Complexity Theory

Eric Price
UT Austin

CS 331, Spring 2020 Coronavirus Edition

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.
- Reduce from "Tile a region with dominos" to network flow.

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.
- Reduce from "Tile a region with dominos" to network flow.
- Reduce from "Solve a word ladder" to shortest path.

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.
- Reduce from "Tile a region with dominos" to network flow.
- Reduce from "Solve a word ladder" to shortest path.
- For a lower bound: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.
- Reduce from "Tile a region with dominos" to network flow.
- Reduce from "Solve a word ladder" to shortest path.
- For a lower bound: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:
- Reduce SAT to 3SAT

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.
- Reduce from "Tile a region with dominos" to network flow.
- Reduce from "Solve a word ladder" to shortest path.
- For a lower bound: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:
- Reduce SAT to 3SAT
- Reduce 3SAT to max-independent set

Note on Reductions

- For an algorithm: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
- Reduce from "Finding largest square in polytope" to LP.
- Reduce from "Tile a region with dominos" to network flow.
- Reduce from "Solve a word ladder" to shortest path.
- For a lower bound: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:
- Reduce SAT to 3SAT
- Reduce 3SAT to max-independent set
- If OLD is hard, and you could solve OLD by solving NEW, then NEW must be hard as well.

Models of computation

- Mentioned Word-RAM model early in semester

Models of computation

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.

Models of computation

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.
- Lambda calculus: church numerals, etc.

Models of computation

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.
- Lambda calculus: church numerals, etc.

Theorem
The set of functions that Turing machines can compute is exactly the same as what Lambda calculus can.

Models of computation

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.
- Lambda calculus: church numerals, etc.

Theorem

The set of functions that Turing machines can compute is exactly the same as what Lambda calculus can.

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical process.

Church-Turing Thesis

Conjecture (Church-Turing Thesis)
Turing machines can compute anything that is computable by any physical process.

Church-Turing Thesis

Conjecture (Church-Turing Thesis)
Turing machines can compute anything that is computable by any physical process.

Conjecture (Extended Church-Turing Thesis)
Turing machines can compute in polynomial time anything that is computable by any "realistic" physical process.

Church-Turing Thesis

Conjecture (Church-Turing Thesis)
Turing machines can compute anything that is computable by any physical process.

Conjecture (Extended Church-Turing Thesis)
Quantum Turing machines can compute in polynomial time anything that is computable by any "realistic" physical process.

Formal(ish) Definitions

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq\{0,1\}^{*}$ consisting of YES inputs. An input $x \in\{0,1\}^{*}$ is "YES" if, and only if, $x \in L$.

Formal(ish) Definitions

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq\{0,1\}^{*}$ consisting of YES inputs. An input $x \in\{0,1\}^{*}$ is "YES" if, and only if, $x \in L$.

Definition (P)

A language L is in P iff there exists a poly-time algorithm \mathcal{A} such that, for all $x, \mathcal{A}(x)=1$ if and only if $x \in L$.

Formal(ish) Definitions

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq\{0,1\}^{*}$ consisting of YES inputs. An input $x \in\{0,1\}^{*}$ is "YES" if, and only if, $x \in L$.

Definition (P)

A language L is in P iff there exists a poly-time algorithm \mathcal{A} such that, for all $x, \mathcal{A}(x)=1$ if and only if $x \in L$.

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

Formal(ish) Definitions

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq\{0,1\}^{*}$ consisting of YES inputs. An input $x \in\{0,1\}^{*}$ is "YES" if, and only if, $x \in L$.

Definition (P)

A language L is in P iff there exists a poly-time algorithm \mathcal{A} such that, for all $x, \mathcal{A}(x)=1$ if and only if $x \in L$.

Definition (NP)

A language L is in $N P$ iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
$P \subseteq N P: \mathcal{V}(x, p):=\mathcal{A}(x)$.

Cook-Levin theorem

Definition (NP)

A language L is in $N P$ iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

- Want to show CircuitSAT is NP-hard.

Cook-Levin theorem

Definition (NP)

A language L is in $N P$ iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

- Want to show CircuitSAT is NP-hard.
- Goal: reduce from any NP problem to CircuitSAT.

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

- Want to show CircuitSAT is NP-hard.
- Goal: reduce from any NP problem to CircuitSAT.
- Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":

Cook-Levin theorem

Definition (NP)

A language L is in $N P$ iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

- Want to show CircuitSAT is NP-hard.
- Goal: reduce from any NP problem to CircuitSAT.
- Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":
- Then "is $x \in L$ " is the same as $\exists p: \overline{\mathcal{V}}(x, p)=1$

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

- Want to show CircuitSAT is NP-hard.
- Goal: reduce from any NP problem to CircuitSAT.
- Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":
- Then "is $x \in L$ " is the same as $\exists p: \overline{\mathcal{V}}(x, p)=1$
- Which is just CircuitSAT on $\overline{\mathcal{V}}(x, \cdot)$

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm \mathcal{V} such that:
(1) For all $x \in L, \exists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.
(2) For all $x \notin L, \nexists p \in\{0,1\}^{*}$ of poly. length s.t. $\mathcal{V}(x, p)=1$.

- Want to show CircuitSAT is NP-hard.
- Goal: reduce from any NP problem to CircuitSAT.
- Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":
- Then "is $x \in L$ " is the same as $\exists p: \overline{\mathcal{V}}(x, p)=1$
- Which is just CircuitSAT on $\overline{\mathcal{V}}(x, \cdot)$
- So we just need to transform the Turing machine into an equivalent circuit of polynomial size.

Cook-Levin theorem

Reducing Turing machine to SAT by unrolling across time

Variables

$L_{i, j}:=$ Machine at tape position j at time i
$Q_{i, j}:=$ Machine in state j at time i
$T_{i, j, k}:=$ Tape at position j at time i has value k

- Polynomial time, states, values \Longrightarrow polynomially many vars.

Transition rules

If $L_{i, j} \cap T_{i, j, k} \cap Q_{i, \ell}$ then machine moves based on reading k in state ℓ :

$$
\begin{aligned}
L_{i+1, t} & =1 \text { if } t=g(k, \ell) \text { else } 0 & & \text { Move left/right } \\
Q_{i+1, t} & =1 \text { if } t=f(k, \ell) \text { else } 0 & & \text { Change state } \\
T_{i+1, j, t} & =1 \text { if } t=h(k, \ell) \text { else } 0 & & \text { Write new char. }
\end{aligned}
$$

Example: $g(k, \ell)=\ell+1$ if, when reading k in state ℓ, you move right.

Cook-Levin theorem

Reducing Turing machine to SAT by unrolling across time

Variables

$L_{i, j}:=$ Machine at tape position j at time i
$Q_{i, j}:=$ Machine in state j at time i
$T_{i, j, k}:=$ Tape at position j at time i has value k

- Polynomial time, states, values \Longrightarrow polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).

Cook-Levin theorem

Reducing Turing machine to SAT by unrolling across time

Variables

$L_{i, j}:=$ Machine at tape position j at time i
$Q_{i, j}:=$ Machine in state j at time i
$T_{i, j, k}:=$ Tape at position j at time i has value k

- Polynomial time, states, values \Longrightarrow polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).
- Output is what's written when you halt.

Cook-Levin theorem

Reducing Turing machine to SAT by unrolling across time

Variables

$L_{i, j}:=$ Machine at tape position j at time i
$Q_{i, j}:=$ Machine in state j at time i
$T_{i, j, k}:=$ Tape at position j at time i has value k

- Polynomial time, states, values \Longrightarrow polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).
- Output is what's written when you halt.
- Turing machine outputs YES if and only if the circuit outputs YES.

Cook-Levin theorem

Reducing Turing machine to SAT by unrolling across time

Variables

$L_{i, j}:=$ Machine at tape position j at time i
$Q_{i, j}:=$ Machine in state j at time i
$T_{i, j, k}:=$ Tape at position j at time i has value k

- Polynomial time, states, values \Longrightarrow polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).
- Output is what's written when you halt.
- Turing machine outputs YES if and only if the circuit outputs YES.
- Q for NP verifier: does there exist an initial input (= tape state) such that output is YES?

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
- Show that, given an oracle for B, can solve A in poly time

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
- Show that, given an oracle for B, can solve A in poly time
- Can call B many times, do intermediate processing, etc.

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
- Show that, given an oracle for B, can solve A in poly time
- Can call B many times, do intermediate processing, etc.
- If $B \in P$ then $A \in P$.

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
- Show that, given an oracle for B, can solve A in poly time
- Can call B many times, do intermediate processing, etc.
- If $B \in P$ then $A \in P$.
- Karp reduction: simpler

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
- Show that, given an oracle for B, can solve A in poly time
- Can call B many times, do intermediate processing, etc.
- If $B \in P$ then $A \in P$.
- Karp reduction: simpler
- Transform any instance x of A into a (very specific) instance x^{\prime} of B (of polynomial size).

Kinds of reduction

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
- Show that, given an oracle for B, can solve A in poly time
- Can call B many times, do intermediate processing, etc.
- If $B \in P$ then $A \in P$.
- Karp reduction: simpler
- Transform any instance x of A into a (very specific) instance x^{\prime} of B (of polynomial size).
- Such that x is YES for A if, and only if, x^{\prime} is YES for B.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
(2) Show how to transform any certificate for x into a certificate for y.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
(2) Show how to transform any certificate for x into a certificate for y.

- (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
(2) Show how to transform any certificate for x into a certificate for y.

- (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
- Hence if x is YES, y must be YES.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
(2) Show how to transform any certificate for x into a certificate for y.

- (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
(2) Show how to transform any certificate for x into a certificate for y.

- (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Hence if y is YES, x must be YES.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
(2) Show how to transform any certificate for x into a certificate for y.

- (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Hence if y is YES, x must be YES.
(4) To prove NP-completeness: show $B \in N P$ by showing that arbitrary instances of B have certificates.

Karp's 21 NP-complete problems

- Every NP problem reduces to Circuit-SAT
- Circuit-SAT reduces to SAT
- SAT reduces to 3-SAT
- 3-SAT reduces to independent set
- Independent set reduces to vertex cover
* Vertex cover reduces to directed Hamiltonian cycle
\star Directed Hamiltonian cycle reduces to undirected hamiltonian cycle
- 3-SAT reduces to graph coloring
- Chromatic number reduces to exact cover
\star Exact cover reduces to subset sum.

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits-and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits-and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits-and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots,|E|-1$.

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits-and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots,|E|-1$.
- Two kinds of numbers: b_{e} and a_{v}, both written in base 4 .

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits—and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots,|E|-1$.
- Two kinds of numbers: b_{e} and a_{v}, both written in base 4 .
- $b_{e}=000100000_{4}$, with a 1 at position e.

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits—and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots,|E|-1$.
- Two kinds of numbers: b_{e} and a_{v}, both written in base 4 .
- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits-and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots,|E|-1$.
- Two kinds of numbers: b_{e} and a_{v}, both written in base 4 .
- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- For any vertex cover S of size k,

$$
\sum_{v \in S} a_{v}=k 4^{|E|}+\sum_{e} 4^{e} \cdot \begin{cases}1 & \text { if }|e \cap S|=1 \\ 2 & \text { if }|e \cap S|=2\end{cases}
$$

Subset Sum is NP-hard

Definition (Subset Sum)

Given $a_{1}, a_{2}, \ldots, a_{n}>0$-each represented with poly (n) bits-and a number T, does there exist $S \subseteq[n]$ such that

$$
\sum_{i \in S} a_{i}=T ?
$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots,|E|-1$.
- Two kinds of numbers: b_{e} and a_{v}, both written in base 4 .
- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- For any vertex cover S of size k,

$$
\sum_{v \in S} a_{v}=k 4^{|E|}+\sum_{e} 4^{e} \cdot \begin{cases}1 & \text { if }|e \cap S|=1 \\ 2 & \text { if }|e \cap S|=2\end{cases}
$$

- Hence $T=k 4^{|E|}+22222222222{ }_{4}$ is possible.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=101001000100104$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Certificate for y is a set of S_{V} and S_{E} with

$$
\sum_{v \in S_{V}} a_{v}+\sum_{e \in S_{E}} b_{e}=T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}
$$

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=10100100010010_{4}$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Certificate for y is a set of S_{V} and S_{E} with

$$
\sum_{v \in S_{V}} a_{v}+\sum_{e \in S_{E}} b_{e}=T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e} .
$$

- In base 4, the $e=(u, v)$ th digit appears in a_{u}, a_{v}, and b_{e}.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=101001000100104$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Certificate for y is a set of S_{V} and S_{E} with

$$
\sum_{v \in S_{V}} a_{v}+\sum_{e \in S_{E}} b_{e}=T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e} .
$$

- In base 4, the $e=(u, v)$ th digit appears in a_{u}, a_{v}, and b_{e}.
- Hence no overflows, and one of a_{u} or a_{v} must be picked for each $e \in E$.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=101001000100104$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Certificate for y is a set of S_{V} and S_{E} with

$$
\sum_{v \in S_{V}} a_{v}+\sum_{e \in S_{E}} b_{e}=T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e} .
$$

- In base 4, the $e=(u, v)$ th digit appears in a_{u}, a_{v}, and b_{e}.
- Hence no overflows, and one of a_{μ} or a_{v} must be picked for each $e \in E$.
- Exactly k of the a_{u} picked so $4^{|E|}$ term matches.

Recipe for Karp reductions to prove NP-hardness

(1) Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).

- $b_{e}=000100000_{4}$, with a 1 at position e.
- $a_{v}=101001000100104$, with a 1 at position e if $v \in e$, and another 1 at position $|E|$.
- $T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e}$
(2) Show how to transform any certificate for x into a certificate for y.
- Done: given cover S, take a_{v} for $v \in S$ and some b_{e} as necessary.
- Hence if x is YES, y must be YES.
(3) Show how to transform any certificate for y into a certificate for x.
- Certificate for y is a set of S_{V} and S_{E} with

$$
\sum_{v \in S_{V}} a_{v}+\sum_{e \in S_{E}} b_{e}=T=k 4^{|E|}+\sum_{e} 2 \cdot 4^{e} .
$$

- In base 4, the $e=(u, v)$ th digit appears in a_{u}, a_{v}, and b_{e}.
- Hence no overflows, and one of a_{μ} or a_{v} must be picked for each $e \in E$.
- Exactly k of the a_{u} picked so $4^{|E|}$ term matches.
- Hence S_{V} is a vertex cover.

Some very similar NP-complete problems

Given a graph $G=(V, E)$
Definition (Max independent set)
Does there exist a set $S \subseteq V$ of size $\geq k$ such that, for all $(u, v) \in E$, at most 1 of $u \in S$ and $v \in S$?

Definition (Max clique)
Does there exist a set $S \subseteq V$ of size $\geq k$ such that, for all $(u, v) \in S$, $(u, v) \in E$?

Definition (Min vertex cover)
Does there exist a set $S \subseteq V$ of size $\leq k$ such that, for all $(u, v) \in E$, at least 1 of $u \in S$ and $v \in S$?

From here: preview of next class

- P: Polynomial time
- NP: Nondeterministic polynomial time
- BPP: Probabilistic polynomial time, failure probability at most $1 / 3$.
- PP: failure probability $<1 / 2$.
- BQP: Probabilistic quantum polynomial time, failure probability at most 1/3.
- PSPACE: Polynomial space
- EXPTIME: Exponential time

Relations of complexity classes

$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E \subseteq \ldots$

Relations of complexity classes

$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E \subseteq \ldots$

- Know: $P \neq E X P T I M E, P S P A C E \neq E X P S P A C E$.

Relations of complexity classes

$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E \subseteq \ldots$

- Know: $P \neq E X P T I M E, P S P A C E \neq E X P S P A C E$.
- That's about it.

Relations of complexity classes

$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E \subseteq \ldots$

- Know: $P \neq E X P T I M E, P S P A C E \neq E X P S P A C E$.
- That's about it.

$$
P \subseteq B P P \subseteq B Q P \subseteq P S P A C E
$$

Relations of complexity classes

$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E \subseteq \ldots$

- Know: $P \neq E X P T I M E, P S P A C E \neq E X P S P A C E$.
- That's about it.

$$
P \subseteq B P P \subseteq B Q P \subseteq P S P A C E
$$

- Most people expect: $P=B P P$, everything else \subsetneq.

Relations of complexity classes

$P \subseteq N P \subseteq P S P A C E \subseteq E X P T I M E \subseteq N E X P T I M E \subseteq E X P S P A C E \subseteq \ldots$

- Know: $P \neq E X P T I M E, P S P A C E \neq E X P S P A C E$.
- That's about it.

$$
P \subseteq B P P \subseteq B Q P \subseteq P S P A C E
$$

- Most people expect: $P=B P P$, everything else \subsetneq.
- Don't know NP compared to BPP or BQP (or even if one is inside the other).

Prototypical examples

- P: evaluate a function
- Given a circuit f and input x, what is $f(x)$?
- NP: solve a puzzle
- SAT: given f, determine if $\exists x: f(x)=1$?
- Given a puzzle, find the solution
- Easy to verify once the solution is found.
- PSPACE: solve a 2-player game
- TQBF: $\exists x_{1} \forall x_{2} \exists x_{3} \cdots \forall x_{n}: f(x)=1$
- Think chess: do I have a move, so no matter what you do, I can find a move, so no matter, etc., etc., I end up winning?
- Caveat: requires the puzzle/game to only have a polynomial number of moves.
- Puzzles/games with exponentially many moves may be harder.
- Go: actually EXPTIME-complete to solve a position.
- Zelda: actually PSPACE-complete to solve a level.

