential time in general.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 22

/ 24

Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:
I Outputs the correct answer always.

I Takes O(E + V logV) time if all edge weights nonnegative.
I Exponential time in general.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 22

/ 24

Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:
I Outputs the correct answer always.
I Takes O(E + V logV) time if all edge weights nonnegative.

I Exponential time in general.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 22

/ 24

Dijkstra’s Algorithm: Conclusion

Takes O(E + V logV) time.

Outputs the correct answer if all edge weights nonnegative.

Alternative version:
I Outputs the correct answer always.
I Takes O(E + V logV) time if all edge weights nonnegative.
I Exponential time in general.

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 22

/ 24

Alternative Dijkstra: correct but slow with negative weights

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if u ∈ pred then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push((dist[u] + w(u → v), v , u))

12: return dist, pred

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 23

/ 24

Alternative Dijkstra: correct but slow with negative weights

1: function Dijkstra(s)
2: pred, dist ← {}, {}
3: q ← PriorityQueue([(0, s, None)]) . dist, vertex, pred
4: while q do
5: d, u, parent ← q.pop()
6: if d ≥ dist[u] then
7: continue
8: pred[u] ← parent
9: dist[u] ← d

10: for u → v ∈ E do
11: q.push((dist[u] + w(u → v), v , u))

12: return dist, pred

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 23

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time

I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time

I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time

I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights

I Can detect cycles

Dijkstra: O(E + V logV) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time

I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time
I but only with nonnegative edge weights

I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time
I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time
I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:

I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time
I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:
I A∗ search: Dijkstra with a twist

I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Summary of shortest paths

DAGs: DP for O(E) time.

Unweighted graphs: BFS for O(E) time.

Bellman-Ford: O(EV) time
I Works with negative edge weights
I Can detect cycles

Dijkstra: O(E + V logV) time
I but only with nonnegative edge weights
I either wrong or exponential time with negative edges

Next class:
I A∗ search: Dijkstra with a twist
I Exercises

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 24

/ 24

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 25

/ 24

Eric Price (UT Austin) Shortest Paths
CS 331, Spring 2020 Coronavirus Edition 26

/ 24

	Logistics
	Shortest Paths: Bellman-Ford
	Dijkstra's Algorithm
	Appendix

