Dijkstra Variants: A* and Potentials

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Class Outline

(1) Bottleneck Shortest Paths
(2) A* search
(3) Problems

Logistics

- "Raise hand" will hopefully not crash my connection now.

Logistics

- "Raise hand" will hopefully not crash my connection now.
- So you can try that, as well as chat, for questions.

Logistics

- "Raise hand" will hopefully not crash my connection now.
- So you can try that, as well as chat, for questions.
- We're going to try using Zoom breakout rooms for problems, later today.

Logistics

- "Raise hand" will hopefully not crash my connection now.
- So you can try that, as well as chat, for questions.
- We're going to try using Zoom breakout rooms for problems, later today.
- Inside, you can "Ask for help" and it pops up a notification for me.

Logistics

- "Raise hand" will hopefully not crash my connection now.
- So you can try that, as well as chat, for questions.
- We're going to try using Zoom breakout rooms for problems, later today.
- Inside, you can "Ask for help" and it pops up a notification for me.
- You stop being able to see my screen, so be sure to record the exercises before joining the breakout room.

Talk Outline

(1) Bottleneck Shortest Paths
(2) A* search
(3) Problems

Bottleneck Shortest Paths

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from s to t, or anywhere else?

Bottleneck Shortest Paths

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from s to t, or anywhere else?
- Max bandwidth path from s to t

Bottleneck Shortest Paths

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from s to t, or anywhere else?
- Max bandwidth path from s to t
- We'll use it for network flows

Bottleneck Shortest Paths

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from s to t, or anywhere else?
- Max bandwidth path from s to t
- We'll use it for network flows
- On undirected graph:

Bottleneck Shortest Paths

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from s to t, or anywhere else?
- Max bandwidth path from s to t
- We'll use it for network flows
- On undirected graph: is maximum spanning tree

Bottleneck Shortest Paths

- Mentioned before spring break: network of roads, each has bridges of various heights on it. How high of a truck can go from s to t, or anywhere else?
- Max bandwidth path from s to t
- We'll use it for network flows
- On undirected graph: is maximum spanning tree
- On directed graph: Dijkstra/Prim variant solves in $O(E+V \log V)$.

Dijkstra's Algorithm

1: function DiJkstra(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue $([(0, s$, None $)])$
\triangleright dist, vertex, pred
4: \quad while q do
5: \quad d, u, parent \leftarrow q.pop_min ()
6:
7:
8:
9:
10 :
11: if $u \in$ pred then continue
pred $[u] \leftarrow$ parent $\operatorname{dist}[u] \leftarrow \mathrm{d}$ for $u \rightarrow v \in E$ do $q . \operatorname{push}((\operatorname{dist}[u]+w(u \rightarrow v), v, u))$
12: return dist, pred

Dijkstra's Prim's Algorithm

1: function $\operatorname{Prim}(s)$
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow \operatorname{PriorityQueue}([(-\infty, s$, None $)]) \quad \triangleright$ dist, vertex, pred
4: \quad while q do
5: \quad d, u, parent \leftarrow q.pop_min()
6:
7:
8: $\quad \operatorname{pred}[u] \leftarrow$ parent
9:
10
11: if $u \in$ pred then continue
$\operatorname{dist}[u] \leftarrow \mathrm{d}$ for $u \rightarrow v \in E$ do

$$
q \cdot p u s h((\operatorname{dist}[u]+w(u \rightarrow v), v, u))
$$

12: return dist, pred

Dijkstra's Algorithm

1: function DiJkstra(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, s, None)])
\triangleright dist, vertex, pred
4: \quad while q do

5:
6:
7:
8:
9:
10 :
11:
12: return dist, pred

Dijkstra's Bottleneck shortest path Algorithm

1: function Bottleneck(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, s, None) $]$)
\triangleright dist, vertex, pred
4: \quad while q do
5: \quad d, u, parent \leftarrow q.pop_max ()
6:
7:
8:
9 :
10 :
11:
12: return dist, pred

Dijkstra's Bottleneck shortest path Algorithm

1: function Bottleneck(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, s, None) $]$)
\triangleright dist, vertex, pred
4: \quad while q do
5: \quad d, u, parent \leftarrow q.pop_max ()
6:
7:
8:
9:
10 :
11:
12: return dist, pred

$$
(\min ,+) \rightarrow(\max , \min)
$$

Talk Outline

(1) Bottleneck Shortest Paths

(2) A^{*} search

Shortest $s-t$ path with Dijkstra

Shortest $s-t$ path with Dijkstra

Normal Dijkstra

Shortest $s-t$ path with Dijkstra

This is the wrong direction. Why waste our timing exploring it?

A^{*} search

- Dijkstra explores outward from s.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ...with a portal or something?

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ... with a portal or something?
- Fact: you cannot get from NYC to SF in 20 miles.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ... with a portal or something?
- Fact: you cannot get from NYC to SF in 20 miles.
- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ... with a portal or something?
- Fact: you cannot get from NYC to SF in 20 miles.
- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- Dijkstra: visit node of smallest dist[u]

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ... with a portal or something?
- Fact: you cannot get from NYC to SF in 20 miles.
- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- Dijkstra: visit node of smallest dist[u]
- A^{*} : visit node of smallest dist $[u]+h(u)$

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ...with a portal or something?
- Fact: you cannot get from NYC to SF in 20 miles.
- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- Dijkstra: visit node of smallest dist[u]
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Example: $h($ NYC $)$ is Euclidean distance from NYC to SF.

A^{*} search

- Dijkstra explores outward from s.
- Can stop if it reaches t, but doesn't bias search toward t.
- Consider Dijkstra from Austin to San Francisco:
- Austin \rightarrow New York $=1740$ miles.
- Austin \rightarrow San Francisco $=1760$ miles.
- Dijkstra will visit NYC before SF.
- Once it visits SF, it stops searching
- So it needs to visit NYC, in case it can get from NYC to SF in 20 miles.
- ... with a portal or something?
- Fact: you cannot get from NYC to SF in 20 miles.
- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- Dijkstra: visit node of smallest dist[u]
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Example: $h($ NYC) is Euclidean distance from NYC to SF.
- Any path through NYC will take at least 3700 miles.

Dijkstra's Algorithm

1: function DiJkstra(s)
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue([(0, s, None) $])$
\triangleright dist, vertex, pred
4: \quad while q do
5: \quad d, u, parent \leftarrow q.pop_min ()
6:
7:
8:
9:
10 :
11: if $d \geq \operatorname{dist}[u]$ then continue
pred $[u] \leftarrow$ parent $\operatorname{dist}[u] \leftarrow \mathrm{d}$ for $u \rightarrow v \in E$ do $q . \operatorname{push}((\operatorname{dist}[u]+w(u \rightarrow v), v, u))$
12: return dist, pred

Dijkstra's A* Search Algorithm

1: function $\mathrm{A}^{*}(s)$
2: pred, dist $\leftarrow\},\{ \}$
3: $\quad q \leftarrow$ PriorityQueue $([(0+h(s), s$, None $)]) \triangleright$ dist, vertex, pred
4: \quad while q do
5: \quad d, u, parent \leftarrow q.pop_min()
6:
7:
8:
9:
10 :
11: if $d-h(u) \geq \operatorname{dist}[u]$ then continue
pred $[u] \leftarrow$ parent $\operatorname{dist}[u] \leftarrow \mathrm{d}-\mathrm{h}(\mathrm{u})$ for $u \rightarrow v \in E$ do $q . \operatorname{push}((\operatorname{dist}[u]+w(u \rightarrow v)+\mathrm{h}(v), v, u))$
12: return dist, pred

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist[u]+h(u)

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:
- Heuristic "admissible:" $h(u) \leq d(u, t)$

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:
- Heuristic "admissible:" $h(u) \leq d(u, t)$
\star Admissible \Longrightarrow first visit to t gives optimal path, so correct.

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:
- Heuristic "admissible:" $h(u) \leq d(u, t)$
\star Admissible \Longrightarrow first visit to t gives optimal path, so correct.
- Heuristic "consistent:" $h(t)=0$ and $h(u) \leq w(u, v)+h(v)$.

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:
- Heuristic "admissible:" $h(u) \leq d(u, t)$
\star Admissible \Longrightarrow first visit to t gives optimal path, so correct.
- Heuristic "consistent:" $h(t)=0$ and $h(u) \leq w(u, v)+h(v)$.
\star Equivalent: $h(t)=0$ and $w^{\prime}(u, v) \geq 0$ for all u, v.

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:
- Heuristic "admissible:" $h(u) \leq d(u, t)$
\star Admissible \Longrightarrow first visit to t gives optimal path, so correct.
- Heuristic "consistent:" $h(t)=0$ and $h(u) \leq w(u, v)+h(v)$.
\star Equivalent: $h(t)=0$ and $w^{\prime}(u, v) \geq 0$ for all u, v.
$\star w^{\prime} \geq 0 \Longrightarrow$ Dijkstra is fast/correct (depending on implementation).

Heuristics/potential functions

- A^{*} : uses a heuristic $h(u)$, estimating $d(u, t)$.
- A^{*} : visit node of smallest dist $[u]+h(u)$
- Paths equivalent to Dijkstra on a reweighted graph:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

[$h(u)$ is height of a hill: easy to go down, hard to go up.]

- Every $s \rightsquigarrow t$ path P on w^{\prime} has length

$$
\sum_{e \in P} w^{\prime}(e)=h(t)-h(s)+\sum_{e \in P} w(e)
$$

- So which path is shortest is same under w or w^{\prime}.
- Heuristics:
- Heuristic "admissible:" $h(u) \leq d(u, t)$
\star Admissible \Longrightarrow first visit to t gives optimal path, so correct.
- Heuristic "consistent:" $h(t)=0$ and $h(u) \leq w(u, v)+h(v)$.
\star Equivalent: $h(t)=0$ and $w^{\prime}(u, v) \geq 0$ for all u, v.
$\star w^{\prime} \geq 0 \Longrightarrow$ Dijkstra is fast/correct (depending on implementation).
\star And consistent \Longrightarrow admissible.

Shortest $s-t$ path with Dijkstra

Summary of Dijkstra variants

- Bottleneck shortest paths

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?
- Dijkstra with potentials:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?
- Dijkstra with potentials:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v) .
$$

- Can adjust the graph to have nonnegative weights

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?
- Dijkstra with potentials:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t (A^{*} search).

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?
- Dijkstra with potentials:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t (A^{*} search).
- Admissible \Longrightarrow correct

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?
- Dijkstra with potentials:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t (A^{*} search).
- Admissible \Longrightarrow correct
- Consistent \Longrightarrow correct and $O(E+V \log V)$

Summary of Dijkstra variants

- Bottleneck shortest paths
- How do they relate to MSTs?
- Dijkstra with potentials:

$$
w^{\prime}(u \rightarrow v)=w(u \rightarrow v)-h(u)+h(v)
$$

- Can adjust the graph to have nonnegative weights
- Can adjust the graph to bias toward goal t (A^{*} search).
- Admissible \Longrightarrow correct
- Consistent \Longrightarrow correct and $O(E+V \log V)$
- Can be faster in many cases.

Talk Outline

(1) Bottleneck Shortest Paths

(2) A* search
(3) Problems

Shortest Path Problems

http://jeffe.cs.illinois.edu/teaching/algorithms/book/ 08-sssp.pdf

- Problem 2: Dijkstra with k negative edges.
- Problem 3: vertices, not edges, have weight.
- Problem 5: edge reinsertion
- Problem 4: Replacement paths on directed graphs
- Problem 12: Smallest shortest path
- Problem 16, 17: Remember reductions?
- Problem 1 of https://www.cs.utexas.edu/~ecprice/courses/ 331h/psets/331h-ps6.pdf

