Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

• Office hours by appointment this week.

Logistics

- Office hours by appointment this week.
- Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)

Logistics

- Office hours by appointment this week.
- Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)
- This week: linear programming

Logistics

- Office hours by appointment this week.
- Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)
- This week: linear programming
- Next week: complexity

Class Outline

1 Introduction to Linear Programming

2) How to Solve a Linear Program

3 Reducing Problems to Linear Programs

• General way of writing problems: maximize linear function subject to linear constraints.

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks
 - Cars take 2 tons metal, 1 ton wood

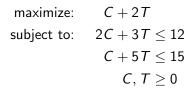
- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks
 - Cars take 2 tons metal, 1 ton wood
 - Trucks take 3 tons metal, 5 tons wood

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks
 - Cars take 2 tons metal, 1 ton wood
 - Trucks take 3 tons metal, 5 tons wood
 - Trucks carry twice as much as cars.

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks
 - Cars take 2 tons metal, 1 ton wood
 - Trucks take 3 tons metal, 5 tons wood
 - Trucks carry twice as much as cars.
 - You are supplied 12 tons metal, 15 tons wood / day.

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks
 - Cars take 2 tons metal, 1 ton wood
 - Trucks take 3 tons metal, 5 tons wood
 - Trucks carry twice as much as cars.
 - ▶ You are supplied 12 tons metal, 15 tons wood / day.
 - Q: how many cars vs trucks to produce to maximize total capacity?

- General way of writing problems: maximize linear function subject to linear constraints.
- Developed 1939 by Leonid Kantorovich
- Think central planning of factories:
 - Can produce cars or trucks
 - Cars take 2 tons metal, 1 ton wood
 - Trucks take 3 tons metal, 5 tons wood
 - Trucks carry twice as much as cars.
 - ▶ You are supplied 12 tons metal, 15 tons wood / day.
 - Q: how many cars vs trucks to produce to maximize total capacity?
- Mathematically:



Solving small cases by hand

 $\begin{array}{ll} \mbox{maximize:} & C+2T\\ \mbox{subject to:} & 2C+3T \leq 12\\ & C+5T \leq 15\\ & C, T \geq 0 \end{array}$

Solving small cases by hand

 $\begin{array}{ll} \mbox{maximize:} & C+2T\\ \mbox{subject to:} & 2C+3T \leq 12\\ & C+5T \leq 15\\ & C, T \geq 0 \end{array}$

- Algebraically:
 - Find all vertices, and for each:
 - Check if feasible (satisfy the constraints)
 - Pick the feasible vertex maximizing the objective.

Solving small cases by hand

 $\begin{array}{ll} \mbox{maximize:} & C+2T\\ \mbox{subject to:} & 2C+3T \leq 12\\ & C+5T \leq 15\\ & C, T \geq 0 \end{array}$

- Algebraically:
 - Find all vertices, and for each:
 - Check if feasible (satisfy the constraints)
 - Pick the feasible vertex maximizing the objective.
- Geometrically:
 - Draw the picture of all feasible points
 - Slide in the direction of the objective until you get stuck.

General Linear Programming (LP)

Linear Programming

Optimize (maximize or minimize) a *linear objective* in many variables, subject to *linear constraints* on them $(=, \leq, \geq)$.

General Linear Programming (LP)

Linear Programming

Optimize (maximize or minimize) a *linear objective* in many variables, subject to *linear constraints* on them $(=, \leq, \geq)$.

maximize:	$x_1 + 3x_2 - 345x_3 + x_4$
subject to:	$x_1 - 17x_2 \le x_4 + 12$
	$x_4 - x_3 \ge x_2$
	$67x_2 - 3x_1 = 83$
	$x_3 \leq 0$

Formulations of LP

Standard form (or "symmetric")

For *m* constraints on *n* variables, given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$:

maximize:	$c \cdot x$
subject to:	$Ax \leq b$
	$x \ge 0$

Formulations of LP

Standard form (or "symmetric")

For *m* constraints on *n* variables, given $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$:

 $\begin{array}{ll} \text{maximize:} & c \cdot x \\ \text{subject to:} & Ax \leq b \\ & x \geq 0 \end{array}$

Common alternative forms

"Alter	native form"		"Slack	form"
maximize:	c·x		maximize:	$c \cdot x$
subject to:	$Ax \leq b$	or	subject to:	Ax = b
				$x \ge 0$

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

• Standard \rightarrow alternative:

Standard	Alternative	Slack
$\max c \cdot x$	$\max c \cdot x$	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

• Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$

Standard	Alternative	Slack
$\max c \cdot x$	$\max c \cdot x$	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

• Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$

• Alternative \rightarrow standard:

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.
- Slack \rightarrow standard:

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.
- Slack \rightarrow standard: solve standard with $A' = \begin{bmatrix} A \\ -A \end{bmatrix}$, $b' = \begin{bmatrix} b \\ -b \end{bmatrix}$.

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.
- Slack \rightarrow standard: solve standard with $A' = \begin{bmatrix} A \\ -A \end{bmatrix}$, $b' = \begin{bmatrix} b \\ -b \end{bmatrix}$.
- Standard \rightarrow slack:

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.
- Slack \rightarrow standard: solve standard with $A' = \begin{bmatrix} A \\ -A \end{bmatrix}$, $b' = \begin{bmatrix} b \\ -b \end{bmatrix}$.
- Standard \rightarrow slack: *m* new "slack" variables *z*, solve slack with $A' = \begin{bmatrix} A & I_m \end{bmatrix}$

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

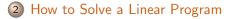
- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.
- Slack \rightarrow standard: solve standard with $A' = \begin{bmatrix} A \\ -A \end{bmatrix}$, $b' = \begin{bmatrix} b \\ -b \end{bmatrix}$.
- Standard \rightarrow slack: *m* new "slack" variables *z*, solve slack with $A' = \begin{bmatrix} A & I_m \end{bmatrix}$
- Minimization problems?

Standard	Alternative	Slack
$\max c \cdot x$	max c · x	$\max c \cdot x$
$Ax \leq b$	$Ax \leq b$	Ax = b
$x \ge 0$		$x \ge 0$

- Standard \rightarrow alternative: solve alternative with $A' = \begin{bmatrix} A \\ -I_n \end{bmatrix}$, $b' = \begin{bmatrix} b \\ 0 \end{bmatrix}$
- Alternative \rightarrow standard: new nonnegative variables y and z, so x = y z. Solve standard with $A' = \begin{bmatrix} A & -A \end{bmatrix}$.
- Slack \rightarrow standard: solve standard with $A' = \begin{bmatrix} A \\ -A \end{bmatrix}$, $b' = \begin{bmatrix} b \\ -b \end{bmatrix}$.
- Standard \rightarrow slack: *m* new "slack" variables *z*, solve slack with $A' = \begin{bmatrix} A & I_m \end{bmatrix}$
- Minimization problems? c' = -c.

Class Outline

Introduction to Linear Programming



3 Reducing Problems to Linear Programs

Overview of solution methods

Simplex

Simplex

Ellipsoid

Simplex

Ellipsoid

- Simplex
 - ▶ Start at a vertex, and walk from vertex to vertex, increasing objective.
- Ellipsoid

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
- Ellipsoid

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid

- Simplex
 - ▶ Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid
 - Iteratively shrink an ellipsoid around the solution.
- Interior point

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid
 - Iteratively shrink an ellipsoid around the solution.
 - ► First polynomial time algorithm (Khachiyan '79); O(n⁶L) for L bits of precision.
- Interior point

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid
 - Iteratively shrink an ellipsoid around the solution.
 - ► First polynomial time algorithm (Khachiyan '79); O(n⁶L) for L bits of precision.
- Interior point
 - Iteratively move through the center of the region.

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid
 - Iteratively shrink an ellipsoid around the solution.
 - ► First polynomial time algorithm (Khachiyan '79); O(n⁶L) for L bits of precision.
- Interior point
 - Iteratively move through the center of the region.
 - Introduced by Karmarkar in '84, $O(n^{3.5})$.

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid
 - Iteratively shrink an ellipsoid around the solution.
 - ► First polynomial time algorithm (Khachiyan '79); O(n⁶L) for L bits of precision.
- Interior point
 - Iteratively move through the center of the region.
 - Introduced by Karmarkar in '84, $O(n^{3.5})$.
 - ▶ More practical than ellipsoid, even better than simplex sometimes.

- Simplex
 - Start at a vertex, and walk from vertex to vertex, increasing objective.
 - First algorithm (Dantzig '47)
 - ▶ Worst-case inputs can take exponential time, but fast on *most* inputs.
- Ellipsoid
 - Iteratively shrink an ellipsoid around the solution.
 - ► First polynomial time algorithm (Khachiyan '79); O(n⁶L) for L bits of precision.
- Interior point
 - Iteratively move through the center of the region.
 - Introduced by Karmarkar in '84, $O(n^{3.5})$.
 - More practical than ellipsoid, even better than simplex sometimes.
 - ▶ Best theoretical result: $O(n^{2.38}L)$ time (Cohen, Lee, Song '19).

• Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

1) Find an initial vertex (we'll see how later)

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Find an initial vertex (we'll see how later)
- ② Repeatedly move to adjacent vertex of larger objective.

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Find an initial vertex (we'll see how later)
- 2 Repeatedly move to adjacent vertex of larger objective.
 - Correctness:

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Find an initial vertex (we'll see how later)
- ② Repeatedly move to adjacent vertex of larger objective.

Correctness:

If we get to the true solution, the algorithm will stop.

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Find an initial vertex (we'll see how later)
- ② Repeatedly move to adjacent vertex of larger objective.

Correctness:

- If we get to the true solution, the algorithm will stop.
- ▶ By convexity: if *not* at the true solution, can move and make progress.

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Find an initial vertex (we'll see how later)
- ② Repeatedly move to adjacent vertex of larger objective.

Correctness:

- If we get to the true solution, the algorithm will stop.
- ▶ By convexity: if *not* at the true solution, can move and make progress.
- Running time:

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- Find an initial vertex (we'll see how later)
- ② Repeatedly move to adjacent vertex of larger objective.

Correctness:

- If we get to the true solution, the algorithm will stop.
- ▶ By convexity: if *not* at the true solution, can move and make progress.
- Running time:
 - Polynomial time per iteration.

- Linear program with *n* variables and *m* constraints (including $x_i \ge 0$).
- Vertex of feasible set is where some *n* constraints are tight.
- *n* adjacent vertices: drop one constraint, move along line until another constraint becomes tight.

Simplex algorithm

- I Find an initial vertex (we'll see how later)
- 2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

- If we get to the true solution, the algorithm will stop.
- ▶ By convexity: if *not* at the true solution, can move and make progress.

Running time:

- Polynomial time per iteration.
- Number of iterations depends on problem instance & rule for choosing next vertex, but could be exponential.

- Simplex works, eventually, once you have a feasible vertex.
- Doesn't seem so useful:

Problem

If you can solve "does this polytope have any feasible point" you can also solve linear programming (= optimize over polytopes).

- Simplex works, eventually, once you have a feasible vertex.
- Doesn't seem so useful:

Problem

If you can solve "does this polytope have any feasible point" you can also solve linear programming (= optimize over polytopes).

Proof.

We want to determine $OPT = \max c \cdot x$ s.t. $Ax \leq b$. Then $OPT \geq \tau$ if and only if the polytope

$$Ax \le b$$
$$c \cdot x \ge \tau$$

has any solution. So if we can solve this, we binary search on τ to solve LP.

Eric Price	(UT Austin)
------------	-------------

• Simplex works, eventually, once you have a feasible vertex.

- Simplex works, eventually, once you have a feasible vertex.
- In general, finding a feasible vertex is as hard as LP.

- Simplex works, eventually, once you have a feasible vertex.
- In general, finding a feasible vertex is as hard as LP.
- We create a new LP, where finding a feasible vertex is easy, and the optimal solution identifies a feasible point of the initial LP.

- Simplex works, eventually, once you have a feasible vertex.
- In general, finding a feasible vertex is as hard as LP.
- We create a new LP, where finding a feasible vertex is easy, and the optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that $Ax \leq b, x \geq 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:zsubject to:
$$Ax - z \le b$$
(NEW) $x, z \ge 0$

- Simplex works, eventually, once you have a feasible vertex.
- In general, finding a feasible vertex is as hard as LP.
- We create a new LP, where finding a feasible vertex is easy, and the optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that $Ax \leq b, x \geq 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:zsubject to:
$$Ax - z \le b$$
(NEW) $x, z \ge 0$

• z = 0 possible if and only if $Ax \le b, x \ge 0$ is feasible.

- Simplex works, eventually, once you have a feasible vertex.
- In general, finding a feasible vertex is as hard as LP.
- We create a new LP, where finding a feasible vertex is easy, and the optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that $Ax \leq b, x \geq 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:zsubject to:
$$Ax - z \le b$$
(NEW) $x, z \ge 0$

• z = 0 possible if and only if $Ax \le b, x \ge 0$ is feasible.

• x = 0, $z = \max(0, b_1, \dots, b_m)$ is a feasible vertex.

- Simplex works, eventually, once you have a feasible vertex.
- In general, finding a feasible vertex is as hard as LP.
- We create a new LP, where finding a feasible vertex is easy, and the optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that $Ax \leq b, x \geq 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:zsubject to:
$$Ax - z \le b$$
(NEW) $x, z \ge 0$

- z = 0 possible if and only if $Ax \le b, x \ge 0$ is feasible.
- x = 0, $z = \max(0, b_1, \dots, b_m)$ is a feasible vertex.
- So simplex can get started on NEW and solve it.

Eric Price (UT Austin)

• Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that $Ax \le b, x \ge 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:	Ζ	
subject to:	$Ax - z \leq b$	(NEW)
	$x, z \ge 0$	

• Simplex can get started on NEW and solve it.

• Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that $Ax \le b, x \ge 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:	Ζ	
subject to:	$Ax - z \leq b$	(NEW)
	$x, z \ge 0$	

- Simplex can get started on NEW and solve it.
- The solution to NEW returned by simplex is a vertex (\hat{x}, \hat{z}) of NEW.

• Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that $Ax \le b, x \ge 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:	Ζ	
subject to:	$Ax - z \leq b$	(NEW)
	$x, z \ge 0$	

- Simplex can get started on NEW and solve it.
- The solution to NEW returned by simplex is a vertex (\hat{x}, \hat{z}) of NEW.
- NEW has n + 1 variables, one tight constraint of the optimum is $z \ge 0$, and the other n are among $Ax \le b, x \ge 0$.

• Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that $Ax \le b, x \ge 0$. Introduce a new variable $z \in \mathbb{R}$, and solve:

minimize:	Ζ	
subject to:	$Ax - z \leq b$	(NEW
	$x, z \ge 0$	

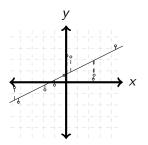
- Simplex can get started on NEW and solve it.
- The solution to NEW returned by simplex is a vertex (\hat{x}, \hat{z}) of NEW.
- NEW has n + 1 variables, one tight constraint of the optimum is $z \ge 0$, and the other n are among $Ax \le b, x \ge 0$.
- Hence the solution \hat{x} is a vertex of the original LP.

Class Outline

Introduction to Linear Programming

2) How to Solve a Linear Program

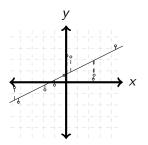
L1 linear regression



Given *n* points on plane: $(x_1, y_1), \ldots, (x_n, y_n)$. Find the line mx + b minimizing the average error:

$$\mathsf{Err} = \frac{1}{n} \sum_{i=1}^{n} |y_i - (mx_i + b)|$$

L1 linear regression



Given *n* points on plane: $(x_1, y_1), \ldots, (x_n, y_n)$. Find the line mx + b minimizing the average error:

$$\mathsf{Err} = \frac{1}{n} \sum_{i=1}^{n} |y_i - (mx_i + b)|$$

Part (2): Now, minimize the maximum error.

Writing old problems as linear programs

- Write network flow as a linear program
- Write shortest paths as a linear program
- Write minimum cut as a linear program

Eric Price (UT Austin)

Eric Price (UT Austin)