Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

- Today: linear programming duality
- Tonight: problem set on LPs
- Last 2 weeks of class: complexity theory
- 1 problem set on complexity theory
- Final exam: given out after last class, due two days later.

Class Outline

1 LP Duality

2 Reducing Problems to Linear Programs

Linear Programming

• Maximize/minimize linear objective subject to linear constraints.

Linear Programming

• Maximize/minimize linear objective subject to linear constraints.

- Last class:
 - Solution lies at a *vertex* of *feasible region*.
 - Ways to translate between formulations ($\leq / = / \geq$, $x \geq 0$ or not)
 - Ways to solve (simplex)

Special Cases

• Infeasible: no possible answer.

Special Cases

• Infeasible: no possible answer.

• Unbounded: infinitely good answer.

• Cars & trucks example:

$$\begin{array}{ll} \text{maximize:} & C+2T & (\text{value}) \\ \text{subject to:} & 2C+3T \leq 12 & (\text{metal}) \\ & C+5T \leq 15 & (\text{wood}) \\ & C, T \geq 0 \end{array}$$

• Cars & trucks example:

$$\begin{array}{ll} \text{maximize:} & C+2T & (\text{value}) \\ \text{subject to:} & 2C+3T \leq 12 & (\text{metal}) \\ & C+5T \leq 15 & (\text{wood}) \\ & C, T \geq 0 \end{array}$$

• Last class we solved it, but it took some effort.

• Cars & trucks example:

$$\begin{array}{ll} \text{maximize:} & C+2T & (\text{value})\\ \text{subject to:} & 2C+3T \leq 12 & (\text{metal})\\ & C+5T \leq 15 & (\text{wood})\\ & C, T \geq 0 \end{array}$$

- Last class we solved it, but it took some effort.
- Simple to prove a *lower bound* on answer *OPT*:

• Cars & trucks example:

maximize:
$$C+2T$$
(value)subject to: $2C+3T \le 12$ (metal) $C+5T \le 15$ (wood) $C, T \ge 0$

- Last class we solved it, but it took some effort.
- Simple to prove a *lower bound* on answer *OPT*:
 - $OPT \ge 6$ because (6,0) possible.

• Cars & trucks example:

$$\begin{array}{ll} \text{maximize:} & C+2T & (\text{value})\\ \text{subject to:} & 2C+3T \leq 12 & (\text{metal})\\ & C+5T \leq 15 & (\text{wood})\\ & C, T \geq 0 \end{array}$$

- Last class we solved it, but it took some effort.
- Simple to prove a *lower bound* on answer *OPT*:

• $OPT \ge 6$ because (6,0) possible.

• Question: can you easily show an upper bound on OPT?

• Cars & trucks example:

maximize:
$$C+2T$$
(value)subject to: $2C+3T \le 12$ (metal) $C+5T \le 15$ (wood) $C, T \ge 0$

- Last class we solved it, but it took some effort.
- Simple to prove a *lower bound* on answer OPT:

• $OPT \ge 6$ because (6,0) possible.

- Question: can you easily show an upper bound on OPT?
 - Is the answer larger than 20?

• Cars & trucks example:

$$\begin{array}{ll} \text{maximize:} & C+2T & (\text{value})\\ \text{subject to:} & 2C+3T \leq 12 & (\text{metal})\\ & C+5T \leq 15 & (\text{wood})\\ & C, T \geq 0 \end{array}$$

- Last class we solved it, but it took some effort.
- Simple to prove a *lower bound* on answer OPT:

• $OPT \ge 6$ because (6,0) possible.

- Question: can you easily show an upper bound on OPT?
 - Is the answer larger than 20?
 - No: $C + 2T \le 2C + 3T \le 12$.

• Cars & trucks example:

maximize:
$$C+2T$$
(value)subject to: $2C+3T \le 12$ (metal) $C+5T \le 15$ (wood) $C, T \ge 0$

- Last class we solved it, but it took some effort.
- Simple to prove a *lower bound* on answer OPT:
 - $OPT \ge 6$ because (6,0) possible.
- Question: can you easily show an upper bound on OPT?
 - Is the answer larger than 20?
 - No: $C + 2T \le 2C + 3T \le 12$.
 - But also:

$$C + 2T \le C + \frac{8}{3}T = \frac{1}{3}((2C + 3T) + (C + 5T)) \le \frac{1}{3}(12 + 15) = 9.$$

$$\begin{array}{ll} \text{maximize:} & C+2T & (\text{value}) \\ \text{subject to:} & 2C+3T \leq 12 & (\text{metal}) \\ & C+5T \leq 15 & (\text{wood}) \\ & C, T \geq 0 \end{array}$$

• Get an *upper bound* by combining the constraints:

$$C+2T \leq C+\frac{8}{3}T=\frac{1}{3}((2C+3T)+(C+5T))\leq \frac{1}{3}(12+15)=9.$$

$$\begin{array}{ll} \mbox{maximize:} & C+2T & \mbox{(value)} \\ \mbox{subject to:} & 2C+3T \leq 12 & \mbox{(metal)} \\ & C+5T \leq 15 & \mbox{(wood)} \\ & C, T \geq 0 \end{array}$$

• Get an *upper bound* by combining the constraints:

$$C+2T \leq C+rac{8}{3}T=rac{1}{3}((2C+3T)+(C+5T))\leq rac{1}{3}(12+15)=9.$$

• The above is $\frac{1}{3}$ of each. What is the best (α, β) combination?

$$egin{aligned} \mathsf{OPT} &\leq & 12lpha + 15eta & (\mathsf{value}) \ \mathsf{where:} & & 2lpha + eta &\geq 1 & (\mathsf{cars}) \ & & 3lpha + 5eta &\geq 2 & (\mathsf{trucks}) \ & & lpha, eta &\geq \mathbf{0} \end{aligned}$$

$$\begin{array}{ll} \mbox{maximize:} & C+2T & \mbox{(value)} \\ \mbox{subject to:} & 2C+3T \leq 12 & \mbox{(metal)} \\ & C+5T \leq 15 & \mbox{(wood)} \\ & C, T \geq 0 \end{array}$$

• Get an *upper bound* by combining the constraints:

$$C+2T \leq C+\frac{8}{3}T=\frac{1}{3}((2C+3T)+(C+5T))\leq \frac{1}{3}(12+15)=9.$$

• The above is $\frac{1}{3}$ of each. What is the best (α, β) combination?

$$\begin{array}{ll} \text{minimize:} & 12\alpha + 15\beta & (\text{value}) \\ \text{where:} & 2\alpha + \beta \geq 1 & (\text{cars}) \\ & 3\alpha + 5\beta \geq 2 & (\text{trucks}) \\ & \alpha, \beta \geq 0 \end{array}$$

 $\label{eq:primal} \mbox{Primal} \ensuremath{\left\{ \begin{array}{ll} \mbox{maximize:} & C+2T & \mbox{(value)} \\ \mbox{subject to:} & 2C+3T \leq 12 & \mbox{(metal)} \\ & C+5T \leq 15 & \mbox{(wood)} \\ & C, T \geq 0 \end{array} \right.}$

• Get an upper bound by combining the constraints:

$$C+2T \leq C+rac{8}{3}T=rac{1}{3}((2C+3T)+(C+5T))\leq rac{1}{3}(12+15)=9.$$

• The above is $\frac{1}{3}$ of each. What is the best (α, β) combination?

$$\begin{array}{c} \text{Dual} \quad \left\{ \begin{array}{ll} \min \text{inimize:} \quad 12\alpha + 15\beta & (\text{value}) \\ \text{where:} \quad 2\alpha + \beta \geq 1 & (\text{cars}) \\ & 3\alpha + 5\beta \geq 2 & (\text{trucks}) \\ & \alpha, \beta \geq 0 \end{array} \right. \end{array}$$

Eric Price (UT Austin)

Primal			Dual	
maximize:	$c \cdot x$		minimize:	b·у
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution \leq Dual solution

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution \leq Dual solution

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

$\label{eq:primal solution} \mathsf{Primal solution} \leq \mathsf{Dual solution}$

• By construction, the dual is an upper bound on the primal.

And the primal is a lower bound on the dual.

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution \leq Dual solution

- And the primal is a lower bound on the dual.
- Any feasible primal value is $\leq any$ feasible dual value.

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution \leq Dual solution

- And the primal is a lower bound on the dual.
- ► Any feasible primal value is ≤ any feasible dual value.
- This is "weak duality"

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution = Dual solution

- And the primal is a lower bound on the dual.
- Any feasible primal value is \leq any feasible dual value.
- This is "weak duality"
- Remarkable fact: the two are equal.

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution = Dual solution

- And the primal is a lower bound on the dual.
- Any feasible primal value is \leq any feasible dual value.
- This is "weak duality"
- Remarkable fact: the two are equal.
 - This is "strong duality."

Primal			Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

Primal solution = Dual solution

- And the primal is a lower bound on the dual.
- Any feasible primal value is \leq any feasible dual value.
- This is "weak duality"
- Remarkable fact: the two are equal.
 - This is "strong duality."
- Generalization of max flow-min cut theorem.

$$C + 2T \le C + \frac{8}{3}T = \frac{1}{3}((2C + 3T) + (C + 5T)) \le \frac{1}{3}(12 + 15) = 9.$$

Prima	l		Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

$$C + 2T \le C + \frac{8}{3}T = \frac{1}{3}((2C + 3T) + (C + 5T)) \le \frac{1}{3}(12 + 15) = 9.$$

Prima	l		Dual	
maximize:	$c \cdot x$		minimize:	b·у
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

• Combine equations to get upper bound.

$$C + 2T \le C + \frac{8}{3}T = \frac{1}{3}((2C + 3T) + (C + 5T)) \le \frac{1}{3}(12 + 15) = 9.$$

PrimalDualmaximize:
$$c \cdot x$$
minimize: $b \cdot y$ subject to: $Ax \leq b$ \iff subject to: $A^T y \geq c$ $x \geq 0$ $y \geq 0$

• Combine equations to get upper bound.

• If C, T are negative, first step doesn't hold \implies need equality.

"Alternative primal""Alternative dual"maximize:
$$c \cdot x$$
minimize: $b \cdot y$ subject to: $Ax \leq b$ \Longrightarrow subject to: $A^T y = c$ $c \geq 0$

$$C + 2T \le C + \frac{8}{3}T = \frac{1}{3}((2C + 3T) + (C + 5T)) \le \frac{1}{3}(12 + 15) = 9.$$

Prima	l		Dual	
maximize:	$c \cdot x$		minimize:	$b \cdot y$
subject to:	$Ax \leq b$	\iff	subject to:	$A^T y \ge c$
	$x \ge 0$			$y \ge 0$

• Combine equations to get upper bound.

- If C, T are negative, first step doesn't hold \implies need equality.
- If equations are equalities, can subtract them $\implies \alpha, \beta$ can be < 0.

"Alternative primal""Alternative dual"maximize:
$$c \cdot x$$
minimize: $b \cdot y$ subject to: $Ax \leq b$ \iff subject to: $A^T y = c$ $c \geq 0$

Special cases

• Primal = Dual *if both feasible*.

- Primal = Dual *if both feasible*.
- Primal unbounded \implies dual infeasible

Special cases

- Primal = Dual *if both feasible*.
- Primal unbounded \implies dual infeasible
- Dual unbounded \implies primal infeasible

Special cases

- Primal = Dual *if both feasible*.
- Primal unbounded \implies dual infeasible
- Dual unbounded \implies primal infeasible
- Both infeasible is possible.
Special cases

- Primal = Dual *if both feasible*.
- Primal unbounded \implies dual infeasible
- Dual unbounded \implies primal infeasible
- Both infeasible is possible.
- Either one feasible and bounded \implies other is too.

Linear programming duality

max: $C + 2T$	min: $12\alpha + 15\beta$
s.t.: $2C + 3T \le 12$	2 s.t.: $2\alpha + \beta \ge 1$
$C + 5T \le 15$	$5 \qquad 3\alpha + 5\beta \ge 2$
$C, T \ge 0$	$\alpha,\beta\geq 0$
Primal	Dual
Variables	\implies Constraints
Constraints	\implies Variables
Objective coefficients <i>c</i>	\implies Constraint values b
Constraint values	\implies Objective coefficients
Nonnegative vars	\implies Inequality constraints
Unconstrained vars	\implies Equality constraints
Unbounded	\implies Infeasible
Infeasible	\implies unbounded or infeasible
Nonzero variables	\implies tight constraints
Slack constraints	\implies zero variables
Eric Price (UT Austin)	Linear Programming Duality

$$\begin{array}{lll} \max: & C+2T & \min: & 12\alpha+15\beta \\ \text{s.t.:} & 2C+3T \leq 12 & \text{s.t.:} & 2\alpha+\beta \geq 1 \\ & C+5T \leq 15 & 3\alpha+5\beta \geq 2 \\ & C,T \geq 0 & \alpha,\beta \geq 0 \end{array}$$

• Solution: $(C, T) = (\frac{15}{7}, \frac{18}{7})$, $(\alpha, \beta) = (\frac{3}{7}, \frac{1}{7})$. Both give $\frac{51}{7}$.

$$\begin{array}{lll} \max: & \mathcal{C}+2\mathcal{T} & \min: & 12\alpha+15\beta \\ \text{s.t.:} & 2\mathcal{C}+3\mathcal{T}\leq 12 & \text{s.t.:} & 2\alpha+\beta\geq 1 \\ & \mathcal{C}+5\mathcal{T}\leq 15 & 3\alpha+5\beta\geq 2 \\ & \mathcal{C},\mathcal{T}\geq 0 & \alpha,\beta\geq 0 \end{array}$$

Solution: (C, T) = (¹⁵/₇, ¹⁸/₇), (α, β) = (³/₇, ¹/₇). Both give ⁵¹/₇.
Dual variable α corresponds to the metal constraint.

$$\begin{array}{lll} \max: & \mathcal{C}+2\mathcal{T} & \min: & 12\alpha+15\beta \\ \text{s.t.:} & 2\mathcal{C}+3\mathcal{T}\leq 12 & \text{s.t.:} & 2\alpha+\beta\geq 1 \\ & \mathcal{C}+5\mathcal{T}\leq 15 & 3\alpha+5\beta\geq 2 \\ & \mathcal{C},\mathcal{T}\geq 0 & \alpha,\beta\geq 0 \end{array}$$

- Solution: $(C, T) = (\frac{15}{7}, \frac{18}{7}), (\alpha, \beta) = (\frac{3}{7}, \frac{1}{7})$. Both give $\frac{51}{7}$.
- Dual variable α corresponds to the metal constraint.
- Tells you *marginal value of metal* to the factory:

$$\begin{array}{lll} \max: & \mathcal{C}+2\mathcal{T} & \min: & 12\alpha+15\beta \\ \text{s.t.:} & 2\mathcal{C}+3\mathcal{T}\leq 12 & \text{s.t.:} & 2\alpha+\beta\geq 1 \\ & \mathcal{C}+5\mathcal{T}\leq 15 & 3\alpha+5\beta\geq 2 \\ & \mathcal{C},\mathcal{T}\geq 0 & \alpha,\beta\geq 0 \end{array}$$

- Solution: $(C, T) = (\frac{15}{7}, \frac{18}{7}), (\alpha, \beta) = (\frac{3}{7}, \frac{1}{7})$. Both give $\frac{51}{7}$.
- Dual variable α corresponds to the metal constraint.
- Tells you *marginal value of metal* to the factory:
 - With ϵ more metal, OPT will rise by $\alpha\epsilon$.

$$\begin{array}{lll} \max: & \mathcal{C}+2\mathcal{T} & \min: & 12\alpha+15\beta \\ \text{s.t.:} & 2\mathcal{C}+3\mathcal{T}\leq 12 & \text{s.t.:} & 2\alpha+\beta\geq 1 \\ & \mathcal{C}+5\mathcal{T}\leq 15 & 3\alpha+5\beta\geq 2 \\ & \mathcal{C},\mathcal{T}\geq 0 & \alpha,\beta\geq 0 \end{array}$$

- Solution: $(C, T) = (\frac{15}{7}, \frac{18}{7}), (\alpha, \beta) = (\frac{3}{7}, \frac{1}{7})$. Both give $\frac{51}{7}$.
- Dual variable α corresponds to the metal constraint.
- Tells you *marginal value of metal* to the factory:
 - With ϵ more metal, OPT will rise by $\alpha\epsilon$.
 - Check: 13 metal gives $(C, T) = (\frac{20}{7}, \frac{17}{7})$ for $\frac{54}{7} = \frac{51}{7} + \frac{3}{7}$.

What do dual variables mean? Shadow prices!

$$\begin{array}{lll} \max: & C+2T & \min: & 12\alpha+15\beta \\ \text{s.t.:} & 2C+3T \leq 12 & \text{s.t.:} & 2\alpha+\beta \geq 1 \\ & C+5T \leq 15 & 3\alpha+5\beta \geq 2 \\ & C,T \geq 0 & \alpha,\beta \geq 0 \end{array}$$

- Solution: $(C, T) = (\frac{15}{7}, \frac{18}{7}), (\alpha, \beta) = (\frac{3}{7}, \frac{1}{7})$. Both give $\frac{51}{7}$.
- Dual variable α corresponds to the metal constraint.
- Tells you *marginal value of metal* to the factory:
 - With ϵ more metal, OPT will rise by $\alpha\epsilon$.
 - Check: 13 metal gives $(C, T) = (\frac{20}{7}, \frac{17}{7})$ for $\frac{54}{7} = \frac{51}{7} + \frac{3}{7}$.
- These are known as shadow prices.

Class Outline

1 LP Duality

Writing old problems as linear programs

- Write network flow as a linear program
- Write shortest paths as a linear program
- Write minimum cut as a linear program

Maximum flow as a linear program

• Max flow is a linear program in the variables f_{uv} = flow from u to v:

$$\begin{array}{ll} \text{maximize:} & \sum_{u} f_{su} - f_{us} & (\text{flow out}) \\ \text{subject to:} & \sum_{v} f_{uv} - f_{vu} = 0 \quad \forall u \neq s, t \quad (\text{conservation}) \\ & f_{uv} \leq C_{uv} \quad \forall u, v \quad (\text{capacity}) \\ & f_{uv} \geq 0 \end{array}$$

Maximum flow as a linear program

• Max flow is a linear program in the variables f_{uv} = flow from u to v:

maximize:
$$\sum_{u} f_{su} - f_{us}$$
 (flow out)
subject to:
$$\sum_{v} f_{uv} - f_{vu} = 0 \quad \forall u \neq s, t \quad \text{(conservation)}$$
$$f_{uv} \leq C_{uv} \quad \forall u, v \quad \text{(capacity)}$$
$$f_{uv} \geq 0$$

• Computing the dual is a bit messy, but gives a min-cut formulation

• Variables correspond to constraints: x_u for conservation constraints, y_{uv} for capacity (for all u, v).

- Variables correspond to constraints: x_u for conservation constraints, y_{uv} for capacity (for all u, v).
- A bit easier if we make the constraints include u = s, t.

maximize:
$$F$$
(flow out)subject to: $\sum_{v} f_{uv} - f_{vu} = \begin{cases} 0 & \forall u \neq s, t \\ F & u = s \\ -F & u = t \end{cases}$ (conservation) $f_{uv} \leq C_{uv} \quad \forall u, v \qquad (capacity)$ $f_{uv} \geq 0$

- Variables correspond to constraints: x_u for conservation constraints, y_{uv} for capacity (for all u, v).
- A bit easier if we make the constraints include u = s, t.

$$\begin{array}{lll} \text{maximize:} & F & (\text{flow out}) \\ \text{subject to:} & \sum_{v} f_{uv} - f_{vu} = \begin{cases} 0 & \forall u \neq s, t \\ F & u = s \\ -F & u = t \end{cases} & (\text{conservation}) \\ f_{uv} \leq C_{uv} & \forall u, v & (\text{capacity}) \\ f_{uv} \geq 0 \end{cases}$$

• Constraints correspond to variables: one per f_{uv} , one for F.

- Variables correspond to constraints: x_u for conservation constraints, y_{uv} for capacity (for all u, v).
- A bit easier if we make the constraints include u = s, t.

$$\begin{array}{lll} \text{maximize:} & F & (\text{flow out}) \\ \text{subject to:} & \sum_{v} f_{uv} - f_{vu} = \begin{cases} 0 & \forall u \neq s, t \\ F & u = s \\ -F & u = t \end{cases} & (\text{conservation}) \\ f_{uv} \leq C_{uv} & \forall u, v & (\text{capacity}) \\ f_{uv} \geq 0 \end{cases}$$

- Constraints correspond to variables: one per f_{uv} , one for F.
 - Each f_{uv} appears in 3 constraints, F appears in two.

- Variables correspond to constraints: x_u for conservation constraints, y_{uv} for capacity (for all u, v).
- A bit easier if we make the constraints include u = s, t.

$$\begin{array}{ll} \text{maximize:} & F & (\text{flow out}) \\ \text{subject to:} & \sum_{v} f_{uv} - f_{vu} = \begin{cases} 0 & \forall u \neq s, t \\ F & u = s \\ -F & u = t \end{cases} & (\text{conservation}) \\ f_{uv} \leq C_{uv} & \forall u, v & (\text{capacity}) \\ f_{uv} \geq 0 \end{cases}$$

- Constraints correspond to variables: one per f_{uv} , one for F.
 - Each f_{uv} appears in 3 constraints, F appears in two.

minimize:
$$\sum_{uv} C_{uv} y_{uv}$$

subject to: $x_u - x_v + y_{uv} \ge 0 \quad \forall u, v$
 $x_t - x_s = 1$
 $y_{uv} \ge 0$

minimize:
$$\sum_{uv} C_{uv} y_{uv}$$

subject to: $x_u - x_v + y_{uv} \ge 0 \quad \forall u, v$
 $x_t - x_s = 1$
 $y_{uv} \ge 0$

Intuition:

minimize:
$$\sum_{uv} C_{uv} y_{uv} \qquad \text{(total cut)}$$

subject to:
$$x_u - x_v + y_{uv} \ge 0 \quad \forall u, v$$
$$x_t - x_s = 1$$
$$y_{uv} \ge 0$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.

)

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \ge 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 \\ & y_{uv} \ge 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \geq 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 & (s \in S, \ t \notin S) \\ & y_{uv} \geq 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \ge 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 & (s \in S, \ t \notin S) \\ & y_{uv} \ge 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.
- More precisely:

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \ge 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 & (s \in S, \ t \notin S) \\ & y_{uv} \ge 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.
- More precisely:
 - If $y_{uv}, x_u \in \{0, 1\}$, this equivalence works.

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \geq 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 & (s \in S, \ t \notin S) \\ & y_{uv} \geq 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.
- More precisely:
 - If $y_{uv}, x_u \in \{0, 1\}$, this equivalence works.
 - ▶ Not hard to argue that opt lies in [0, 1].

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \geq 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 & (s \in S, \ t \notin S) \\ & y_{uv} \geq 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.
- More precisely:
 - ▶ If $y_{uv}, x_u \in \{0, 1\}$, this equivalence works.
 - ▶ Not hard to argue that opt lies in [0, 1].
 - But how come the solution can't be fractional?

$$\begin{array}{ll} \text{minimize:} & \sum_{uv} C_{uv} y_{uv} & (\text{total cut}) \\ \text{subject to:} & x_u - x_v + y_{uv} \geq 0 \quad \forall u, v \quad (\text{if } u \in S \text{ and } v \notin S, \ uv \text{ is cut}) \\ & x_t - x_s = 1 & (s \in S, \ t \notin S) \\ & y_{uv} \geq 0 \end{array}$$

- Intuition:
 - y_{uv} is 1 if edge uv is cut, 0 otherwise.
 - x_u is 0 if $u \in S$, 1 otherwise.
- More precisely:
 - If $y_{uv}, x_u \in \{0, 1\}$, this equivalence works.
 - ▶ Not hard to argue that opt lies in [0, 1].
 - But how come the solution can't be fractional?
 - This LP is special ("totally unimodular"): every vertex is integral.

• Stretching formulation:

maximize:
$$d_t$$

subject to: $d_v - d_u \le w(u \rightarrow v) \ \forall uv \in E$
 $d_s = 0$

(distance) (triangle inequality) (start point)

• Stretching formulation:

maximize:
$$d_t$$

subject to: $d_v - d_u \le w(u \rightarrow v) \ \forall uv \in E$
 $d_s = 0$

(distance) (triangle inequality) (start point)

Oual:

• Stretching formulation:

 $\begin{array}{ll} \text{maximize:} & d_t - d_s & (\text{distance}) \\ \text{subject to:} & d_v - d_u \leq w(u \rightarrow v) \; \forall uv \in E & (\text{triangle inequality}) \end{array}$

Oual:

• Stretching formulation:

 $\begin{array}{ll} \text{maximize:} & d_t - d_s & (\text{distance}) \\ \text{subject to:} & d_v - d_u \leq w(u \rightarrow v) \; \forall uv \in E & (\text{triangle inequality}) \end{array}$

• Dual: one variable y_{uv} per edge, one constraint per d_u .

• Stretching formulation:

 $\begin{array}{ll} \text{maximize:} & d_t - d_s & (\text{distance}) \\ \text{subject to:} & d_v - d_u \leq w(u \rightarrow v) \; \forall uv \in E & (\text{triangle inequality}) \end{array}$

• Dual: one variable y_{uv} per edge, one constraint per d_u .

minimize:
$$\sum_{uv} w(u \to v) y_{uv}$$

subject to:
$$\sum_{v} y_{vu} - y_{uv} = \begin{cases} 0 & \forall u \neq s, t \\ -1 & u = s \\ 1 & u = t \end{cases}$$

• Stretching formulation:

 $\begin{array}{ll} \text{maximize:} & d_t - d_s & (\text{distance}) \\ \text{subject to:} & d_v - d_u \leq w(u \rightarrow v) \; \forall uv \in E & (\text{triangle inequality}) \end{array}$

• Dual: one variable y_{uv} per edge, one constraint per d_u .

minimize:
$$\sum_{uv} w(u \to v) y_{uv}$$

subject to:
$$\sum_{v} y_{vu} - y_{uv} = \begin{cases} 0 & \forall u \neq s, t \\ -1 & u = s \\ 1 & u = t \end{cases}$$

is min-cost flow of 1 mass from s to t; $y_{uv} = 1$ if uv on path.

• Stretching formulation:

 $\begin{array}{ll} \text{maximize:} & d_t - d_s & (\text{distance}) \\ \text{subject to:} & d_v - d_u \leq w(u \rightarrow v) \; \forall uv \in E & (\text{triangle inequality}) \end{array}$

• Dual: one variable y_{uv} per edge, one constraint per d_u .

minimize:
$$\sum_{uv} w(u \to v) y_{uv}$$

subject to:
$$\sum_{v} y_{vu} - y_{uv} = \begin{cases} 0 & \forall u \neq s, t \\ -1 & u = s \\ 1 & u = t \end{cases}$$

is min-cost flow of 1 mass from s to t; $y_{uv} = 1$ if uv on path. • Again, totally unimodular implies integral vertices.

Conclusion

- Every LP has a dual:
 - Motivated by certifying an upper bound.
 - Mechanically easy to write down
 - ▶ Constraints ⇐⇒ variables
 - > Dual variables are shadow prices: the marginal value of the constraint.

Conclusion

- Every LP has a dual:
 - Motivated by certifying an upper bound.
 - Mechanically easy to write down
 - Constraints <-> variables
 - > Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).

Conclusion

- Every LP has a dual:
 - Motivated by certifying an upper bound.
 - Mechanically easy to write down
 - ▶ Constraints ⇐⇒ variables
 - > Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).
- Sometimes linear programs are structured so the answers are integer
Conclusion

- Every LP has a dual:
 - Motivated by certifying an upper bound.
 - Mechanically easy to write down
 - Constraints \iff variables
 - > Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).
- Sometimes linear programs are structured so the answers are integer
 - "Integral" LPs are ones that happen to have integer vertices.

Conclusion

- Every LP has a dual:
 - Motivated by certifying an upper bound.
 - Mechanically easy to write down
 - Constraints \iff variables
 - > Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).
- Sometimes linear programs are structured so the answers are integer
 - "Integral" LPs are ones that happen to have integer vertices.
 - "Integer" LPs add a new constraint that $x \in \mathbb{Z}^n$. This is NP-hard.

Eric Price (UT Austin)

Eric Price (UT Austin)