All Pairs Shortest Paths

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Talk Outline

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.
- Approaches:

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.
- Approaches:
- Bellman-Ford for all $s: O\left(V^{2} E\right)$

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.
- Approaches:
- Bellman-Ford for all s: $O\left(V^{2} E\right)$
- Dijkstra for all s: $O\left(V E+V^{2} \log V\right)$ if nonnegative weights

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.
- Approaches:
- Bellman-Ford for all s: $O\left(V^{2} E\right)$
- Dijkstra for all s: $O\left(V E+V^{2} \log V\right)$ if nonnegative weights
- Floyd-Warshall: $O\left(V^{3}\right)$

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.
- Approaches:
- Bellman-Ford for all s: $O\left(V^{2} E\right)$
- Dijkstra for all s: $O\left(V E+V^{2} \log V\right)$ if nonnegative weights
- Floyd-Warshall: $O\left(V^{3}\right)$
- Johnson: $O\left(V E+V^{2} \log V\right)$ in general

Floyd-Warshall

```
1: function FloydWarshall}(A)\quad\trianglerightA[u->v] is cost of u->v edg
2:
    \triangleright ~ ( o r ~ \infty ~ i f ~ n o ~ e d g e )
3: for }w\inV\mathrm{ do
4: }\quad\mathrm{ for }u\inV\mathrm{ do
        for v}\inV\mathrm{ do
        D[u,v]\leftarrow\operatorname{min}(D[u,v],D[u,w]+D[w,v])
7: return D
```


Floyd-Warshall

```
1: function FloydWarshall(A) }\trianglerightA[u->v] is cost of u->v edg
2:
    \triangleright (or }\infty\mathrm{ if no edge)
3: for }w\inV\mathrm{ do
4: }\quad\mathrm{ for }u\inV\mathrm{ do
        for v}\inV\mathrm{ do
        D[u,v]\leftarrow\operatorname{min}(D[u,v],D[u,w]+D[w,v])
7: return D
```

- Takes an adjacency matrix, returns a distance matrix

Floyd-Warshall

```
1: function FloydWarshall(A) }\trianglerightA[u->v] is cost of u->v edg
2:
    \triangleright ~ ( o r ~ \infty ~ i f ~ n o ~ e d g e )
3: for w}\inV\mathrm{ do
4: }\quad\mathrm{ for }u\inV\mathrm{ do
        for v}\inV\mathrm{ do
        D[u,v]\leftarrow\operatorname{min}(D[u,v],D[u,w]+D[w,v])
7: return D
```

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Floyd-Warshall

1: function $\operatorname{FloydWarshall}(A) \quad A[u \rightarrow v]$ is cost of $u \rightarrow v$ edge
2: $\quad D \leftarrow A$
3: \quad for $w \in V$ do
4: \quad for $u \in V$ do
for $v \in V$ do

$$
D[u, v] \leftarrow \min (D[u, v], D[u, w]+D[w, v])
$$

7: return D

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Lemma

Let $P=\left(s, u_{1}, \ldots, u_{k}, t\right)$ be a shortest $s \rightarrow t$ path. After visiting $w \notin\{s, t\}, P \backslash\{w\}$ is also a shortest $s \rightsquigarrow t$ path in D.

Floyd-Warshall

1: function $\operatorname{FloydWarshall}(A) \quad A[u \rightarrow v]$ is cost of $u \rightarrow v$ edge
2: $\quad D \leftarrow A$
3: \quad for $w \in V$ do
4: \quad for $u \in V$ do
5:
6:
for $v \in V$ do
$D[u, v] \leftarrow \min (D[u, v], D[u, w]+D[w, v])$
7: return D

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Lemma

Let $P=\left(s, u_{1}, \ldots, u_{k}, t\right)$ be a shortest $s \rightarrow t$ path. After visiting $w \notin\{s, t\}, P \backslash\{w\}$ is also a shortest $s \rightsquigarrow t$ path in D.

- Q: negative edges?

Floyd-Warshall

1: function FloydWarshall $(A) \quad \triangleright A[u \rightarrow v]$ is cost of $u \rightarrow v$ edge
2: $\quad D \leftarrow A$
3: \quad for $w \in V$ do
4: \quad for $u \in V$ do
5:
6:
for $v \in V$ do
$D[u, v] \leftarrow \min (D[u, v], D[u, w]+D[w, v])$
7: return D

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Lemma

Let $P=\left(s, u_{1}, \ldots, u_{k}, t\right)$ be a shortest $s \rightarrow t$ path. After visiting $w \notin\{s, t\}, P \backslash\{w\}$ is also a shortest $s \rightsquigarrow t$ path in D.

- Q: negative edges? OK

Floyd-Warshall

1: function $\operatorname{FloydWarshall}(A) \triangleright A[u \rightarrow v]$ is cost of $u \rightarrow v$ edge
2: $\quad D \leftarrow A$
3: \quad for $w \in V$ do
4: \quad for $u \in V$ do
5:
6:
for $v \in V$ do
$D[u, v] \leftarrow \min (D[u, v], D[u, w]+D[w, v])$
7: return D

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Lemma

Let $P=\left(s, u_{1}, \ldots, u_{k}, t\right)$ be a shortest $s \rightarrow t$ path. After visiting $w \notin\{s, t\}, P \backslash\{w\}$ is also a shortest $s \rightsquigarrow t$ path in D.

- Q: negative edges? OK Negative cycles?

Floyd-Warshall

1: function FloydWarshall (A)
2:
3: \quad for $w \in V$ do
4: \quad for $u \in V$ do
for $v \in V$ do $D[u, v] \leftarrow \min (D[u, v], D[u, w]+D[w, v])$
7: return D

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Lemma

Let $P=\left(s, u_{1}, \ldots, u_{k}, t\right)$ be a shortest $s \rightarrow t$ path. After visiting $w \notin\{s, t\}, P \backslash\{w\}$ is also a shortest $s \rightsquigarrow t$ path in D.

- Q: negative edges? OK Negative cycles? Check if diagonal <0

Floyd-Warshall

1: function FloydWarshall (A)
2:
3: \quad for $w \in V$ do
4: \quad for $u \in V$ do
for $v \in V$ do
$D[u, v] \leftarrow \min (D[u, v], D[u, w]+D[w, v])$
7: return D

- Takes an adjacency matrix, returns a distance matrix
- $O\left(n^{3}\right)$ time

Lemma

Let $P=\left(s, u_{1}, \ldots, u_{k}, t\right)$ be a shortest $s \rightarrow t$ path. After visiting $w \notin\{s, t\}, P \backslash\{w\}$ is also a shortest $s \rightsquigarrow t$ path in D.

- Q: negative edges? OK Negative cycles? Check if diagonal <0

Johnson's algorithm

- Recall:

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s) .
$$

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s) .
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v)
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s) .
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,
(1) Compute a single h so $w^{\prime}(u \rightarrow v) \geq 0$ for all h.

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v)
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s) .
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,
(1) Compute a single h so $w^{\prime}(u \rightarrow v) \geq 0$ for all h. (h consistent)

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v)
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s) .
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,
(1) Compute a single h so $w^{\prime}(u \rightarrow v) \geq 0$ for all h. (h consistent part 2)

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v)
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s)
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,
(1) Compute a single h so $w^{\prime}(u \rightarrow v) \geq 0$ for all h. (h consistent part 2)
(2) Compute D^{\prime} for every source s using Dijkstra on w^{\prime}.

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v)
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s)
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,
(1) Compute a single h so $w^{\prime}(u \rightarrow v) \geq 0$ for all h. (h consistent part 2)
(2) Compute D^{\prime} for every source s using Dijkstra on w^{\prime}.
(3) Output D.

Johnson's algorithm

- Recall:
- Dijkstra would be great if we had nonnegative edges
- Reweighting: for any $h: V \rightarrow \mathbb{R}$, the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v)
$$

has shortest path distances

$$
D^{\prime}[s, t]=D[s, t]+h(t)-h(s)
$$

- Idea: in $O\left(V E+V^{2} \log V\right)$,
(1) Compute a single h so $w^{\prime}(u \rightarrow v) \geq 0$ for all h. (h consistent part 2)
(2) Compute D^{\prime} for every source s using Dijkstra on w^{\prime}.
(3) Output D.

Finding a good heuristic

- Pick an arbitrary source s^{*}.

Finding a good heuristic

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.

Finding a good heuristic

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.

Finding a good heuristic

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

Finding a good heuristic

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Now, for any $u, v \in V$,

$$
\begin{aligned}
w^{\prime}(u \rightarrow v) & :=w(u \rightarrow v)-h(u)+h(v) \\
& =w(u \rightarrow v)+D\left[s^{*}, u\right]-D\left[s^{*}, v\right] .
\end{aligned}
$$

Finding a good heuristic

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Now, for any $u, v \in V$,

$$
\begin{aligned}
w^{\prime}(u \rightarrow v) & :=w(u \rightarrow v)-h(u)+h(v) \\
& =w(u \rightarrow v)+D\left[s^{*}, u\right]-D\left[s^{*}, v\right] .
\end{aligned}
$$

But by the triangle inequality,

$$
D\left[s^{*}, v\right] \leq D\left[s^{*}, u\right]+w(u \rightarrow v)
$$

so $w^{\prime}(u \rightarrow v) \geq 0$.

Johnson's algorithm

- Pick an arbitrary source s^{*}.

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Define the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Define the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

- For every $s \in V$, run Dijkstra from s on w^{\prime} to compute distance matrix D^{\prime}

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Define the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

- For every $s \in V$, run Dijkstra from s on w^{\prime} to compute distance matrix D^{\prime}
- Output

$$
D[s, t]=D^{\prime}[s, t]-h(t)+h(s)
$$

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Define the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

- For every $s \in V$, run Dijkstra from s on w^{\prime} to compute distance matrix D^{\prime}
- Output

$$
D[s, t]=D^{\prime}[s, t]-h(t)+h(s)
$$

- Overall: $O\left(V E+V^{2} \log V\right)$ time.

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Define the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

- For every $s \in V$, run Dijkstra from s on w^{\prime} to compute distance matrix D^{\prime}
- Output

$$
D[s, t]=D^{\prime}[s, t]-h(t)+h(s)
$$

- Overall: $O\left(V E+V^{2} \log V\right)$ time.
- Q:

Johnson's algorithm

- Pick an arbitrary source s^{*}.
- Compute shortest paths $D\left[s^{*}, u\right]$ from s^{*} on original graph.
- with Bellman-Ford in $O(V E)$ time.
- Set

$$
h(u):=-D\left[s^{*}, u\right]
$$

- Define the graph with weights

$$
w^{\prime}(u \rightarrow v):=w(u \rightarrow v)-h(u)+h(v) .
$$

- For every $s \in V$, run Dijkstra from s on w^{\prime} to compute distance matrix D^{\prime}
- Output

$$
D[s, t]=D^{\prime}[s, t]-h(t)+h(s)
$$

- Overall: $O\left(V E+V^{2} \log V\right)$ time.
- Q: negative cycles?

All Pairs Shortest Paths

- Given a graph G, find shortest $s \rightsquigarrow t$ path distance for all $s, t \in V$.
- Approaches:
- Bellman-Ford for all s: $O\left(V^{2} E\right)$
- Dijkstra for all s: $O\left(V E+V^{2} \log V\right)$ if nonnegative weights
- Floyd-Warshall: $O\left(V^{3}\right)$
- Johnson: $O\left(V E+V^{2} \log V\right)$ in general

Talk Outline

(2) Problems

Shortest Path Problems

http://jeffe.cs.illinois.edu/teaching/algorithms/book/ 08-sssp.pdf

- Problem 2: Dijkstra with k negative edges.
- Problem 3: vertices, not edges, have weight.
- Problem 5: edge reinsertion
- Problem 4: Replacement paths on directed graphs
- Problem 12: Smallest shortest path
- Problem 16, 17: Remember reductions?
- Problem 1 of https://www.cs.utexas.edu/~ecprice/courses/ 331h/psets/331h-ps6.pdf

