
Linear Programming

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 1

/ 17

Logistics

Office hours by appointment this week.

Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)

This week: linear programming

Next week: complexity

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 2

/ 17

Logistics

Office hours by appointment this week.

Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)

This week: linear programming

Next week: complexity

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 2

/ 17

Logistics

Office hours by appointment this week.

Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)

This week: linear programming

Next week: complexity

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 2

/ 17

Logistics

Office hours by appointment this week.

Problem 2(b), on set selection, is now extra credit (= 1/8 of a HW)

This week: linear programming

Next week: complexity

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 2

/ 17

Class Outline

1 Introduction to Linear Programming

2 How to Solve a Linear Program

3 Reducing Problems to Linear Programs

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 3

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich

Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks

I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood

I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood

I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.

I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.

I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Linear Programming
General way of writing problems: maximize linear function subject to
linear constraints.

Developed 1939 by Leonid Kantorovich
Think central planning of factories:

I Can produce cars or trucks
I Cars take 2 tons metal, 1 ton wood
I Trucks take 3 tons metal, 5 tons wood
I Trucks carry twice as much as cars.
I You are supplied 12 tons metal, 15 tons wood / day.
I Q: how many cars vs trucks to produce to maximize total capacity?

Mathematically:

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 4

/ 17

Solving small cases by hand

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Algebraically:

I Find all vertices, and for each:
I Check if feasible (satisfy the constraints)
I Pick the feasible vertex maximizing the objective.

Geometrically:

I Draw the picture of all feasible points
I Slide in the direction of the objective until you get stuck.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 5

/ 17

Solving small cases by hand

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Algebraically:
I Find all vertices, and for each:
I Check if feasible (satisfy the constraints)
I Pick the feasible vertex maximizing the objective.

Geometrically:

I Draw the picture of all feasible points
I Slide in the direction of the objective until you get stuck.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 5

/ 17

Solving small cases by hand

maximize: C + 2T

subject to: 2C + 3T ≤ 12

C + 5T ≤ 15

C ,T ≥ 0

Algebraically:
I Find all vertices, and for each:
I Check if feasible (satisfy the constraints)
I Pick the feasible vertex maximizing the objective.

Geometrically:
I Draw the picture of all feasible points
I Slide in the direction of the objective until you get stuck.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 5

/ 17

General Linear Programming (LP)

Linear Programming

Optimize (maximize or minimize) a linear objective in many variables,
subject to linear constraints on them (=,≤,≥).

maximize: x1 + 3x2 − 345x3 + x4

subject to: x1 − 17x2 ≤ x4 + 12

x4 − x3 ≥ x2

67x2 − 3x1 = 83

x3 ≤ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 6

/ 17

General Linear Programming (LP)

Linear Programming

Optimize (maximize or minimize) a linear objective in many variables,
subject to linear constraints on them (=,≤,≥).

maximize: x1 + 3x2 − 345x3 + x4

subject to: x1 − 17x2 ≤ x4 + 12

x4 − x3 ≥ x2

67x2 − 3x1 = 83

x3 ≤ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 6

/ 17

Formulations of LP

Standard form (or “symmetric”)

For m constraints on n variables, given A ∈ Rm×n, b ∈ Rm, c ∈ Rn:

maximize: c · x
subject to: Ax ≤ b

x ≥ 0

Common alternative forms

“Alternative form” “Slack form”

maximize: c · x maximize: c · x
subject to: Ax ≤ b or subject to: Ax = b

x ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 7

/ 17

Formulations of LP

Standard form (or “symmetric”)

For m constraints on n variables, given A ∈ Rm×n, b ∈ Rm, c ∈ Rn:

maximize: c · x
subject to: Ax ≤ b

x ≥ 0

Common alternative forms

“Alternative form” “Slack form”

maximize: c · x maximize: c · x
subject to: Ax ≤ b or subject to: Ax = b

x ≥ 0

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 7

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative:

solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative:

solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]

Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]

Alternative → standard:

new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard:

new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard:

solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard:

solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack:

m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack:

m new “slack” variables z , solve slack with
A′ =

[
A Im

]

Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]

Minimization problems?

c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems?

c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

The forms are reducible to each other

Standard Alternative Slack
max c · x max c · x max c · x
Ax ≤ b Ax ≤ b Ax = b
x ≥ 0 x ≥ 0

Standard → alternative: solve alternative with A′ =

[
A
−In

]
, b′ =

[
b
0

]
Alternative → standard: new nonnegative variables y and z , so
x = y − z . Solve standard with A′ =

[
A −A

]
.

Slack → standard: solve standard with A′ =

[
A
−A

]
, b′ =

[
b
−b

]
.

Standard → slack: m new “slack” variables z , solve slack with
A′ =

[
A Im

]
Minimization problems? c ′ = −c .

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 8

/ 17

Class Outline

1 Introduction to Linear Programming

2 How to Solve a Linear Program

3 Reducing Problems to Linear Programs

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 9

/ 17

Overview of solution methods

Simplex

I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid

I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex

I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid

I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex

I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid

I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.

I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid

I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)

I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid

I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid

I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid
I Iteratively shrink an ellipsoid around the solution.

I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of
precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid
I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point

I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid
I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point
I Iteratively move through the center of the region.

I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid
I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point
I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).

I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid
I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point
I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.

I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Overview of solution methods

Simplex
I Start at a vertex, and walk from vertex to vertex, increasing objective.
I First algorithm (Dantzig ’47)
I Worst-case inputs can take exponential time, but fast on most inputs.

Ellipsoid
I Iteratively shrink an ellipsoid around the solution.
I First polynomial time algorithm (Khachiyan ’79); O(n6L) for L bits of

precision.

Interior point
I Iteratively move through the center of the region.
I Introduced by Karmarkar in ’84, O(n3.5).
I More practical than ellipsoid, even better than simplex sometimes.
I Best theoretical result: O(n2.38L) time (Cohen, Lee, Song ’19).

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 10

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:

I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:
I If we get to the true solution, the algorithm will stop.

I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:
I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:
I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:

I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:
I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:
I Polynomial time per iteration.

I Number of iterations depends on problem instance & rule for choosing
next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Simplex Algorithm

Linear program with n variables and m constraints (including xi ≥ 0).

Vertex of feasible set is where some n constraints are tight.

n adjacent vertices: drop one constraint, move along line until
another constraint becomes tight.

Simplex algorithm

1 Find an initial vertex (we’ll see how later)

2 Repeatedly move to adjacent vertex of larger objective.

Correctness:
I If we get to the true solution, the algorithm will stop.
I By convexity: if not at the true solution, can move and make progress.

Running time:
I Polynomial time per iteration.
I Number of iterations depends on problem instance & rule for choosing

next vertex, but could be exponential.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 11

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

Doesn’t seem so useful:

Problem

If you can solve “does this polytope have any feasible point” you can also
solve linear programming (= optimize over polytopes).

Proof.

We want to determine OPT = max c · x s.t. Ax ≤ b. Then OPT ≥ τ if
and only if the polytope

Ax ≤ b

c · x ≥ τ

has any solution. So if we can solve this, we binary search on τ to solve
LP.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 12

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

Doesn’t seem so useful:

Problem

If you can solve “does this polytope have any feasible point” you can also
solve linear programming (= optimize over polytopes).

Proof.

We want to determine OPT = max c · x s.t. Ax ≤ b. Then OPT ≥ τ if
and only if the polytope

Ax ≤ b

c · x ≥ τ

has any solution. So if we can solve this, we binary search on τ to solve
LP.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 12

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

In general, finding a feasible vertex is as hard as LP.

We create a new LP, where finding a feasible vertex is easy, and the
optimal solution identifies a feasible point of the initial LP.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

z = 0 possible if and only if Ax ≤ b, x ≥ 0 is feasible.

x = 0, z = max(0, b1, . . . , bm) is a feasible vertex.

So simplex can get started on NEW and solve it.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 13

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

Simplex can get started on NEW and solve it.

The solution to NEW returned by simplex is a vertex (x̂ , ẑ) of NEW.

NEW has n + 1 variables, one tight constraint of the optimum is
z ≥ 0, and the other n are among Ax ≤ b, x ≥ 0.

Hence the solution x̂ is a vertex of the original LP.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 14

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

Simplex can get started on NEW and solve it.

The solution to NEW returned by simplex is a vertex (x̂ , ẑ) of NEW.

NEW has n + 1 variables, one tight constraint of the optimum is
z ≥ 0, and the other n are among Ax ≤ b, x ≥ 0.

Hence the solution x̂ is a vertex of the original LP.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 14

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

Simplex can get started on NEW and solve it.

The solution to NEW returned by simplex is a vertex (x̂ , ẑ) of NEW.

NEW has n + 1 variables, one tight constraint of the optimum is
z ≥ 0, and the other n are among Ax ≤ b, x ≥ 0.

Hence the solution x̂ is a vertex of the original LP.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 14

/ 17

Finding an initial feasible vertex

Simplex works, eventually, once you have a feasible vertex.

Finding a feasible point

We want to find a point x such that Ax ≤ b, x ≥ 0. Introduce a new
variable z ∈ R, and solve:

minimize: z

subject to: Ax − z ≤ b (NEW)

x , z ≥ 0

Simplex can get started on NEW and solve it.

The solution to NEW returned by simplex is a vertex (x̂ , ẑ) of NEW.

NEW has n + 1 variables, one tight constraint of the optimum is
z ≥ 0, and the other n are among Ax ≤ b, x ≥ 0.

Hence the solution x̂ is a vertex of the original LP.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 14

/ 17

Class Outline

1 Introduction to Linear Programming

2 How to Solve a Linear Program

3 Reducing Problems to Linear Programs

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 15

/ 17

L1 linear regression

x

y

Given n points on plane: (x1, y1), . . . , (xn, yn). Find the line mx + b
minimizing the average error:

Err =
1

n

n∑
i=1

|yi − (mxi + b)|

Part (2): Now, minimize the maximum error.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 16

/ 17

L1 linear regression

x

y

Given n points on plane: (x1, y1), . . . , (xn, yn). Find the line mx + b
minimizing the average error:

Err =
1

n

n∑
i=1

|yi − (mxi + b)|

Part (2): Now, minimize the maximum error.

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 16

/ 17

Writing old problems as linear programs

Write network flow as a linear program

Write shortest paths as a linear program

Write minimum cut as a linear program

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 17

/ 17

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 18

/ 17

Eric Price (UT Austin) Linear Programming
CS 331, Spring 2020 Coronavirus Edition 19

/ 17

	Introduction to Linear Programming
	How to Solve a Linear Program
	Reducing Problems to Linear Programs
	Appendix

