# Linear Programming Duality 

Eric Price

UT Austin

## CS 331, Spring 2020 Coronavirus Edition

## Plan for the class

- Today: linear programming duality
- Tonight: problem set on LPs
- Last 2 weeks of class: complexity theory
- 1 problem set on complexity theory
- Final exam: given out after last class, due two days later.


## Class Outline

## (1) LP Duality

## (2) Reducing Problems to Linear Programs

## Linear Programming

- Maximize/minimize linear objective subject to linear constraints.



## Linear Programming

- Maximize/minimize linear objective subject to linear constraints.

- Last class:
- Solution lies at a vertex of feasible region.
- Ways to translate between formulations ( $\leq /=/ \geq, x \geq 0$ or not)
- Ways to solve (simplex)


## Special Cases

- Infeasible: no possible answer.



## Special Cases

- Infeasible: no possible answer.

- Unbounded: infinitely good answer.



## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.


## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.
- Simple to prove a lower bound on answer OPT:


## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.
- Simple to prove a lower bound on answer OPT:
- $O P T \geq 6$ because $(6,0)$ possible.


## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.
- Simple to prove a lower bound on answer OPT:
- $O P T \geq 6$ because $(6,0)$ possible.
- Question: can you easily show an upper bound on OPT?


## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.
- Simple to prove a lower bound on answer OPT:
- $O P T \geq 6$ because $(6,0)$ possible.
- Question: can you easily show an upper bound on OPT?
- Is the answer larger than 20?


## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.
- Simple to prove a lower bound on answer OPT:
- $O P T \geq 6$ because $(6,0)$ possible.
- Question: can you easily show an upper bound on OPT?
- Is the answer larger than 20?
- No: $C+2 T \leq 2 C+3 T \leq 12$.


## Linear Programming Upper bound?

- Cars \& trucks example:

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
\text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Last class we solved it, but it took some effort.
- Simple to prove a lower bound on answer OPT:
- $O P T \geq 6$ because $(6,0)$ possible.
- Question: can you easily show an upper bound on OPT?
- Is the answer larger than 20?
- No: $C+2 T \leq 2 C+3 T \leq 12$.
- But also:

$$
C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9 .
$$

## Linear Programming Upper bound?

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
& \text { (metal) } \\
& C+5 T & \leq 15 & \\
& \text { (wood) } \\
C, T & \geq 0 & &
\end{array}
$$

- Get an upper bound by combining the constraints:

$$
C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9 .
$$

## Linear Programming Upper bound?

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
& \text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Get an upper bound by combining the constraints:

$$
C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9 .
$$

- The above is $\frac{1}{3}$ of each. What is the best $(\alpha, \beta)$ combination?

$$
\begin{aligned}
& \text { OPT } \leq 12 \alpha+15 \beta \quad \text { (value) } \\
& \text { where: } \quad 2 \alpha+\beta \geq 1 \quad \text { (cars) } \\
& 3 \alpha+5 \beta \geq 2 \quad \text { (trucks) } \\
& \alpha, \beta \geq 0
\end{aligned}
$$

## Linear Programming Duality

$$
\begin{array}{rlrl}
\text { maximize: } & C+2 T & & \text { (value) } \\
\text { subject to: } & 2 C+3 T & \leq 12 & \\
\text { (metal) } \\
& C+5 T & \leq 15 & \\
& \text { (wood) } \\
& C, T & \geq 0 &
\end{array}
$$

- Get an upper bound by combining the constraints:

$$
C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9 .
$$

- The above is $\frac{1}{3}$ of each. What is the best $(\alpha, \beta)$ combination?

$$
\begin{array}{rcl}
\text { minimize: } & 12 \alpha+15 \beta & \text { (value) } \\
\text { where: } & 2 \alpha+\beta \geq 1 & \text { (cars) } \\
& 3 \alpha+5 \beta \geq 2 & \text { (trucks) } \\
& \alpha, \beta \geq 0 &
\end{array}
$$

## Linear Programming Duality

Primal $\left\{\begin{array}{rrr}\text { maximize: } & C+2 T & \\ \text { subject to: } & & \text { (value) } \\ & 2 C+3 T & \leq 12\end{array} \quad\right.$ (metal)

- Get an upper bound by combining the constraints:

$$
C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9 .
$$

- The above is $\frac{1}{3}$ of each. What is the best $(\alpha, \beta)$ combination?
Dual $\left\{\begin{array}{rll}\text { minimize: } & 12 \alpha+15 \beta & \\ \text { where: } & & \text { (value) } \\ & 2 \alpha+\beta & \geq 1 \\ & & \text { (cars) } \\ & 3 \alpha+5 \beta & \geq 2\end{array}\right.$ (trucks)


## Linear Programming Duality

| Primal |  | Dual |  |  |
| :---: | :---: | :---: | :---: | :---: |
| maximize: | $c \cdot x$ |  | minimize: | $b \cdot y$ |
| subject to: | $A x \leq b$ | $\Longleftrightarrow$ | subject to: | $A^{T} y \geq c$ |
|  | $x \geq 0$ |  |  | $y \geq 0$ |

## Linear Programming Duality

| Primal | Dual |  |  |
| :---: | :---: | :---: | :---: |
| maximize: | $c \cdot x$ |  |  |
| minimize: | $b \cdot y$ |  |  |
| subject to: | $A x \leq b$ |  |  |
|  | $x \geq 0$ |  |  |

Primal solution $\leq$ Dual solution

## Linear Programming Duality

| Primal | Dual |  |  |
| :---: | :---: | ---: | :--- |
| maximize: | $c \cdot x$ |  | minimize: |
| subject to: | $A x \leq b \cdot y$ |  |  |
|  | $x \geq 0$ |  |  |$\quad \Longleftrightarrow \quad$ subject to: $\quad A^{T} y \geq c$

## Primal solution $\leq$ Dual solution

- By construction, the dual is an upper bound on the primal.


## Linear Programming Duality

| Primal |  | Dual |  |  |
| :---: | :---: | :---: | :---: | :---: |
| maximize: | $c \cdot x$ |  | minimize: | $b \cdot y$ |
| subject to: | $A x \leq b$ | $\Longleftrightarrow$ | subject to: | $A^{T} y \geq c$ |
|  | $x \geq 0$ |  |  | $y \geq 0$ |

## Primal solution $\leq$ Dual solution

- By construction, the dual is an upper bound on the primal.
- And the primal is a lower bound on the dual.


## Linear Programming Duality

| Primal |  | Dual |  |  |
| :---: | :---: | :---: | :---: | :---: |
| maximize: | $c \cdot x$ |  | minimize: | $b \cdot y$ |
| subject to: | $A x \leq b$ | $\Longleftrightarrow$ | subject to: | $A^{T} y \geq c$ |
|  | $x \geq 0$ |  |  | $y \geq 0$ |

## Primal solution $\leq$ Dual solution

- By construction, the dual is an upper bound on the primal.
- And the primal is a lower bound on the dual.
- Any feasible primal value is $\leq$ any feasible dual value.


## Linear Programming Duality

| Primal | Dual |  |  |
| :---: | :---: | ---: | :--- |
| maximize: | $c \cdot x$ |  | minimize: |
| subject to: | $A x \leq b \cdot y$ |  |  |
|  | $x \geq 0$ |  |  |

## Primal solution $\leq$ Dual solution

- By construction, the dual is an upper bound on the primal.
- And the primal is a lower bound on the dual.
- Any feasible primal value is $\leq$ any feasible dual value.
- This is "weak duality"


## Linear Programming Duality

| Primal | Dual |  |  |
| :---: | :---: | ---: | :--- |
| maximize: | $c \cdot x$ |  | minimize: |
| subject to: | $A x \leq b \cdot y$ |  |  |
|  | $x \geq 0$ |  |  |$\quad \Longleftrightarrow \quad$ subject to: $\quad A^{T} y \geq c$

## Primal solution $=$ Dual solution

- By construction, the dual is an upper bound on the primal.
- And the primal is a lower bound on the dual.
- Any feasible primal value is $\leq$ any feasible dual value.
- This is "weak duality"
- Remarkable fact: the two are equal.


## Linear Programming Duality

| Primal | Dual |  |  |
| :---: | :---: | ---: | :--- |
| maximize: | $c \cdot x$ |  | minimize: |
| subject to: | $A x \leq b \cdot y$ |  |  |
|  | $x \geq 0$ |  |  |$\quad \Longleftrightarrow \quad$ subject to: $\quad A^{T} y \geq c$

## Primal solution $=$ Dual solution

- By construction, the dual is an upper bound on the primal.
- And the primal is a lower bound on the dual.
- Any feasible primal value is $\leq$ any feasible dual value.
- This is "weak duality"
- Remarkable fact: the two are equal.
- This is "strong duality."


## Linear Programming Duality

| Primal | Dual |  |  |
| :---: | :---: | ---: | :--- |
| maximize: | $c \cdot x$ |  | minimize: |
| subject to: | $A x \leq b \cdot y$ |  |  |
|  | $x \geq 0$ |  |  |$\quad \Longleftrightarrow \quad$ subject to: $\quad A^{T} y \geq c$

## Primal solution $=$ Dual solution

- By construction, the dual is an upper bound on the primal.
- And the primal is a lower bound on the dual.
- Any feasible primal value is $\leq$ any feasible dual value.
- This is "weak duality"
- Remarkable fact: the two are equal.
- This is "strong duality."
- Generalization of max flow-min cut theorem.


## Linear Programming Duality: alternative forms

$$
\begin{aligned}
& C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9 . \\
& \text { Primal } \\
& \text { maximize: } c \cdot x \\
& \text { subject to: } A x \leq b \\
& x \geq 0 \\
& \text { Dual } \\
& \text { minimize: } b \cdot y \\
& \text { subject to: } \quad A^{T} y \geq c \\
& y \geq 0
\end{aligned}
$$

## Linear Programming Duality: alternative forms

$C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9$.

| Primal |  | Dual |  |  |
| :---: | :---: | :---: | :---: | :---: |
| maximize: | $c \cdot x$ |  | minimize: | $b \cdot y$ |
| subject to: | $A x \leq b$ | $\Longleftrightarrow$ | subject to: | $A^{T} y \geq c$ |
|  | $x \geq 0$ |  |  | $y \geq 0$ |

- Combine equations to get upper bound.


## Linear Programming Duality: alternative forms

$C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9$.

Primal
maximize: $c \cdot x$
subject to: $A x \leq b$

$$
x \geq 0
$$

Dual
minimize: $b \cdot y$
subject to: $A^{T} y \geq c$
$y \geq 0$

- Combine equations to get upper bound.
- If $C, T$ are negative, first step doesn't hold $\Longrightarrow$ need equality.

| "Alternative primal" |  | "Alternative dual" |  |
| :--- | :--- | :--- | :---: |
| maximize: $\quad c \cdot x$ |  | minimize: $\quad b \cdot y$ |  |
| subject to: $\quad A x \leq b$ |  | subject to: $\quad A^{T} y=c$ |  |
|  |  |  |  |
|  |  |  |  |

## Linear Programming Duality: alternative forms

$C+2 T \leq C+\frac{8}{3} T=\frac{1}{3}((2 C+3 T)+(C+5 T)) \leq \frac{1}{3}(12+15)=9$.

| Primal | Dual |  |  |
| ---: | :--- | :--- | :--- |
| maximize: | $c \cdot x$ |  | minimize: |
| subject to: | $A x$ | $b \cdot y$ |  |
|  | $x$ | $\geq 0$ |  |

- Combine equations to get upper bound.
- If $C, T$ are negative, first step doesn't hold $\Longrightarrow$ need equality.
- If equations are equalities, can subtract them $\Longrightarrow \alpha, \beta$ can be $<0$.

| "Alternative primal" |  |  | "Alternative dual" |  |
| :---: | :---: | :---: | :---: | :---: |
| maximize: | $c \cdot x$ |  | minimize: | $b \cdot y$ |
| subject to: | $A x \leq b$ | $\Longleftrightarrow$ | subject to: | $A^{T} y=c$ |

## Special cases

- Primal $=$ Dual if both feasible.


## Special cases

- Primal = Dual if both feasible.
- Primal unbounded $\Longrightarrow$ dual infeasible


## Special cases

- Primal $=$ Dual if both feasible.
- Primal unbounded $\Longrightarrow$ dual infeasible
- Dual unbounded $\Longrightarrow$ primal infeasible


## Special cases

- Primal $=$ Dual if both feasible.
- Primal unbounded $\Longrightarrow$ dual infeasible
- Dual unbounded $\Longrightarrow$ primal infeasible
- Both infeasible is possible.


## Special cases

- Primal = Dual if both feasible.
- Primal unbounded $\Longrightarrow$ dual infeasible
- Dual unbounded $\Longrightarrow$ primal infeasible
- Both infeasible is possible.
- Either one feasible and bounded $\Longrightarrow$ other is too.


## Linear programming duality

$$
\begin{array}{rlrrrl}
\max : & C+2 T & & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & & \text { s.t.: } & \\
& & 2 \alpha+\beta & \geq 1 \\
& C+5 T & \leq 15 & & 3 \alpha+5 \beta & \geq 2 \\
C, T & \geq 0 & & \alpha, \beta & \geq 0
\end{array}
$$

| Primal | Dual |
| :--- | :--- |
| Variables | $\Longrightarrow$ Constraints |
| Constraints | $\Longrightarrow$ Variables |
| Objective coefficients $c$ | $\Longrightarrow$ Constraint values $b$ |
| Constraint values | $\Longrightarrow$ Objective coefficients |
| Nonnegative vars | $\Longrightarrow$ Inequality constraints |
| Unconstrained vars | $\Longrightarrow$ Equality constraints |
| Unbounded | $\Longrightarrow$ Infeasible |
| Infeasible | $\Longrightarrow$ unbounded or infeasible |
| Nonzero variables | $\Longrightarrow$ tight constraints |
| Slack constraints | $\Longrightarrow$ zero variables |

## What do dual variables mean?

$$
\begin{array}{rlrlrl}
\max : & C+2 T & & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & & \text { s.t.: } & \\
& & 2 \alpha+\beta & \geq 1 \\
& C+5 T & \leq 15 & & 3 \alpha+5 \beta & \geq 2 \\
C, T & \geq 0 & & & \alpha, \beta & \geq 0
\end{array}
$$

- Solution: $(C, T)=\left(\frac{15}{7}, \frac{18}{7}\right),(\alpha, \beta)=\left(\frac{3}{7}, \frac{1}{7}\right)$. Both give $\frac{51}{7}$.


## What do dual variables mean?

$$
\begin{array}{rlrrrl}
\max : & C+2 T & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & & \text { s.t.: } & \\
& & 2 \alpha+\beta & \geq 1 \\
& C+5 T & \leq 15 & & 3 \alpha+5 \beta & \geq 2 \\
& C, T & \geq 0 & & \alpha, \beta & \geq 0
\end{array}
$$

- Solution: $(C, T)=\left(\frac{15}{7}, \frac{18}{7}\right),(\alpha, \beta)=\left(\frac{3}{7}, \frac{1}{7}\right)$. Both give $\frac{51}{7}$.
- Dual variable $\alpha$ corresponds to the metal constraint.


## What do dual variables mean?

$$
\begin{array}{rlrrrl}
\max : & C+2 T & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & & \text { s.t.: } & \\
& & 2 \alpha+\beta & \geq 1 \\
& C+5 T & \leq 15 & & 3 \alpha+5 \beta & \geq 2 \\
& C, T & \geq 0 & & \alpha, \beta & \geq 0
\end{array}
$$

- Solution: $(C, T)=\left(\frac{15}{7}, \frac{18}{7}\right),(\alpha, \beta)=\left(\frac{3}{7}, \frac{1}{7}\right)$. Both give $\frac{51}{7}$.
- Dual variable $\alpha$ corresponds to the metal constraint.
- Tells you marginal value of metal to the factory:


## What do dual variables mean?

$$
\begin{array}{rlrrrl}
\max : & C+2 T & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & & \text { s.t.: } & \\
& & 2 \alpha+\beta & \geq 1 \\
& C+5 T & \leq 15 & & 3 \alpha+5 \beta & \geq 2 \\
C, T & \geq 0 & & \alpha, \beta & \geq 0
\end{array}
$$

- Solution: $(C, T)=\left(\frac{15}{7}, \frac{18}{7}\right),(\alpha, \beta)=\left(\frac{3}{7}, \frac{1}{7}\right)$. Both give $\frac{51}{7}$.
- Dual variable $\alpha$ corresponds to the metal constraint.
- Tells you marginal value of metal to the factory:
- With $\epsilon$ more metal, OPT will rise by $\alpha \epsilon$.


## What do dual variables mean?

$$
\left.\begin{array}{rrrrr}
\max : & C+2 T & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & \text { s.t.: } & \\
& C+5 T \leq 15 & & & 2 \alpha+5 \beta \\
& C, T & \geq 0 & &
\end{array}\right)
$$

- Solution: $(C, T)=\left(\frac{15}{7}, \frac{18}{7}\right),(\alpha, \beta)=\left(\frac{3}{7}, \frac{1}{7}\right)$. Both give $\frac{51}{7}$.
- Dual variable $\alpha$ corresponds to the metal constraint.
- Tells you marginal value of metal to the factory:
- With $\epsilon$ more metal, OPT will rise by $\alpha \epsilon$.
- Check: 13 metal gives $(C, T)=\left(\frac{20}{7}, \frac{17}{7}\right)$ for $\frac{54}{7}=\frac{51}{7}+\frac{3}{7}$.


## What do dual variables mean? Shadow prices!

$$
\begin{array}{rlrlrl}
\max : & C+2 T & & \min : & & 12 \alpha+15 \beta \\
\text { s.t.: } & 2 C+3 T & \leq 12 & & \text { s.t.: } & \\
& & 2 \alpha+\beta & \geq 1 \\
& C+5 T & \leq 15 & & 3 \alpha+5 \beta & \geq 2 \\
C, T & \geq 0 & & \alpha, \beta & \geq 0
\end{array}
$$

- Solution: $(C, T)=\left(\frac{15}{7}, \frac{18}{7}\right),(\alpha, \beta)=\left(\frac{3}{7}, \frac{1}{7}\right)$. Both give $\frac{51}{7}$.
- Dual variable $\alpha$ corresponds to the metal constraint.
- Tells you marginal value of metal to the factory:
- With $\epsilon$ more metal, OPT will rise by $\alpha \epsilon$.
- Check: 13 metal gives $(C, T)=\left(\frac{20}{7}, \frac{17}{7}\right)$ for $\frac{54}{7}=\frac{51}{7}+\frac{3}{7}$.
- These are known as shadow prices.


## Class Outline


(2) Reducing Problems to Linear Programs

## Writing old problems as linear programs

- Write network flow as a linear program
- Write shortest paths as a linear program
- Write minimum cut as a linear program


## Maximum flow as a linear program

- Max flow is a linear program in the variables $f_{u v}=$ flow from $u$ to $v$ :

$$
\begin{array}{rlrl}
\text { maximize: } & \sum_{u} f_{s u}-f_{u s} & & \text { (flow out) } \\
\text { subject to: } & \sum_{v} f_{u v}-f_{v u} & =0 \quad \forall u \neq s, t & \\
& & \text { (conservation) } \\
f_{u v} & \leq C_{u v} \forall u, v & & \text { (capacity) } \\
f_{u v} & \geq 0 & &
\end{array}
$$

## Maximum flow as a linear program

- Max flow is a linear program in the variables $f_{u v}=$ flow from $u$ to $v$ :

$$
\begin{array}{rlrl}
\text { maximize: } & \sum_{u} f_{s u}-f_{u s} & & \text { (flow out) } \\
\text { subject to: } & \sum_{v} f_{u v}-f_{v u} & =0 \quad \forall u \neq s, t & \\
& & \text { (conservation) } \\
f_{u v} & \leq C_{u v} \forall u, v & & \text { (capacity) } \\
f_{u v} & \geq 0 & &
\end{array}
$$

- Computing the dual is a bit messy, but gives a min-cut formulation


## Dual of the maximum flow LP

- Variables correspond to constraints: $x_{u}$ for conservation constraints, $y_{u v}$ for capacity (for all $u, v$ ).


## Dual of the maximum flow LP

- Variables correspond to constraints: $x_{u}$ for conservation constraints, $y_{u v}$ for capacity (for all $u, v$ ).
- A bit easier if we make the constraints include $u=s, t$.

$$
\begin{array}{rlrl}
\text { maximize: } & F & & \text { (flow out) } \\
\text { subject to: } & \sum_{v} f_{u v}-f_{v u} & =\left\{\begin{array}{rlr}
0 & \forall u \neq s, t \\
F & u=s \\
-F & u=t
\end{array}\right. & \text { (conservation) } \\
f_{u v} & \leq C_{u v} \forall u, v & \text { (capacity) } \\
f_{u v} & \geq 0 &
\end{array}
$$

## Dual of the maximum flow LP

- Variables correspond to constraints: $x_{u}$ for conservation constraints, $y_{u v}$ for capacity (for all $u, v$ ).
- A bit easier if we make the constraints include $u=s, t$.

$$
\begin{array}{rlrl}
\text { maximize: } & F & & \text { (flow out) } \\
\text { subject to: } & \sum_{v} f_{u v}-f_{v u} & =\left\{\begin{array}{rll}
0 & \forall u \neq s, t & \\
F & u=s & \\
-F & u=t
\end{array}\right. \\
f_{u v} & \leq C_{u v} \forall u, v & & \text { (conservation) } \\
f_{u v} & \geq 0 &
\end{array}
$$

- Constraints correspond to variables: one per $f_{u v}$, one for $F$.


## Dual of the maximum flow LP

- Variables correspond to constraints: $x_{u}$ for conservation constraints, $y_{u v}$ for capacity (for all $u, v$ ).
- A bit easier if we make the constraints include $u=s, t$.

$$
\begin{array}{rlrl}
\text { maximize: } & F & & \text { (flow out) } \\
\text { subject to: } & \sum_{v} f_{u v}-f_{v u} & =\left\{\begin{array}{rll}
0 & \forall u \neq s, t & \\
F & u=s \\
-F & u=t
\end{array}\right. & \text { (conservation) } \\
f_{u v} & \leq C_{u v} \forall u, v & \text { (capacity) } \\
f_{u v} & \geq 0 &
\end{array}
$$

- Constraints correspond to variables: one per $f_{u v}$, one for $F$.
- Each $f_{u v}$ appears in 3 constraints, $F$ appears in two.


## Dual of the maximum flow LP

- Variables correspond to constraints: $x_{u}$ for conservation constraints, $y_{u v}$ for capacity (for all $u, v$ ).
- A bit easier if we make the constraints include $u=s, t$.

$$
\begin{array}{rlrl}
\text { maximize: } & F & & \text { (flow out) } \\
\text { subject to: } & \sum_{v} f_{u v}-f_{v u} & =\left\{\begin{array}{cll}
0 & \forall u \neq s, t \\
F & u=s \\
-F & u=t & \\
\text { (conservat } \\
f_{u v} & \leq C_{u v} \forall u, v & \\
f_{u v} & \geq 0 &
\end{array}\right. \\
& & &
\end{array}
$$

- Constraints correspond to variables: one per $f_{u v}$, one for $F$.
- Each $f_{u v}$ appears in 3 constraints, $F$ appears in two.

$$
\begin{aligned}
\operatorname{minimize}: \quad \sum_{u v} C_{u v} y_{u v} & \\
\text { subject to: } \quad x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v \\
x_{t}-x_{s} & =1 \\
y_{u v} & \geq 0
\end{aligned}
$$

## Dual of the maximum flow LP is minimum cut

$$
\begin{aligned}
\operatorname{minimize}: & \sum_{u v} C_{u v} y_{u v} \\
\text { subject to: } \quad x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v \\
x_{t}-x_{s} & =1 \\
y_{u v} & \geq 0
\end{aligned}
$$

- Intuition:


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rlr}
\operatorname{minimize} & \sum_{u v} C_{u v} y_{u v} & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v \\
x_{t}-x_{s} & =1 \\
y_{u v} & \geq 0 &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.


## Dual of the maximum flow LP is minimum cut

$$
\begin{aligned}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v & \text { (if } u \in S \text { and } v \notin S, u v \text { is cut) } \\
x_{t}-x_{s} & =1 & & \\
& y_{u v} & \geq 0 &
\end{aligned}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rcrl}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} \geq 0 \quad \forall u, v & & \text { (if } u \in S \text { and } v \notin S, u v \text { is cut) } \\
& x_{t}-x_{s} & =1 & \\
& y_{u v} \geq 0 & &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rlrl}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v & \\
& & \text { (if } u \in S \text { and } v \notin S, u v \text { is cut) } \\
x_{t}-x_{s} & =1 & & (s \in S, t \notin S) \\
& y_{u v} & \geq 0 &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.
- More precisely:


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rlrl}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v, v & \\
& x_{t}-x_{s} & =1 & \\
& y_{u v} & \geq 0 & \\
& &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.
- More precisely:
- If $y_{u v}, x_{u} \in\{0,1\}$, this equivalence works.


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rcrl}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} \geq 0 \quad \forall u, v & & \text { (if } u \in S \text { and } v \notin S, u v \text { is cut) } \\
& x_{t}-x_{s} & =1 & \\
& y_{u v} & \geq 0 & \\
& &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.
- More precisely:
- If $y_{u v}, x_{u} \in\{0,1\}$, this equivalence works.
- Not hard to argue that opt lies in $[0,1]$.


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rlrl}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} & \geq 0 \quad \forall u, v, v & \\
& x_{t}-x_{s} & =1 & \\
& y_{u v} & \geq 0 & \\
& &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.
- More precisely:
- If $y_{u v}, x_{u} \in\{0,1\}$, this equivalence works.
- Not hard to argue that opt lies in $[0,1]$.
- But how come the solution can't be fractional?


## Dual of the maximum flow LP is minimum cut

$$
\begin{array}{rcrl}
\text { minimize: } & \sum_{u v} C_{u v} y_{u v} & & \text { (total cut) } \\
\text { subject to: } & x_{u}-x_{v}+y_{u v} \geq 0 \quad \forall u, v & & \text { (if } u \in S \text { and } v \notin S, u v \text { is cut) } \\
& x_{t}-x_{s} & =1 & \\
& y_{u v} \geq 0 & &
\end{array}
$$

- Intuition:
- $y_{u v}$ is 1 if edge $u v$ is cut, 0 otherwise.
- $x_{u}$ is 0 if $u \in S, 1$ otherwise.
- More precisely:
- If $y_{u v}, x_{u} \in\{0,1\}$, this equivalence works.
- Not hard to argue that opt lies in $[0,1]$.
- But how come the solution can't be fractional?
- This LP is special ("totally unimodular"): every vertex is integral.


## Shortest paths as a linear program

- Stretching formulation:

| maximize: | $d_{t}$ |  |
| ---: | :--- | :--- |
| subject to: | $d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E$ |  |
|  |  | (distance) |
| $d_{s}=0$ |  | (stariangle inequality) |
|  |  |  |

## Shortest paths as a linear program

- Stretching formulation:

$$
\begin{array}{rll}
\text { maximize: } & d_{t} & \\
\text { subject to: } & d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E & \text { (trianglance) } \\
& d_{s}=0 &
\end{array}
$$

- Dual:


## Shortest paths as a linear program

- Stretching formulation:

$$
\begin{array}{rll}
\operatorname{maximize}: & d_{t}-d_{s} & \text { (distance) } \\
\text { subject to: } & d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E & \text { (triangle inequality) }
\end{array}
$$

- Dual:


## Shortest paths as a linear program

- Stretching formulation:

$$
\begin{array}{rll}
\text { maximize: } & d_{t}-d_{s} & \text { (distance) } \\
\text { subject to: } & d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E & \text { (triangle inequality) }
\end{array}
$$

- Dual: one variable $y_{u v}$ per edge, one constraint per $d_{u}$.


## Shortest paths as a linear program

- Stretching formulation:

$$
\begin{array}{rll}
\text { maximize: } & d_{t}-d_{s} & \text { (distance) } \\
\text { subject to: } & d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E & \text { (triangle inequality) }
\end{array}
$$

- Dual: one variable $y_{u v}$ per edge, one constraint per $d_{u}$.

$$
\text { minimize: } \quad \sum_{u v} w(u \rightarrow v) y_{u v}
$$

subject to:

$$
\sum_{v} y_{v u}-y_{u v}=\left\{\begin{array}{cl}
0 & \forall u \neq s, t \\
-1 & u=s \\
1 & u=t
\end{array}\right.
$$

## Shortest paths as a linear program

- Stretching formulation:
maximize: $\quad d_{t}-d_{s}$
subject to: $\quad d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E$
(distance)
(triangle inequality)
- Dual: one variable $y_{u v}$ per edge, one constraint per $d_{u}$.

$$
\text { minimize: } \quad \sum_{u v} w(u \rightarrow v) y_{u v}
$$

subject to:

$$
\sum_{v} y_{v u}-y_{u v}=\left\{\begin{array}{cl}
0 & \forall u \neq s, t \\
-1 & u=s \\
1 & u=t
\end{array}\right.
$$

is min-cost flow of 1 mass from $s$ to $t ; y_{u v}=1$ if $u v$ on path.

## Shortest paths as a linear program

- Stretching formulation:
maximize: $\quad d_{t}-d_{s}$
subject to: $\quad d_{v}-d_{u} \leq w(u \rightarrow v) \forall u v \in E$
(distance)
(triangle inequality)
- Dual: one variable $y_{u v}$ per edge, one constraint per $d_{u}$.

$$
\text { minimize: } \quad \sum_{u v} w(u \rightarrow v) y_{u v}
$$

subject to:

$$
\sum_{v} y_{v u}-y_{u v}=\left\{\begin{array}{cl}
0 & \forall u \neq s, t \\
-1 & u=s \\
1 & u=t
\end{array}\right.
$$

is min-cost flow of 1 mass from $s$ to $t ; y_{u v}=1$ if $u v$ on path.

- Again, totally unimodular implies integral vertices.


## Conclusion

- Every LP has a dual:
- Motivated by certifying an upper bound.
- Mechanically easy to write down
- Constraints $\Longleftrightarrow$ variables
- Dual variables are shadow prices: the marginal value of the constraint.


## Conclusion

- Every LP has a dual:
- Motivated by certifying an upper bound.
- Mechanically easy to write down
- Constraints $\Longleftrightarrow$ variables
- Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).


## Conclusion

- Every LP has a dual:
- Motivated by certifying an upper bound.
- Mechanically easy to write down
- Constraints $\Longleftrightarrow$ variables
- Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).
- Sometimes linear programs are structured so the answers are integer


## Conclusion

- Every LP has a dual:
- Motivated by certifying an upper bound.
- Mechanically easy to write down
- Constraints $\Longleftrightarrow$ variables
- Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).
- Sometimes linear programs are structured so the answers are integer
- "Integral" LPs are ones that happen to have integer vertices.


## Conclusion

- Every LP has a dual:
- Motivated by certifying an upper bound.
- Mechanically easy to write down
- Constraints $\Longleftrightarrow$ variables
- Dual variables are shadow prices: the marginal value of the constraint.
- Strong duality: the dual has the same value as the primal (if either exists and is finite).
- Sometimes linear programs are structured so the answers are integer
- "Integral" LPs are ones that happen to have integer vertices.
- "Integer" LPs add a new constraint that $x \in \mathbb{Z}^{n}$. This is NP-hard.

