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Plan for the class

Today: linear programming duality

Tonight: problem set on LPs

Last 2 weeks of class: complexity theory

1 problem set on complexity theory

Final exam: given out after last class, due two days later.
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Class Outline

1 LP Duality

2 Reducing Problems to Linear Programs
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Linear Programming

Maximize/minimize linear objective subject to linear constraints.

Last class:

I Solution lies at a vertex of feasible region.
I Ways to translate between formulations (≤ / = / ≥, x ≥ 0 or not)
I Ways to solve (simplex)
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Special Cases
Infeasible: no possible answer.

Unbounded: infinitely good answer.
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Linear Programming Upper bound?
Cars & trucks example:

maximize: C + 2T (value)

subject to: 2C + 3T ≤ 12 (metal)

C + 5T ≤ 15 (wood)

C ,T ≥ 0

Last class we solved it, but it took some effort.

Simple to prove a lower bound on answer OPT :

I OPT ≥ 6 because (6, 0) possible.

Question: can you easily show an upper bound on OPT?

I Is the answer larger than 20?
I No: C + 2T ≤ 2C + 3T ≤ 12.
I But also:

C + 2T ≤ C +
8

3
T =

1

3
((2C + 3T ) + (C + 5T )) ≤ 1

3
(12 + 15) = 9.
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Linear Programming Upper bound?

Primal

maximize: C + 2T (value)

subject to: 2C + 3T ≤ 12 (metal)

C + 5T ≤ 15 (wood)

C ,T ≥ 0

Get an upper bound by combining the constraints:

C + 2T ≤ C +
8

3
T =

1

3
((2C + 3T ) + (C + 5T )) ≤ 1

3
(12 + 15) = 9.

The above is 1
3 of each. What is the best (α, β) combination?

Dual

OPT ≤ 12α + 15β (value)

where: 2α + β ≥ 1 (cars)

3α + 5β ≥ 2 (trucks)

α, β ≥ 0
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Linear Programming Duality

Primal Dual

maximize: c · x minimize: b · y
subject to: Ax ≤ b ⇐⇒ subject to: AT y ≥ c

x ≥ 0 y ≥ 0

Primal solution ≤ Dual solution

By construction, the dual is an upper bound on the primal.

I And the primal is a lower bound on the dual.
I Any feasible primal value is ≤ any feasible dual value.
I This is “weak duality”

Remarkable fact: the two are equal.

I This is “strong duality.”

Generalization of max flow-min cut theorem.
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Linear Programming Duality: alternative forms

C + 2T ≤ C +
8

3
T =

1

3
((2C + 3T ) + (C + 5T )) ≤ 1

3
(12 + 15) = 9.

Primal Dual

maximize: c · x minimize: b · y
subject to: Ax ≤ b ⇐⇒ subject to: AT y ≥ c

x ≥ 0 y ≥ 0

Combine equations to get upper bound.

I If C ,T are negative, first step doesn’t hold =⇒ need equality.
I If equations are equalities, can subtract them =⇒ α, β can be < 0.

“Alternative primal” “Alternative dual”

maximize: c · x minimize: b · y
subject to: Ax ≤ b ⇐⇒ subject to: AT y = c

c ≥ 0
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Special cases

Primal = Dual if both feasible.

Primal unbounded =⇒ dual infeasible

Dual unbounded =⇒ primal infeasible

Both infeasible is possible.

Either one feasible and bounded =⇒ other is too.
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Linear programming duality

max: C + 2T min: 12α + 15β

s.t.: 2C + 3T ≤ 12 s.t.: 2α + β ≥ 1

C + 5T ≤ 15 3α + 5β ≥ 2

C ,T ≥ 0 α, β ≥ 0

Primal Dual

Variables =⇒ Constraints
Constraints =⇒ Variables
Objective coefficients c =⇒ Constraint values b
Constraint values =⇒ Objective coefficients
Nonnegative vars =⇒ Inequality constraints
Unconstrained vars =⇒ Equality constraints
Unbounded =⇒ Infeasible
Infeasible =⇒ unbounded or infeasible
Nonzero variables =⇒ tight constraints
Slack constraints =⇒ zero variables
Eric Price (UT Austin) Linear Programming Duality
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What do dual variables mean?

max: C + 2T min: 12α + 15β

s.t.: 2C + 3T ≤ 12 s.t.: 2α + β ≥ 1

C + 5T ≤ 15 3α + 5β ≥ 2

C ,T ≥ 0 α, β ≥ 0

Solution: (C ,T ) = (157 ,
18
7 ), (α, β) = (37 ,

1
7). Both give 51

7 .

Dual variable α corresponds to the metal constraint.

Tells you marginal value of metal to the factory:

I With ε more metal, OPT will rise by αε.
I Check: 13 metal gives (C ,T ) = ( 20

7 ,
17
7 ) for 54

7 = 51
7 + 3

7 .

These are known as shadow prices.
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What do dual variables mean? Shadow prices!
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Class Outline

1 LP Duality

2 Reducing Problems to Linear Programs
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Writing old problems as linear programs

Write network flow as a linear program

Write shortest paths as a linear program

Write minimum cut as a linear program
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Maximum flow as a linear program

Max flow is a linear program in the variables fuv = flow from u to v :

maximize:
∑
u

fsu − fus (flow out)

subject to:
∑
v

fuv − fvu = 0 ∀u 6= s, t (conservation)

fuv ≤ Cuv ∀u, v (capacity)

fuv ≥ 0

Computing the dual is a bit messy, but gives a min-cut formulation
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Dual of the maximum flow LP
Variables correspond to constraints: xu for conservation constraints,
yuv for capacity (for all u, v).

A bit easier if we make the constraints include u = s, t.

maximize: F (flow out)

subject to:
∑
v

fuv − fvu =

 0 ∀u 6= s, t
F u = s
−F u = t

(conservation)

fuv ≤ Cuv ∀u, v (capacity)

fuv ≥ 0

Constraints correspond to variables: one per fuv , one for F .

I Each fuv appears in 3 constraints, F appears in two.

minimize:
∑
uv

Cuvyuv

subject to: xu − xv + yuv ≥ 0 ∀u, v
xt − xs = 1

yuv ≥ 0
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Dual of the maximum flow LP is minimum cut

minimize:
∑
uv

Cuvyuv

(total cut)

subject to: xu − xv + yuv ≥ 0 ∀u, v

(if u ∈ S and v /∈ S , uv is cut)

xt − xs = 1

(s ∈ S , t /∈ S)

yuv ≥ 0

Intuition:

I yuv is 1 if edge uv is cut, 0 otherwise.
I xu is 0 if u ∈ S , 1 otherwise.

More precisely:

I If yuv , xu ∈ {0, 1}, this equivalence works.
I Not hard to argue that opt lies in [0, 1].
I But how come the solution can’t be fractional?
I This LP is special (“totally unimodular”): every vertex is integral.
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Shortest paths as a linear program
Stretching formulation:

maximize: dt

− ds

(distance)

subject to: dv − du ≤ w(u → v) ∀uv ∈ E (triangle inequality)

ds = 0 (start point)

Dual:

one variable yuv per edge, one constraint per du.

minimize:
∑
uv

w(u → v)yuv

subject to:
∑
v

yvu − yuv =


0 ∀u 6= s, t
−1 u = s
1 u = t

is min-cost flow of 1 mass from s to t; yuv = 1 if uv on path.

Again, totally unimodular implies integral vertices.
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Conclusion

Every LP has a dual:
I Motivated by certifying an upper bound.
I Mechanically easy to write down
I Constraints ⇐⇒ variables
I Dual variables are shadow prices: the marginal value of the constraint.

Strong duality: the dual has the same value as the primal (if either
exists and is finite).

Sometimes linear programs are structured so the answers are integer

I “Integral” LPs are ones that happen to have integer vertices.
I “Integer” LPs add a new constraint that x ∈ Zn. This is NP-hard.
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