Complexity Theory

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin) Complexity Theory 1/16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

» Reduce from “Finding largest square in polytope” to LP.

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

» Reduce from “Finding largest square in polytope” to LP.
» Reduce from “Tile a region with dominos” to network flow.

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:
» Reduce from “Finding largest square in polytope” to LP.
» Reduce from “Tile a region with dominos” to network flow.
» Reduce from “Solve a word ladder” to shortest path.

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:
» Reduce from “Finding largest square in polytope” to LP.
» Reduce from “Tile a region with dominos” to network flow.
» Reduce from “Solve a word ladder” to shortest path.
o For a lower bound: want to show NEW is hard. Know that OLD is
hard. Reduce OLD to NEW:

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

» Reduce from “Finding largest square in polytope” to LP.
» Reduce from “Tile a region with dominos” to network flow.
» Reduce from “Solve a word ladder” to shortest path.

o For a lower bound: want to show NEW is hard. Know that OLD is
hard. Reduce OLD to NEW:

» Reduce SAT to 3SAT

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

» Reduce from “Finding largest square in polytope” to LP.
» Reduce from “Tile a region with dominos” to network flow.
» Reduce from “Solve a word ladder” to shortest path.

o For a lower bound: want to show NEW is hard. Know that OLD is
hard. Reduce OLD to NEW:

> Reduce SAT to 3SAT
» Reduce 3SAT to max-independent set

Eric Price (UT Austin) Complexity Theory 2 /16

Note on Reductions

o For an algorithm: want to solve NEW. Know how to solve OLD.
Reduce NEW to OLD:

» Reduce from “Finding largest square in polytope” to LP.
» Reduce from “Tile a region with dominos” to network flow.
» Reduce from “Solve a word ladder” to shortest path.

o For a lower bound: want to show NEW is hard. Know that OLD is
hard. Reduce OLD to NEW:

> Reduce SAT to 3SAT
» Reduce 3SAT to max-independent set

o If OLD is hard, and you could solve OLD by solving NEW, then NEW
must be hard as well.

Eric Price (UT Austin) Complexity Theory 2 /16

Models of computation

o Mentioned Word-RAM model early in semester

Eric Price (UT Austin) Complexity Theory 3/16

Models of computation

o Mentioned Word-RAM model early in semester

o Turing machines: tape, heads, etc.

Eric Price (UT Austin) Complexity Theory 3/16

Models of computation

o Mentioned Word-RAM model early in semester
o Turing machines: tape, heads, etc.

o Lambda calculus: church numerals, etc.

Eric Price (UT Austin) Complexity Theory 3/16

Models of computation

o Mentioned Word-RAM model early in semester
o Turing machines: tape, heads, etc.

o Lambda calculus: church numerals, etc.

Theorem

The set of functions that Turing machines can compute is exactly the
same as what Lambda calculus can.

Eric Price (UT Austin) Complexity Theory 3/16

Models of computation

o Mentioned Word-RAM model early in semester
o Turing machines: tape, heads, etc.

o Lambda calculus: church numerals, etc.

Theorem

The set of functions that Turing machines can compute is exactly the
same as what Lambda calculus can.

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical
process.

v

Eric Price (UT Austin) Complexity Theory 3/16

Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical
process.

Eric Price (UT Austin)

Complexity Theory 4 /16

Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical
process.

v

Conjecture (Extended Church-Turing Thesis)

Turing machines can compute in polynomial time anything that is
computable by any ‘“realistic” physical process.

Eric Price (UT Austin)

Complexity Theory 4 /16

Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical
process.

v

Conjecture (Extended Church-Turing Thesis)

Quantum Turing machines can compute in polynomial time anything that
is computable by any “realistic” physical process.

Eric Price (UT Austin) Complexity Theory 4 /16

Formal(ish) Definitions

Definition (Language)

A “problem” is also referred to as a “language” L C {0,1}* consisting of
YES inputs. An input x € {0,1}* is “YES” if, and only if, x € L.

Eric Price (UT Austin)

Complexity Theory 5/ 16

Formal(ish) Definitions

Definition (Language)

A “problem” is also referred to as a “language” L C {0,1}* consisting of
YES inputs. An input x € {0,1}* is “YES” if, and only if, x € L.

Definition (P)

A language L is in P iff there exists a poly-time algorithm A such that, for
all x, A(x) =1 if and only if x € L.

v

Eric Price (UT Austin) Complexity Theory 5/ 16

Formal(ish) Definitions

Definition (Language)

A “problem” is also referred to as a “language” L C {0,1}* consisting of
YES inputs. An input x € {0,1}* is “YES” if, and only if, x € L.

Definition (P)
A language L is in P iff there exists a poly-time algorithm A such that, for
all x, A(x) =1 if and only if x € L.

V.

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ Forall x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

Eric Price (UT Austin) Complexity Theory 5/ 16

Formal(ish) Definitions

Definition (Language)

A “problem” is also referred to as a “language” L C {0,1}* consisting of
YES inputs. An input x € {0,1}* is “YES” if, and only if, x € L.

Definition (P)
A language L is in P iff there exists a poly-time algorithm A such that, for
all x, A(x) =1 if and only if x € L.

V.

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ Forall x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

P C NP: V(x, p) := A(x).

Eric Price (UT Austin) Complexity Theory 5/ 16

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ For all x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, $p € {0,1}* of poly. length s.t. V(x,p) = 1.

o Want to show CircuitSAT is NP-hard.

Eric Price (UT Austin) Complexity Theory 6 /16

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ For all x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

o Want to show CircuitSAT is NP-hard.
o Goal: reduce from any NP problem to CircuitSAT.

Eric Price (UT Austin) Complexity Theory 6 /16

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ For all x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

o Want to show CircuitSAT is NP-hard.

o Goal: reduce from any NP problem to CircuitSAT.
o Imagine that “poly-time algorithm V" were “poly-size circuit V":

Eric Price (UT Austin) Complexity Theory [}

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ For all x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

o Want to show CircuitSAT is NP-hard.

o Goal: reduce from any NP problem to CircuitSAT.
o Imagine that “poly-time algorithm V" were “poly-size circuit V":
» Then “is x € L" is the same as 3p : V(x,p) =1

Eric Price (UT Austin) Complexity Theory [}

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ Forall x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

o Want to show CircuitSAT is NP-hard.
o Goal: reduce from any NP problem to CircuitSAT.
o Imagine that “poly-time algorithm V" were “poly-size circuit V":

> Then “is x € L" is the same as 3p : V(x, p) = 1
» Which is just CircuitSAT on V(x,)

Eric Price (UT Austin) Complexity Theory 6 /16

Cook-Levin theorem

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm V such that:
@ Forall x e L, 3p € {0,1}* of poly. length s.t. V(x,p) = 1.
@ Forall x ¢ L, #p € {0,1}* of poly. length s.t. V(x,p) = 1.

o Want to show CircuitSAT is NP-hard.
o Goal: reduce from any NP problem to CircuitSAT.
o Imagine that “poly-time algorithm V" were “poly-size circuit V":

> Then “is x € L" is the same as 3p : V(x, p) = 1
» Which is just CircuitSAT on V(x,)

o So we just need to transform the Turing machine into an equivalent
circuit of polynomial size.

Eric Price (UT Austin) Complexity Theory 6 /16

Cook-Levin theorem

Reducing Turing machine to SAT by unrolling across time

Variables
L;;j := Machine at tape position j at time i

Qjj := Machine in state j at time /
T;j k= Tape at position j at time / has value k

o Polynomial time, states, values = polynomially many vars.

Transition rules
If Lij N T;j N Qi then machine moves based on reading k in state /:

Move left/right
Change state
Write new char.

Liy1:0=1if t =g(k,{) else 0
Qit1e=1if t = f(k, () else 0
Tiy1je=1if t = h(k, () else 0

Example: g(k,¢) = ¢+ 1 if, when reading k in state ¢, you move right.

Complexity Theory 7 /16

Eric Price (UT Austin)

Cook-Levin theorem
Reducing Turing machine to SAT by unrolling across time
Variables
L;;j := Machine at tape position j at time i
Qij := Machine in state j at time /

T;j k= Tape at position j at time / has value k

o Polynomial time, states, values = polynomially many vars.

Transition rules

o Add a few more rules (e.g., machine in only one state at each time).

Eric Price (UT Austin) Complexity Theory 7 /16

Cook-Levin theorem
Reducing Turing machine to SAT by unrolling across time
Variables
L;;j := Machine at tape position j at time i
Qij := Machine in state j at time /

T;j k= Tape at position j at time / has value k

o Polynomial time, states, values = polynomially many vars.

Transition rules

o Add a few more rules (e.g., machine in only one state at each time).
o Output is what's written when you halt.

Eric Price (UT Austin) Complexity Theory 7 /16

Cook-Levin theorem
Reducing Turing machine to SAT by unrolling across time
Variables
L;;j := Machine at tape position j at time i
Qij := Machine in state j at time /

T;j k= Tape at position j at time / has value k

o Polynomial time, states, values = polynomially many vars.

Transition rules

o Add a few more rules (e.g., machine in only one state at each time).
o Output is what's written when you halt.

o Turing machine outputs YES if and only if the circuit outputs YES.

Eric Price (UT Austin) Complexity Theory 7 /16

Cook-Levin theorem
Reducing Turing machine to SAT by unrolling across time
Variables
L;;j := Machine at tape position j at time i
Qij := Machine in state j at time /

T;j k= Tape at position j at time / has value k

o Polynomial time, states, values = polynomially many vars.

Transition rules J

o Add a few more rules (e.g., machine in only one state at each time).

o Output is what's written when you halt.

©

Turing machine outputs YES if and only if the circuit outputs YES.

o Q for NP verifier: does there exist an initial input (= tape state) such
that output is YES?

Eric Price (UT Austin) Complexity Theory 7 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful
» Show that, given an oracle for B, can solve A in poly time

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful

» Show that, given an oracle for B, can solve A in poly time
» Can call B many times, do intermediate processing, etc.

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful

» Show that, given an oracle for B, can solve A in poly time
» Can call B many times, do intermediate processing, etc.
» If B€ Pthen A€ P.

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful

» Show that, given an oracle for B, can solve A in poly time
» Can call B many times, do intermediate processing, etc.
» If B€ Pthen A€ P.

o Karp reduction: simpler

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful

» Show that, given an oracle for B, can solve A in poly time
» Can call B many times, do intermediate processing, etc.
» If B€ Pthen A€ P.

o Karp reduction: simpler

» Transform any instance x of A into a (very specific) instance x’ of B
(of polynomial size).

Eric Price (UT Austin) Complexity Theory 8 /16

Kinds of reduction

o Suppose we want to show B is hard by reducing A to B
o Cook reduction: more powerful
» Show that, given an oracle for B, can solve A in poly time
» Can call B many times, do intermediate processing, etc.
» If B€ Pthen A€ P.
o Karp reduction: simpler
» Transform any instance x of A into a (very specific) instance x’ of B
(of polynomial size).
» Such that x is YES for A if, and only if, x" is YES for B.

Eric Price (UT Austin) Complexity Theory 8 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).

Eric Price (UT Austin) Complexity Theory 9 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
@ Show how to transform any certificate for x into a certificate for y.

Eric Price (UT Austin) Complexity Theory 9 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
@ Show how to transform any certificate for x into a certificate for y.

> (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)

Eric Price (UT Austin) Complexity Theory 9 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
@ Show how to transform any certificate for x into a certificate for y.

> (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)
» Hence if x is YES, y must be YES.

Eric Price (UT Austin) Complexity Theory 9 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
@ Show how to transform any certificate for x into a certificate for y.

> (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.

Eric Price (UT Austin) Complexity Theory 9 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
@ Show how to transform any certificate for x into a certificate for y.

> (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
» Hence if y is YES, x must be YES.

Eric Price (UT Austin) Complexity Theory 9 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
@ Show how to transform any certificate for x into a certificate for y.

> (Certificate: satisfying assignment / max independent set /
Hamiltonian cycle / other short “proof” of YES.)
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
» Hence if y is YES, x must be YES.

@ To prove NP-completeness: show B € NP by showing that arbitrary
instances of B have certificates.

Eric Price (UT Austin) Complexity Theory 9 /16

Karp's 21 NP-complete problems

Every NP problem reduces to Circuit-SAT
Circuit-SAT reduces to SAT

SAT reduces to 3-SAT
o 3-SAT reduces to independent set
» Independent set reduces to vertex cover
* Vertex cover reduces to directed Hamiltonian cycle
* Directed Hamiltonian cycle reduces to undirected hamiltonian cycle
3-SAT reduces to graph coloring
» Chromatic number reduces to exact cover
* Exact cover reduces to subset sum.

(]

©

©

©

Eric Price (UT Austin) Complexity Theory 10 / 16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

> ai=T7

i€eS

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

> ai=T7

i€eS

o Reduce from vertex cover.

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

> ai=T7

i€eS

o Reduce from vertex cover.
o Assign the edges e € E numbers in 0,...,|E| — 1.

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

> ai=T7

i€eS

o Reduce from vertex cover.

o Assign the edges e € E numbers in 0,...,|E| — 1.
o Two kinds of numbers: b, and a,, both written in base 4.

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

> ai=T7

i€eS

o Reduce from vertex cover.

o Assign the edges e € E numbers in 0,...,|E| — 1.
o Two kinds of numbers: b, and a,, both written in base 4.
» b, = 0001000004, with a 1 at position e.

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

> ai=T7

i€eS

o Reduce from vertex cover.
o Assign the edges e € E numbers in 0,...,|E| — 1.
o Two kinds of numbers: b, and a,, both written in base 4.
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

Za;: T?

i€eS

Reduce from vertex cover.
Assign the edges e € E numbers in 0,...,|E| — 1.
Two kinds of numbers: be and a,, both written in base 4.
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.
o For any vertex cover S of size k,

1 iflenS|=1
_ (4lEl e
D = ka4 4 {2 if len S| =2

veS e

©

© ©

Eric Price (UT Austin) Complexity Theory 11 /16

Subset Sum is NP-hard
Definition (Subset Sum)

Given a1, a2, ..., a, > 0—each represented with poly(n) bits—and a
number T, does there exist S C [n] such that

Za;: T?

i€eS

Reduce from vertex cover.

Assign the edges e € E numbers in 0,...,|E| — 1.
Two kinds of numbers: be and a,, both written in base 4.
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.
o For any vertex cover S of size k,

1 iflenS|=1
_ (4lEl e
D = ka4 4 {2 if len S| =2

veS e

©

© ©

o Hence T = k4lEl 4 222222222222, is possible.
Eric Price (UT Austin) Complexity Theory

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.
» T =kalEl 43" 2.4¢

Eric Price (UT Austin) Complexity Theory 12 /16

Recipe for Karp reductions to prove NP-hardness

@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.
» T = k4lEl +3°,.2-4¢
@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

Eric Price (UT Austin) Complexity Theory 12 /16

Recipe for Karp reductions to prove NP-hardness
@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

» T = k4lEl 3 2.4¢

@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.

Eric Price (UT Austin) Complexity Theory 12 / 16

Recipe for Karp reductions to prove NP-hardness
@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

» T = k4lEl 3 2.4¢

@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
> Certificate for y is a set of Sy and Sg with

da+ Y be=T=kalEl+ Y 2.4

vESy e€Se e

Eric Price (UT Austin) Complexity Theory 12 / 16

Recipe for Karp reductions to prove NP-hardness
@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

» T = k4lEl 3 2.4¢

@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
> Certificate for y is a set of Sy and Sg with

da+ Y be=T=kalEl+ Y 2.4

vESy e€Se e

> In base 4, the e = (u, v)th digit appears in a,, a,, and be.

Eric Price (UT Austin) Complexity Theory 12 / 16

Recipe for Karp reductions to prove NP-hardness
@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

» T = k4lEl 3 2.4¢

@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
> Certificate for y is a set of Sy and Sg with

da+ Y be=T=kalEl+ Y 2.4
vESy e€Se e

> In base 4, the e = (u, v)th digit appears in a,, a,, and be.
» Hence no overflows, and one of a, or a, must be picked for each e € E.

Eric Price (UT Austin) Complexity Theory 12 / 16

Recipe for Karp reductions to prove NP-hardness
@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

» T = k4lEl 3 2.4¢

@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
> Certificate for y is a set of Sy and Sg with

da+ Y be=T=kalEl+ Y 2.4
vESy e€Se e

> In base 4, the e = (u, v)th digit appears in a,, a,, and be.
» Hence no overflows, and one of a, or a, must be picked for each e € E.
» Exactly k of the a, picked so 4/El term matches.

Eric Price (UT Austin) Complexity Theory 12 /16

Recipe for Karp reductions to prove NP-hardness
@ Transform an arbitrary instance x of A into a very specific instance y
of B (of polynomial size).
» b, = 0001000004, with a 1 at position e.
» a, = 101001000100104, with a 1 at position e if v € e, and another 1
at position |E]|.

» T = k4lEl 3 2.4¢

@ Show how to transform any certificate for x into a certificate for y.
» Done: given cover S, take a, for v € S and some b, as necessary.
» Hence if x is YES, y must be YES.

@ Show how to transform any certificate for y into a certificate for x.
> Certificate for y is a set of Sy and Sg with

da+ Y be=T=kalEl+ Y 2.4

vESy e€Se e

In base 4, the e = (u, v)th digit appears in a,, a,, and be.

Hence no overflows, and one of a, or a, must be picked for each e € E.
Exactly k of the a, picked so 4/E! term matches.

Hence Sy is a vertex cover.

Eric Price (UT Austin) Complexity Theory 12 /16

vV vy VvVyy

Some very similar NP-complete problems

Given a graph G = (V,E)

Definition (Max independent set)

Does there exist a set S C V of size > k such that, for all (u,v) € E, at
most 1 of ue S and v € S?

Definition (Max clique)
Does there exist a set S C V of size > k such that, for all (u,v) € S,
(u,v) € E?

Definition (Min vertex cover)

Does there exist a set S C V of size < k such that, for all (u,v) € E, at
least 1 of u€ S and v € 57

Eric Price (UT Austin) Complexity Theory 13 / 16

From here: preview of next class

(]

P: Polynomial time

©

NP: Nondeterministic polynomial time
o BPP: Probabilistic polynomial time, failure probability at most 1/3.
» PP: failure probability < 1/2.

BQP: Probabilistic quantum polynomial time, failure probability at
most 1/3.

o PSPACE: Polynomial space
o EXPTIME: Exponential time

©

Eric Price (UT Austin) Complexity Theory 14 / 16

Relations of complexity classes

P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE C ...

Eric Price (UT Austin) Complexity Theory 15 / 16

Relations of complexity classes

P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE C ...

o Know: P # EXPTIME, PSPACE # EXPSPACE.

Eric Price (UT Austin) Complexity Theory 15 / 16

Relations of complexity classes

P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE C ...

o Know: P # EXPTIME, PSPACE # EXPSPACE.
o That's about it.

Eric Price (UT Austin) Complexity Theory 15 / 16

Relations of complexity classes

P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE C ...

o Know: P # EXPTIME, PSPACE # EXPSPACE.
o That's about it.
P C BPP C BQP C PSPACE

Eric Price (UT Austin) Complexity Theory 15 / 16

Relations of complexity classes

P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE C ...

o Know: P # EXPTIME, PSPACE # EXPSPACE.
o That's about it.

P C BPP C BQP C PSPACE

o Most people expect: P = BPP, everything else C.

Eric Price (UT Austin) Complexity Theory 15 / 16

Relations of complexity classes

P C NP C PSPACE C EXPTIME C NEXPTIME C EXPSPACE C ...

©

Know: P # EXPTIME, PSPACE # EXPSPACE.
That's about it.
P C BPP C BQP C PSPACE

(*]

©

Most people expect: P = BPP, everything else C.

Don't know NP compared to BPP or BQP (or even if one is inside
the other).

©

Eric Price (UT Austin) Complexity Theory 15 / 16

Prototypical examples

o P: evaluate a function

» Given a circuit f and input x, what is f(x)?
o NP: solve a puzzle

» SAT: given f, determine if 3x : f(x) =17

» Given a puzzle, find the solution

» Easy to verify once the solution is found.

o PSPACE: solve a 2-player game
» TQBF: 3x1Vxo3dx3 -+ - Vx, : f(x) =1
» Think chess: do | have a move, so no matter what you do, | can find a
move, so no matter, etc., etc., | end up winning?

o Caveat: requires the puzzle/game to only have a polynomial number
of moves.
» Puzzles/games with exponentially many moves may be harder.
» Go: actually EXPTIME-complete to solve a position.
» Zelda: actually PSPACE-complete to solve a level.

Eric Price (UT Austin) Complexity Theory 16 / 16

Eric Price (UT Austin) Complexity Theory 17 / 16

Eric Price (UT Austin) Complexity Theory

	Appendix

