#### Dijkstra Variants: A\* and Potentials

#### Eric Price

#### UT Austin

#### CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin)

# **Class Outline**







• "Raise hand" will hopefully not crash my connection now.



- "Raise hand" will hopefully not crash my connection now.
  - ▶ So you can try that, as well as chat, for questions.

#### Logistics

- "Raise hand" will hopefully not crash my connection now.
  - ► So you can try that, as well as chat, for questions.
- We're going to try using Zoom breakout rooms for problems, later today.

#### Logistics

- "Raise hand" will hopefully not crash my connection now.
  - ► So you can try that, as well as chat, for questions.
- We're going to try using Zoom breakout rooms for problems, later today.
  - ▶ Inside, you can "Ask for help" and it pops up a notification for me.

#### Logistics

- "Raise hand" will hopefully not crash my connection now.
  - ► So you can try that, as well as chat, for questions.
- We're going to try using Zoom breakout rooms for problems, later today.
  - ► Inside, you can "Ask for help" and it pops up a notification for me.
  - You stop being able to see my screen, so be sure to record the exercises before joining the breakout room.

# Talk Outline





• Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from *s* to *t*, or anywhere else?

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from *s* to *t*, or anywhere else?
  - Max bandwidth path from s to t

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from *s* to *t*, or anywhere else?
  - Max bandwidth path from s to t
  - We'll use it for network flows

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from *s* to *t*, or anywhere else?
  - Max bandwidth path from s to t
  - We'll use it for network flows
- On undirected graph:

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from *s* to *t*, or anywhere else?
  - Max bandwidth path from s to t
  - We'll use it for network flows
- On undirected graph: is maximum spanning tree

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from *s* to *t*, or anywhere else?
  - Max bandwidth path from s to t
  - We'll use it for network flows
- On undirected graph: is maximum spanning tree
- On directed graph: Dijkstra/Prim variant solves in  $O(E + V \log V)$ .

#### Dijkstra's Algorithm

- 1: function DIJKSTRA(s)
- 2: pred, dist  $\leftarrow$  {}, {}
- 3:  $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

 $\triangleright$  dist, vertex, pred

- 4: while q do
- 5: d, u, parent  $\leftarrow$  q.pop\_min()
- 6: **if**  $u \in \text{pred then}$
- 7: continue
- 8:  $pred[u] \leftarrow parent$
- 9:  $dist[u] \leftarrow d$
- 10: for  $u \to v \in E$  do
- 11:  $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

#### Dijkstra's Prim's Algorithm

- 1: function  $P_{RIM}(s)$
- 2: pred, dist  $\leftarrow$  {}, {}
- 3:  $q \leftarrow \text{PRIORITYQUEUE}([(-\infty, s, \text{None})]) > \text{dist, vertex, pred}$
- 4: **while** *q* **do**
- 5: d, u, parent  $\leftarrow$  q.pop\_min()
- 6: **if**  $u \in \text{pred then}$
- 7: continue
- 8:  $pred[u] \leftarrow parent$
- 9:  $\operatorname{dist}[u] \leftarrow d$
- 10: for  $u \to v \in E$  do
- 11:  $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

## Dijkstra's Algorithm

1: function DIJKSTRA(s) pred, dist  $\leftarrow$  {}, {} 2:  $q \leftarrow \text{PRIORITYQUEUE}([(0, s, \text{None})])$ 3: ▷ dist, vertex, pred 4: while q do 5: d, u, parent  $\leftarrow$  g.pop\_min() 6: if  $u \in \text{pred then}$ continue 7:  $pred[u] \leftarrow parent$ 8:  $dist[u] \leftarrow d$ 9: for  $\mu \rightarrow v \in E$  do 10: q.push( (dist[u] +  $w(u \rightarrow v)$ , v, u) ) 11: 12: return dist, pred

#### Dijkstra's Bottleneck shortest path Algorithm

- 1: function BOTTLENECK(s)
- 2: pred, dist  $\leftarrow$  {}, {}
- 3:  $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

▷ dist, vertex, pred

- 4: while *q* do
- 5: d, u, parent  $\leftarrow$  q.pop\_max()
- 6: **if**  $u \in \text{pred then}$
- 7: continue
- 8:  $pred[u] \leftarrow parent$
- 9:  $dist[u] \leftarrow d$
- 10: for  $u \to v \in E$  do
- 11:  $q.\text{push}((\min(\text{dist}[u], w(u \rightarrow v)), v, u))$
- 12: **return** dist, pred

#### Dijkstra's Bottleneck shortest path Algorithm

- 1: function BOTTLENECK(s)
- 2: pred, dist  $\leftarrow$  {}, {}
- 3:  $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

▷ dist, vertex, pred

- 4: while *q* do
- 5: d, u, parent  $\leftarrow$  q.pop\_max()
- 6: **if**  $u \in \text{pred then}$
- 7: continue
- 8:  $pred[u] \leftarrow parent$
- 9:  $dist[u] \leftarrow d$
- 10: for  $u \to v \in E$  do
- 11:  $q.\text{push}((\min(\text{dist}[u], w(u \rightarrow v)), v, u))$
- 12: **return** dist, pred

 $(\mathsf{min}, +) \to (\mathsf{max}, \mathsf{min})$ 

# Talk Outline





#### Shortest s - t path with Dijkstra



#### Shortest s - t path with Dijkstra



#### Shortest s - t path with Dijkstra



This is the wrong direction. Why waste our timing exploring it?

• Dijkstra explores outward from *s*.

- Dijkstra explores outward from *s*.
  - Can stop if it reaches t, but doesn't bias search toward t.

• Dijkstra explores outward from s.

• Can stop if it reaches t, but doesn't bias search toward t.

• Consider Dijkstra from Austin to San Francisco:

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.

- Dijkstra explores outward from *s*.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ► So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?
  - ▶ Fact: you cannot get from NYC to SF in 20 miles.

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?
  - ▶ Fact: you cannot get from NYC to SF in 20 miles.
- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?
  - ▶ Fact: you cannot get from NYC to SF in 20 miles.
- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - Dijkstra: visit node of smallest dist[u]

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?
  - ▶ Fact: you cannot get from NYC to SF in 20 miles.
- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - Dijkstra: visit node of smallest dist[u]
  - $A^*$ : visit node of smallest dist[u] + h(u)

# $A^*$ search

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?
  - ▶ Fact: you cannot get from NYC to SF in 20 miles.
- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - Dijkstra: visit node of smallest dist[u]
  - $A^*$ : visit node of smallest dist[u] + h(u)
- Example: h(NYC) is Euclidean distance from NYC to SF.

# A\* search

- Dijkstra explores outward from s.
  - Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
  - Austin  $\rightarrow$  New York = 1740 miles.
  - Austin  $\rightarrow$  San Francisco = 1760 miles.
- Dijkstra will visit NYC before SF.
  - Once it visits SF, it stops searching
  - ▶ So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
  - ...with a portal or something?
  - ▶ Fact: you cannot get from NYC to SF in 20 miles.
- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - Dijkstra: visit node of smallest dist[u]
  - $A^*$ : visit node of smallest dist[u] + h(u)
- Example: h(NYC) is Euclidean distance from NYC to SF.
  - Any path through NYC will take at least 3700 miles.

## Dijkstra's Algorithm

- 1: function DIJKSTRA(s)
- 2: pred, dist  $\leftarrow$  {}, {}
- 3:  $q \leftarrow \text{PriorityQueue}([(0, s, \text{None})])$

▷ dist, vertex, pred

- 4: **while** *q* **do**
- 5: d, u, parent  $\leftarrow$  q.pop\_min()
- 6: **if**  $d \ge dist[u]$  **then**
- 7: continue
- 8:  $pred[u] \leftarrow parent$
- 9:  $dist[u] \leftarrow d$
- 10: for  $u \to v \in E$  do
- 11:  $q.\text{push}((\text{dist}[u] + w(u \rightarrow v), v, u))$
- 12: return dist, pred

## Dijkstra's A\* Search Algorithm

- 1: function  $A^*(s)$
- $2: \qquad \mathsf{pred, \ dist} \leftarrow \{\}, \, \{\} \\$
- 3:  $q \leftarrow \text{PRIORITYQUEUE}([(0 + h(s), s, \text{None})]) \triangleright \text{dist, vertex, pred}$
- 4: while *q* do
- 5: d, u, parent  $\leftarrow$  q.pop\_min()
- 6: **if**  $d-h(u) \ge \operatorname{dist}[u]$  **then**

7: continue

- 8:  $pred[u] \leftarrow parent$
- 9:  $\operatorname{dist}[u] \leftarrow \operatorname{d} \operatorname{h}(u)$
- 10: for  $u \to v \in E$  do
- 11:  $q.\text{push}((\text{dist}[u] + w(u \rightarrow v) + h(v), v, u))$
- 12: return dist, pred

•  $A^*$ : uses a *heuristic* h(u), estimating d(u, t).

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

So which path is shortest is same under w or w'.

Heuristics:

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

▶ So which path is shortest is same under w or w'.

Heuristics:

• Heuristic "admissible:"  $h(u) \le d(u, t)$ 

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

- Heuristics:
  - Heuristic "admissible:"  $h(u) \le d(u, t)$ 
    - \* Admissible  $\implies$  first visit to t gives optimal path, so correct.

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

▶ So which path is shortest is same under *w* or *w*′.

- Heuristics:
  - Heuristic "admissible:"  $h(u) \le d(u, t)$

\* Admissible  $\implies$  first visit to t gives optimal path, so correct.

• Heuristic "consistent:" h(t) = 0 and  $h(u) \le w(u, v) + h(v)$ .

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

- Heuristics:
  - Heuristic "admissible:"  $h(u) \le d(u, t)$ 
    - \* Admissible  $\implies$  first visit to t gives optimal path, so correct.
  - Heuristic "consistent:" h(t) = 0 and  $h(u) \le w(u, v) + h(v)$ .
    - ★ Equivalent: h(t) = 0 and  $w'(u, v) \ge 0$  for all u, v.

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

- Heuristics:
  - Heuristic "admissible:"  $h(u) \le d(u, t)$ 
    - \* Admissible  $\implies$  first visit to t gives optimal path, so correct.
  - Heuristic "consistent:" h(t) = 0 and  $h(u) \le w(u, v) + h(v)$ .
    - ★ Equivalent: h(t) = 0 and  $w'(u, v) \ge 0$  for all u, v.
    - ★  $w' \ge 0 \implies$  Dijkstra is fast/correct (depending on implementation).

- $A^*$ : uses a *heuristic* h(u), estimating d(u, t).
  - $A^*$ : visit node of smallest dist[u] + h(u)
  - Paths equivalent to Dijkstra on a reweighted graph:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

[h(u) is height of a hill: easy to go down, hard to go up.]
Every s → t path P on w' has length

$$\sum_{e\in P} w'(e) = h(t) - h(s) + \sum_{e\in P} w(e)$$

- Heuristics:
  - Heuristic "admissible:"  $h(u) \le d(u, t)$ 
    - \* Admissible  $\implies$  first visit to t gives optimal path, so correct.
  - Heuristic "consistent:" h(t) = 0 and  $h(u) \le w(u, v) + h(v)$ .
    - ★ Equivalent: h(t) = 0 and  $w'(u, v) \ge 0$  for all u, v.
    - ★  $w' \ge 0 \implies$  Dijkstra is fast/correct (depending on implementation).
    - $\star$  And consistent  $\implies$  admissible.





A\* with Euclidean heuristic

A\* with ALT heuristic

Bottleneck shortest paths

- Bottleneck shortest paths
  - How do they relate to MSTs?

- Bottleneck shortest paths
  - How do they relate to MSTs?
- Dijkstra with potentials:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

- Bottleneck shortest paths
  - How do they relate to MSTs?
- Dijkstra with potentials:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

#### Can adjust the graph to have nonnegative weights

- Bottleneck shortest paths
  - How do they relate to MSTs?
- Dijkstra with potentials:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t ( $A^*$  search).

- Bottleneck shortest paths
  - How do they relate to MSTs?
- Dijkstra with potentials:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t ( $A^*$  search).
- Admissible  $\implies$  correct

- Bottleneck shortest paths
  - How do they relate to MSTs?
- Dijkstra with potentials:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t ( $A^*$  search).
- Admissible  $\implies$  correct
- Consistent  $\implies$  correct and  $O(E + V \log V)$

- Bottleneck shortest paths
  - How do they relate to MSTs?
- Dijkstra with potentials:

$$w'(u \to v) = w(u \to v) - h(u) + h(v).$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t ( $A^*$  search).
- Admissible  $\implies$  correct
- Consistent  $\implies$  correct and  $O(E + V \log V)$
- Can be faster in many cases.

# Talk Outline

Bottleneck Shortest Paths





#### Shortest Path Problems

http://jeffe.cs.illinois.edu/teaching/algorithms/book/
08-sssp.pdf

- Problem 2: Dijkstra with k negative edges.
- Problem 3: vertices, not edges, have weight.
- Problem 5: edge reinsertion
- Problem 4: Replacement paths on directed graphs
- Problem 12: Smallest shortest path
- Problem 16, 17: Remember reductions?
- Problem 1 of https://www.cs.utexas.edu/~ecprice/courses/ 331h/psets/331h-ps6.pdf

Eric Price (UT Austin)

Eric Price (UT Austin)