Linear Programming Duality

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin) Linear Programming Duality /19



Plan for the class

©

Today: linear programming duality

©

Tonight: problem set on LPs

©

Last 2 weeks of class: complexity theory

©

1 problem set on complexity theory

©

Final exam: given out after last class, due two days later.
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Class Outline

@ LP Duality
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Linear Programming

o Maximize/minimize linear objective subject to linear constraints.
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Linear Programming

o Maximize/minimize linear objective subject to linear constraints.

o Last class:
» Solution lies at a vertex of feasible region.
» Ways to translate between formulations (< / =/ >, x > 0 or not)

» Ways to solve (simplex)
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Special Cases

o Infeasible: no possible answer.
maximize x—y
subjectto 2x+y <1 ™

x+y=2 X
x,y=0
! t
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Special Cases

o Infeasible: no possible answer.
maximize x—y
subjectto 2x+y <1 ™

x+y=2 X
x,y=0
! t

o Unbounded: infinitely good answer.
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C, T>0
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C, T>0

o Last class we solved it, but it took some effort.
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

¢, T>0

o Last class we solved it, but it took some effort.
o Simple to prove a lower bound on answer OPT:
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

¢, T>0

o Last class we solved it, but it took some effort.
o Simple to prove a lower bound on answer OPT:
» OPT > 6 because (6,0) possible.
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

¢, T>0

o Last class we solved it, but it took some effort.
o Simple to prove a lower bound on answer OPT:
» OPT > 6 because (6,0) possible.
o Question: can you easily show an upper bound on OPT?
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C, T>0

o Last class we solved it, but it took some effort.

o Simple to prove a lower bound on answer OPT:
» OPT > 6 because (6,0) possible.

o Question: can you easily show an upper bound on OPT?
> |s the answer larger than 207
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C, T>0

o Last class we solved it, but it took some effort.
o Simple to prove a lower bound on answer OPT:
» OPT > 6 because (6,0) possible.
o Question: can you easily show an upper bound on OPT?

> |s the answer larger than 207
» No: C+2T <2C+3T <12.
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Linear Programming Upper bound?

o Cars & trucks example:

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C, T>0

o Last class we solved it, but it took some effort.
o Simple to prove a lower bound on answer OPT:
» OPT > 6 because (6,0) possible.
o Question: can you easily show an upper bound on OPT?

> |s the answer larger than 207
» No: C+2T <2C+3T <12.
» But also:

1
C+2T§C+§T:§((2C+3T)+(C+5T))§ (124 15) =09.

[N )
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Linear Programming Upper bound?

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C,T>0

o Get an upper bound by combining the constraints:

8 1
C+2T < C+ 3T =3((2C+37T)+(C+57)) < 5(12+15) =0.

W[~
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Linear Programming Upper bound?

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C,T>0

o Get an upper bound by combining the constraints:

8 1 1
C+2T < C+ 3T =3((2C+37T)+(C+57)) < 5(12+15) =0.

o The above is % of each. What is the best (a, 3) combination?

OPT < 12a+ 158 (value)
where: 2a+p>1 (cars)
3a+56>2  (trucks)
a,8>0
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Linear Programming Duality

maximize: C+2T (value)
subject to:  2C+3T <12  (metal)
C+5T <15 (wood)

C,T>0

o Get an upper bound by combining the constraints:

8 1 1
C+2T < C+ 3T =3((2C+37T)+(C+57)) < 5(12+15) =0.

o The above is % of each. What is the best (a, 3) combination?

minimize: 12« + 1503 (value)
where: 2a+p>1 (cars)
3a+56>2  (trucks)
a,8>0
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Linear Programming Duality

maximize: C+2T (value)

subject to:  2C+3T <12  (metal)

Primal C+5T <15 (wood)
C,T>0

o Get an upper bound by combining the constraints:

8 1 1
C+2T < C+ 3T =3((2C+37T)+(C+57)) < 5(12+15) =0.

o The above is % of each. What is the best (a, 3) combination?

minimize: 12« + 1503 (value)
where: 2a+p>1 (cars)
Dual 3a+56>2  (trucks)
a,8>0
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Linear Programming Duality
Primal
maximize: C¢-Xx
subject to: Ax

<
x>0

Eric Price (UT Austin)

Dual
minimize:  b-y
subject to: ATy > ¢
y=>0
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Linear Programming Duality

Primal Dual
maximize: c-x minimize:
subject to: Ax <b = subject to:

x>0

Primal solution < Dual solution

b-y
ATyZC
y=>0
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Linear Programming Duality

Primal Dual
maximize: c-x minimize:  b-y
subject to: Ax <b — subject to: ATy > ¢
x>0 y=>0

Primal solution < Dual solution

o By construction, the dual is an upper bound on the primal.
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Linear Programming Duality

Primal Dual
maximize: C-Xx minimize:
subject to: Ax <b — subject to:

x>0

Primal solution < Dual solution

b-y
ATy >¢
y=>0

o By construction, the dual is an upper bound on the primal.

» And the primal is a lower bound on the dual.
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Linear Programming Duality

Primal Dual
maximize: C-Xx minimize:  b-y
subject to: Ax <b — subject to: ATy > ¢
x>0 y=>0

Primal solution < Dual solution

o By construction, the dual is an upper bound on the primal.

» And the primal is a lower bound on the dual.
» Any feasible primal value is < any feasible dual value.
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Linear Programming Duality

Primal Dual
maximize: C-Xx minimize:
subject to: Ax <b — subject to:

x>0

Primal solution < Dual solution

b-y
ATy >¢
y=>0

o By construction, the dual is an upper bound on the primal.

» And the primal is a lower bound on the dual.

» Any feasible primal value is < any feasible dual value.

» This is “weak duality”
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Linear Programming Duality

Primal Dual
maximize: C-Xx minimize:
subject to: Ax <b — subject to:

x>0

Primal solution = Dual solution

b-y
ATy >¢
y=>0

o By construction, the dual is an upper bound on the primal.

» And the primal is a lower bound on the dual.

» Any feasible primal value is < any feasible dual value.

» This is “weak duality”
o Remarkable fact: the two are equal.
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Linear Programming Duality

Primal Dual
maximize: C-Xx minimize:
subject to: Ax <b — subject to:

x>0

Primal solution = Dual solution

b-y
ATy >¢
y=>0

o By construction, the dual is an upper bound on the primal.

» And the primal is a lower bound on the dual.

» Any feasible primal value is < any feasible dual value.

» This is “weak duality”
o Remarkable fact: the two are equal.
» This is “strong duality.”

Eric Price (UT Austin) Linear Programming Duality



Linear Programming Duality

Primal Dual
maximize: C-Xx minimize:
subject to: Ax <b — subject to:

x>0

Primal solution = Dual solution

b-y
ATy >¢
y=>0

o By construction, the dual is an upper bound on the primal.

» And the primal is a lower bound on the dual.

» Any feasible primal value is < any feasible dual value.

» This is “weak duality”
o Remarkable fact: the two are equal.
» This is “strong duality.”

o Generalization of max flow-min cut theorem.
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Linear Programming Duality: alternative forms

1
C+2T < C+§T:§((2C+3T)+(C+5T))S

Primal
maximize: ¢-Xx
subject to: Ax < b

>0

Eric Price (UT Austin)

<~

W=

Dual
minimize: b-y
subject to: ATy > ¢
y=>0

Linear Programming Duality

(12+15) = 9.



Linear Programming Duality: alternative forms

1
C-|-2T§C+§T:§((2C+3T)+(C+5T))§

Primal Dual

maximize: C-x minimize:

subject to: Ax<b <= subject to:
x>0

o Combine equations to get upper bound.

W[

(12+15) = 9.

b-y
ATy > ¢
y=>0
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Linear Programming Duality: alternative forms

8 1 1
C+2T < C+§T: g((2C+3T)+(C+5T)) < 5(12+15):9.
Primal Dual
maximize: c-x minimize: b-y
subject to: Ax<b <= subject to: ATy > ¢
x>0 y=>0

o Combine equations to get upper bound.
» If C, T are negative, first step doesn't hold = need equality.

“Alternative primal” “Alternative dual”
maximize: c-x minimize:  b-y
subject to: Ax<b == subject to: ATy =c¢

c>0
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Linear Programming Duality: alternative forms

8 1 1
C+2T < C+§T: g((2C+3T)+(C+5T)) < 5(12+15):9.
Primal Dual
maximize: c-x minimize: b-y
subject to: Ax<b <= subject to: ATy > ¢
x>0 y=>0

o Combine equations to get upper bound.
» If C, T are negative, first step doesn't hold = need equality.
» If equations are equalities, can subtract them — «, 3 can be < 0.

“Alternative primal” “Alternative dual”

maximize: ¢ Xx minimize:  b-y
subject to: Ax<b <= subject to: ATy =c¢
c>0
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Special cases

o Primal = Dual if both feasible.
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Special cases

o Primal = Dual if both feasible.

o Primal unbounded = dual infeasible
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Special cases

o Primal = Dual if both feasible.
o Primal unbounded = dual infeasible

o Dual unbounded = primal infeasible
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Special cases

Primal = Dual if both feasible.
Primal unbounded = dual infeasible

Dual unbounded = primal infeasible

© © o o

Both infeasible is possible.
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Special cases

Primal = Dual if both feasible.
Primal unbounded = dual infeasible

Dual unbounded = primal infeasible

© © o o

Both infeasible is possible.

©

Either one feasible and bounded = other is too.
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Linear programming duality

max: C+2T min:
st 2C+3T < s.t. 2a+p>1
C+5T< 3a+58>2
C, T>0 a, >0
Primal Dual
Variables = Constraints
Constraints = Variables
Objective coefficients ¢ | = Constraint values b
Constraint values — Objective coefficients
Nonnegative vars = Inequality constraints
Unconstrained vars =—> Equality constraints
Unbounded — Infeasible
Infeasible =—> unbounded or infeasible
Nonzero variables = tight constraints
Slack constraints = zero variables
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What do dual variables mean?

max: C+2T min: 12« + 1583
st: 2C+3T <12 s.t. 2a+p2>1
C+5T <15 3a+58>2
C, T>0 a,8>0

o Solution: (C, T)=(£,28), (o, 8) = (2,1). Both give 2}
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What do dual variables mean?

max: C+2T min: 12« + 1583
st 2C+3T7T <12 s.t.: 20+ >1
C+5T <15 3a+58>2
C, T>0 a,8>0

o Solution: (C, T)=(£,28), (o, 8) = (2,1). Both give 2}

70T T
o Dual variable o corresponds to the metal constraint.
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What do dual variables mean?

max: C+2T min: 12« + 1583
st 2C+3T7T <12 s.t.: 20+ >1
C+5T <15 3a+58>2
C, T>0 a,8>0

o Solution: (C, T)=(£,28), (o, 8) = (2,1). Both give 2}

70T T
o Dual variable o corresponds to the metal constraint.
o Tells you marginal value of metal to the factory:
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What do dual variables mean?

max: C+2T min: 12« + 1583
st 2C+3T7T <12 s.t.: 20+ >1
C+5T <15 3a+58>2
C, T>0 a,8>0

o Solution: (C, T)=(£,28), (o, 8) = (2,1). Both give 2}

T 7 7
o Dual variable o corresponds to the metal constraint.
o Tells you marginal value of metal to the factory:

» With € more metal, OPT will rise by «e.
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What do dual variables mean?

max: C+2T min: 12« + 1583
st 2C+3T7T <12 s.t.: 20+ >1
C+5T <15 3a+58>2
C, T>0 a,8>0

o Solution: (C, T) = (£,%8), (o, 8) = (2,1). Both give 2

o Dual variable o corresponds to the metal constraint.
o Tells you marginal value of metal to the factory:

» With € more metal, OPT will rise by «e.
» Check: 13 metal gives (C, T) = (2, ) for 2 =21 +
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What do dual variables mean? Shadow prices!

max: C+2T min: 12« + 1583
st 2C+3T7T <12 s.t.: 20+ >1
C+5T <15 3a+58>2
C, T>0 a,8>0

o Solution: (C, T) = (£,%8), (o, 8) = (2,1). Both give 2
o Dual variable o corresponds to the metal constraint.
o Tells you marginal value of metal to the factory:

» With € more metal, OPT will rise by «e.

» Check: 13 metal gives (C, T) = (2, ) for 2 =21 +

~lw

o These are known as shadow prices.
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Class Outline

@ Reducing Problems to Linear Programs
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Writing old problems as linear programs

o Write network flow as a linear program
o Write shortest paths as a linear program

o Write minimum cut as a linear program
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Maximum flow as a linear program

o Max flow is a linear program in the variables f,, = flow from u to v:

maximize: Z fou — fus (flow out)
subject to: Z fuv — fu =0 Yu #s,t (conservation)

fow < Cu Yu,v  (capacity)
fIJV Z 0
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Maximum flow as a linear program

o Max flow is a linear program in the variables f,, = flow from u to v:

maximize: Z fou — fus (flow out)
subject to: Z fuv — fu =0 Yu #s,t (conservation)

fow < Cu Yu,v  (capacity)
fIJV Z 0

o Computing the dual is a bit messy, but gives a min-cut formulation
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Dual of the maximum flow LP

o Variables correspond to constraints: x, for conservation constraints,
yuv for capacity (for all u, v).
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Dual of the maximum flow LP

o Variables correspond to constraints: x, for conservation constraints,
yuv for capacity (for all u, v).
o A bit easier if we make the constraints include u = s, t.

maximize: F

(flow out)
0 Vu#s,t
subject to: Z fov — fou = F u=s (conservation)
v —F u=t
fuv < Cuv VU, v (capacity)
fuy 20
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Dual of the maximum flow LP

o Variables correspond to constraints: x, for conservation constraints,
yuv for capacity (for all u, v).

o A bit easier if we make the constraints include u = s, t.

maximize: F (flow out)
0 Vu#s,t
subject to: Z fov — fou = F u=s (conservation)
v —F u=t
fuv < Cuv VU, v (capacity)
fuy 20

o Constraints correspond to variables: one per f,,, one for F.
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Dual of the maximum flow LP

o Variables correspond to constraints: x, for conservation constraints,
yuv for capacity (for all u, v).

o A bit easier if we make the constraints include u = s, t.

maximize: F (flow out)
0 Vu#s,t
subject to: Z fov — fou = F u=s (conservation)
v —F u=t
fuv < Cuv VU, v (capacity)
fuy 20

o Constraints correspond to variables: one per f,,, one for F.
» Each f,, appears in 3 constraints, F appears in two.
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Dual of the maximum flow LP

o Variables correspond to constraints: x, for conservation constraints,
yuv for capacity (for all u, v).

o A bit easier if we make the constraints include u = s, t.

maximize: F (flow out)
0 Vu#s,t
subject to: Z fov — fou = F u=s (conservation)
v —F u=t
fuv < Cuv VU, v (capacity)
fuy 20

o Constraints correspond to variables: one per f,,, one for F.
» Each f,, appears in 3 constraints, F appears in two.

minimize: g CuovYuv
uv

subject to:  x, —x, + Yo >0 Vu,v
Xt —Xs =1

Y =0

Eric Price (UT Austin)
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Dual of the maximum flow LP is minimum cut

minimize: E CovYuv
uv

subject to:  x, —xy, +yu >0 Vu,v
Xt —Xs =1

Yo =0

o Intuition:
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv

subject to:  x, —xy, +yu >0 Vu,v
Xt —Xs =1

Yo =0

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv

subject to:  x, —xy +Yu >0 Vu,v (ifueSandv ¢S, uvis cut)
Xt —Xs =1

Yo =0

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv
subject to:  x, —xy +Yu >0 Vu,v (ifueSandv ¢S, uvis cut)
Xp—Xs =1 (seSs t¢s)
Yo 20

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv
subject to:  x, —xy +Yu >0 Vu,v (ifueSandv ¢S, uvis cut)
Xp—Xs =1 (seSs t¢s)
Yo 20

o Intuition:
> yu is 1if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.

o More precisely:
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv
subject to:  x, — Xy +yu >0 Vu,v (fue Sandv ¢S, uvis cut)
Xp—Xs =1 (seSs t¢s)
Yo 20

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.

o More precisely:
> If yuv, x4 € {0,1}, this equivalence works.
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv
subject to:  x, — Xy +yu >0 Vu,v (fue Sandv ¢S, uvis cut)
Xp—Xs =1 (seSs t¢s)
Yo 20

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.

o More precisely:
> If yuv, x4 € {0,1}, this equivalence works.
> Not hard to argue that opt lies in [0, 1].
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Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv
subject to:  x, — Xy +yu >0 Vu,v (fue Sandv ¢S, uvis cut)
Xp—Xs =1 (seSs t¢s)
Yo 20

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.

o More precisely:
> If yuv, x4 € {0,1}, this equivalence works.
> Not hard to argue that opt lies in [0, 1].
» But how come the solution can't be fractional?

Eric Price (UT Austin) Linear Programming Duality



Dual of the maximum flow LP is minimum cut

minimize: Z CovYuv (total cut)
uv
subject to:  x, — Xy +yu >0 Vu,v (fue Sandv ¢S, uvis cut)
Xp—Xs =1 (seSs t¢s)
Yo 20

o Intuition:
> yuv is 1 if edge uv is cut, 0 otherwise.
» x,is 0if ue S, 1 otherwise.
o More precisely:
If yuv, xu € {0,1}, this equivalence works.
> Not hard to argue that opt lies in [0, 1].
» But how come the solution can't be fractional?
» This LP is special (“totally unimodular”): every vertex is integral.

v
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Shortest paths as a linear program

o Stretching formulation:

maximize:  d; (distance)
subject to:  d, —d, < w(u— v)VYuv € E  (triangle inequality)
ds=0 (start point)
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Shortest paths as a linear program

o Stretching formulation:

maximize:  d; (distance)
subject to:  d, —d, < w(u— v)VYuv € E  (triangle inequality)
ds=0 (start point)

o Dual:
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Shortest paths as a linear program

o Stretching formulation:

maximize: di — ds

(distance)

subject to:  dy, —dy, < w(u— v)Yuv € E  (triangle inequality)

o Dual:
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Shortest paths as a linear program

o Stretching formulation:

maximize:  d; — ds (distance)

subject to:  dy, —dy, < w(u— v)Yuv € E  (triangle inequality)

o Dual: one variable y,, per edge, one constraint per d,,.
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Shortest paths as a linear program
o Stretching formulation:

maximize:  d; — ds (distance)

subject to:  dy, —dy, < w(u— v)Yuv € E  (triangle inequality)

o Dual: one variable y,, per edge, one constraint per d,,.

minimize: Z w(u = v)yuy

uv

0 VYu#s,t
subject to: Zyvu —VYow=< -1 u=s
v 1 u=t
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Shortest paths as a linear program
o Stretching formulation:

maximize:  d; — ds (distance)

subject to:  dy, —dy, < w(u— v)Yuv € E  (triangle inequality)

o Dual: one variable y,, per edge, one constraint per d,,.

minimize: Z w(u = v)yuy

uv

0 VYu#s,t
subject to: Zyvu —VYow=< -1 u=s
v 1 u=t

is min-cost flow of 1 mass from s to t; y,, = 1 if uv on path.
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Shortest paths as a linear program
o Stretching formulation:

maximize:  d; — ds (distance)

subject to:  dy, —dy, < w(u— v)Yuv € E  (triangle inequality)

o Dual: one variable y,, per edge, one constraint per d,,.

minimize: Z w(u = v)yuy

uv

0 VYu#s,t
subject to: Zyvu —VYow=< -1 u=s
v 1 u=t

is min-cost flow of 1 mass from s to t; y,, = 1 if uv on path.

o Again, totally unimodular implies integral vertices.
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Conclusion

o Every LP has a dual:

v

Motivated by certifying an upper bound.

Mechanically easy to write down

Constraints <= variables

Dual variables are shadow prices: the marginal value of the constraint.

vV Vvyy
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Conclusion

o Every LP has a dual:

v

Motivated by certifying an upper bound.

Mechanically easy to write down

Constraints <= variables

Dual variables are shadow prices: the marginal value of the constraint.

vV Vvyy

o Strong duality: the dual has the same value as the primal (if either
exists and is finite).
o Sometimes linear programs are structured so the answers are integer

> “Integral” LPs are ones that happen to have integer vertices.
> “Integer” LPs add a new constraint that x € Z". This is NP-hard.
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