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Note on Reductions

For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

I Reduce from “Finding largest square in polytope” to LP.
I Reduce from “Tile a region with dominos” to network flow.
I Reduce from “Solve a word ladder” to shortest path.

For a lower bound: want to show NEW is hard. Know that OLD is
hard. Reduce OLD to NEW:

I Reduce SAT to 3SAT
I Reduce 3SAT to max-independent set

If OLD is hard, and you could solve OLD by solving NEW, then NEW
must be hard as well.
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Models of computation

Mentioned Word-RAM model early in semester

Turing machines: tape, heads, etc.

Lambda calculus: church numerals, etc.

Theorem

The set of functions that Turing machines can compute is exactly the
same as what Lambda calculus can.

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical
process.
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Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical
process.

Conjecture (Extended Church-Turing Thesis)

Turing machines can compute in polynomial time anything that is
computable by any “realistic” physical process.
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Formal(ish) Definitions

Definition (Language)

A “problem” is also referred to as a “language” L ⊆ {0, 1}∗ consisting of
YES inputs. An input x ∈ {0, 1}∗ is “YES” if, and only if, x ∈ L.

Definition (P)

A language L is in P iff there exists a poly-time algorithm A such that, for
all x , A(x) = 1 if and only if x ∈ L.

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:

1 For all x ∈ L, ∃p ∈ {0, 1}∗ of poly. length s.t. V(x , p) = 1.

2 For all x /∈ L, @p ∈ {0, 1}∗ of poly. length s.t. V(x , p) = 1.

P ⊆ NP: V(x , p) := A(x).
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Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:

1 For all x ∈ L, ∃p ∈ {0, 1}∗ of poly. length s.t. V(x , p) = 1.

2 For all x /∈ L, @p ∈ {0, 1}∗ of poly. length s.t. V(x , p) = 1.

Want to show CircuitSAT is NP-hard.

Goal: reduce from any NP problem to CircuitSAT.

Imagine that “poly-time algorithm V” were “poly-size circuit V”:

I Then “is x ∈ L” is the same as ∃p : V(x , p) = 1
I Which is just CircuitSAT on V(x , ·)

So we just need to transform the Turing machine into an equivalent
circuit of polynomial size.
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Cook-Levin theorem
Reducing Turing machine to SAT by unrolling across time

Variables

Li ,j := Machine at tape position j at time i

Qi ,j := Machine in state j at time i

Ti ,j ,k := Tape at position j at time i has value k

Polynomial time, states, values =⇒ polynomially many vars.

Transition rules

If Li ,j ∩ Ti ,j ,k ∩ Qi ,` then machine moves based on reading k in state `:

Li+1,t = 1 if t = g(k , `) else 0 Move left/right

Qi+1,t = 1 if t = f (k, `) else 0 Change state

Ti+1,j ,t = 1 if t = h(k, `) else 0 Write new char.

Example: g(k , `) = ` + 1 if, when reading k in state `, you move right.

Add a few more rules (e.g., machine in only one state at each time).
Output is what’s written when you halt.
Turing machine outputs YES if and only if the circuit outputs YES.
Q for NP verifier: does there exist an initial input (= tape state) such
that output is YES?
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Kinds of reduction

Suppose we want to show B is hard by reducing A to B

Cook reduction: more powerful

I Show that, given an oracle for B, can solve A in poly time
I Can call B many times, do intermediate processing, etc.
I If B ∈ P then A ∈ P.

Karp reduction: simpler

I Transform any instance x of A into a (very specific) instance x ′ of B
(of polynomial size).

I Such that x is YES for A if, and only if, x ′ is YES for B.
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Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .

I (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)

I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .

I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.
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Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .

I (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)

I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .

I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 / 16



Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .
I (Certificate: satisfying assignment / max independent set /

Hamiltonian cycle / other short “proof” of YES.)

I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .

I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 / 16



Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .
I (Certificate: satisfying assignment / max independent set /

Hamiltonian cycle / other short “proof” of YES.)
I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .

I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 / 16



Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .
I (Certificate: satisfying assignment / max independent set /

Hamiltonian cycle / other short “proof” of YES.)
I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .

I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 / 16



Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .
I (Certificate: satisfying assignment / max independent set /

Hamiltonian cycle / other short “proof” of YES.)
I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .
I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 / 16



Recipe for Karp reductions to prove NP-hardness

1 Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

2 Show how to transform any certificate for x into a certificate for y .
I (Certificate: satisfying assignment / max independent set /

Hamiltonian cycle / other short “proof” of YES.)
I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .
I Hence if y is YES, x must be YES.

4 To prove NP-completeness: show B ∈ NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 / 16



Karp’s 21 NP-complete problems

Every NP problem reduces to Circuit-SAT

Circuit-SAT reduces to SAT

SAT reduces to 3-SAT

3-SAT reduces to independent set
I Independent set reduces to vertex cover

F Vertex cover reduces to directed Hamiltonian cycle
F Directed Hamiltonian cycle reduces to undirected hamiltonian cycle

3-SAT reduces to graph coloring
I Chromatic number reduces to exact cover

F Exact cover reduces to subset sum.
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Subset Sum is NP-hard

Definition (Subset Sum)

Given a1, a2, . . . , an > 0—each represented with poly(n) bits—and a
number T , does there exist S ⊆ [n] such that∑

i∈S
ai = T?

Reduce from vertex cover.
Assign the edges e ∈ E numbers in 0, . . . , |E | − 1.
Two kinds of numbers: be and av , both written in base 4.

I be = 0001000004, with a 1 at position e.
I av = 101001000100104, with a 1 at position e if v ∈ e, and another 1

at position |E |.

For any vertex cover S of size k,∑
v∈S

av = k4|E | +
∑
e

4e ·
{

1 if |e ∩ S | = 1
2 if |e ∩ S | = 2

Hence T = k4|E | + 2222222222224 is possible.
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Recipe for Karp reductions to prove NP-hardness
1 Transform an arbitrary instance x of A into a very specific instance y

of B (of polynomial size).
I be = 0001000004, with a 1 at position e.
I av = 101001000100104, with a 1 at position e if v ∈ e, and another 1

at position |E |.
I T = k4|E | +

∑
e 2 · 4e

2 Show how to transform any certificate for x into a certificate for y .

I Done: given cover S , take av for v ∈ S and some be as necessary.
I Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x .

I Certificate for y is a set of SV and SE with∑
v∈SV

av +
∑
e∈SE

be = T = k4|E | +
∑
e

2 · 4e .

I In base 4, the e = (u, v)th digit appears in au, av , and be .
I Hence no overflows, and one of au or av must be picked for each e ∈ E .
I Exactly k of the au picked so 4|E | term matches.
I Hence SV is a vertex cover.
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Some very similar NP-complete problems

Given a graph G = (V ,E )

Definition (Max independent set)

Does there exist a set S ⊆ V of size ≥ k such that, for all (u, v) ∈ E , at
most 1 of u ∈ S and v ∈ S?

Definition (Max clique)

Does there exist a set S ⊆ V of size ≥ k such that, for all (u, v) ∈ S ,
(u, v) ∈ E?

Definition (Min vertex cover)

Does there exist a set S ⊆ V of size ≤ k such that, for all (u, v) ∈ E , at
least 1 of u ∈ S and v ∈ S?
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From here: preview of next class

P: Polynomial time

NP: Nondeterministic polynomial time

BPP: Probabilistic polynomial time, failure probability at most 1/3.
I PP: failure probability < 1/2.

BQP: Probabilistic quantum polynomial time, failure probability at
most 1/3.

PSPACE: Polynomial space

EXPTIME: Exponential time

Eric Price (UT Austin) Complexity Theory 14 / 16



Relations of complexity classes

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME ⊆ EXPSPACE ⊆ . . .

Know: P 6= EXPTIME , PSPACE 6= EXPSPACE .

That’s about it.

P ⊆ BPP ⊆ BQP ⊆ PSPACE

Most people expect: P = BPP, everything else (.

Don’t know NP compared to BPP or BQP (or even if one is inside
the other).
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Prototypical examples

P: evaluate a function
I Given a circuit f and input x , what is f (x)?

NP: solve a puzzle
I SAT: given f , determine if ∃x : f (x) = 1?
I Given a puzzle, find the solution
I Easy to verify once the solution is found.

PSPACE: solve a 2-player game
I TQBF: ∃x1∀x2∃x3 · · · ∀xn : f (x) = 1
I Think chess: do I have a move, so no matter what you do, I can find a

move, so no matter, etc., etc., I end up winning?

Caveat: requires the puzzle/game to only have a polynomial number
of moves.

I Puzzles/games with exponentially many moves may be harder.
I Go: actually EXPTIME-complete to solve a position.
I Zelda: actually PSPACE-complete to solve a level.
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