Complexity Theory

Eric Price

UT Austin

CS 331, Spring 2020 Coronavirus Edition

Eric Price (UT Austin)

Complexity Theory

• For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - Reduce from "Finding largest square in polytope" to LP.

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - ▶ Reduce from "Finding largest square in polytope" to LP.
 - ▶ Reduce from "Tile a region with dominos" to network flow.

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - ▶ Reduce from "Finding largest square in polytope" to LP.
 - ▶ Reduce from "Tile a region with dominos" to network flow.
 - Reduce from "Solve a word ladder" to shortest path.

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - ▶ Reduce from "Finding largest square in polytope" to LP.
 - ▶ Reduce from "Tile a region with dominos" to network flow.
 - Reduce from "Solve a word ladder" to shortest path.
- For a *lower bound*: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - ▶ Reduce from "Finding largest square in polytope" to LP.
 - ▶ Reduce from "Tile a region with dominos" to network flow.
 - Reduce from "Solve a word ladder" to shortest path.
- For a *lower bound*: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:
 - Reduce SAT to 3SAT

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - ▶ Reduce from "Finding largest square in polytope" to LP.
 - ▶ Reduce from "Tile a region with dominos" to network flow.
 - Reduce from "Solve a word ladder" to shortest path.
- For a *lower bound*: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:
 - Reduce SAT to 3SAT
 - Reduce 3SAT to max-independent set

- For an *algorithm*: want to solve NEW. Know how to solve OLD. Reduce NEW to OLD:
 - ▶ Reduce from "Finding largest square in polytope" to LP.
 - ▶ Reduce from "Tile a region with dominos" to network flow.
 - Reduce from "Solve a word ladder" to shortest path.
- For a *lower bound*: want to show NEW is hard. Know that OLD is hard. Reduce OLD to NEW:
 - Reduce SAT to 3SAT
 - Reduce 3SAT to max-independent set
- If OLD is hard, and you could solve OLD by solving NEW, then NEW must be hard as well.

Mentioned Word-RAM model early in semester

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.
- Lambda calculus: church numerals, etc.

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.
- Lambda calculus: church numerals, etc.

Theorem

The set of functions that Turing machines can compute is exactly the same as what Lambda calculus can.

- Mentioned Word-RAM model early in semester
- Turing machines: tape, heads, etc.
- Lambda calculus: church numerals, etc.

Theorem

The set of functions that Turing machines can compute is exactly the same as what Lambda calculus can.

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical process.

Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical process.

Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical process.

Conjecture (Extended Church-Turing Thesis)

Turing machines can compute in polynomial time anything that is computable by any "realistic" physical process.

Church-Turing Thesis

Conjecture (Church-Turing Thesis)

Turing machines can compute anything that is computable by any physical process.

Conjecture (Extended Church-Turing Thesis)

Quantum Turing machines can compute in polynomial time anything that is computable by any "realistic" physical process.

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq \{0,1\}^*$ consisting of YES inputs. An input $x \in \{0,1\}^*$ is "YES" if, and only if, $x \in L$.

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq \{0,1\}^*$ consisting of YES inputs. An input $x \in \{0,1\}^*$ is "YES" if, and only if, $x \in L$.

Definition (P)

A language L is in P iff there exists a poly-time algorithm A such that, for all x, A(x) = 1 if and only if $x \in L$.

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq \{0,1\}^*$ consisting of YES inputs. An input $x \in \{0,1\}^*$ is "YES" if, and only if, $x \in L$.

Definition (P)

A language L is in P iff there exists a poly-time algorithm A such that, for all x, A(x) = 1 if and only if $x \in L$.

Definition (NP)

- **(**) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- ② For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.

Definition (Language)

A "problem" is also referred to as a "language" $L \subseteq \{0,1\}^*$ consisting of YES inputs. An input $x \in \{0,1\}^*$ is "YES" if, and only if, $x \in L$.

Definition (P)

A language L is in P iff there exists a poly-time algorithm A such that, for all x, A(x) = 1 if and only if $x \in L$.

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm \mathcal{V} such that:

- **(**) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- ② For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.

 $P \subseteq NP$: $\mathcal{V}(x, p) := \mathcal{A}(x)$.

Definition (NP)

A language L is in NP iff there exists a poly-time algorithm \mathcal{V} such that:

- (1) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- ② For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.

• Want to show CircuitSAT is NP-hard.

Definition (NP)

- (1) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- 2 For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
 - Want to show CircuitSAT is NP-hard.
 - Goal: reduce from any NP problem to CircuitSAT.

Definition (NP)

- (1) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- 2 For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
 - Want to show CircuitSAT is NP-hard.
 - Goal: reduce from any NP problem to CircuitSAT.
 - ullet Imagine that "poly-time algorithm $\mathcal V$ " were "poly-size circuit $\overline{\mathcal V}$ ":

Definition (NP)

- (1) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- 2 For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
 - Want to show CircuitSAT is NP-hard.
 - Goal: reduce from any NP problem to CircuitSAT.
 - Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":
 - Then "is $x \in L$ " is the same as $\exists p : \overline{\mathcal{V}}(x, p) = 1$

Definition (NP)

- (1) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- ② For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
 - Want to show CircuitSAT is NP-hard.
 - Goal: reduce from any NP problem to CircuitSAT.
 - Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":
 - Then "is $x \in L$ " is the same as $\exists p : \overline{\mathcal{V}}(x, p) = 1$
 - Which is just CircuitSAT on $\overline{\mathcal{V}}(x, \cdot)$

Definition (NP)

- (1) For all $x \in L$, $\exists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
- 2 For all $x \notin L$, $\nexists p \in \{0,1\}^*$ of poly. length s.t. $\mathcal{V}(x,p) = 1$.
 - Want to show CircuitSAT is NP-hard.
 - Goal: reduce from any NP problem to CircuitSAT.
 - Imagine that "poly-time algorithm \mathcal{V} " were "poly-size circuit $\overline{\mathcal{V}}$ ":
 - Then "is $x \in L$ " is the same as $\exists p : \overline{\mathcal{V}}(x, p) = 1$
 - Which is just CircuitSAT on $\overline{\mathcal{V}}(x, \cdot)$
 - So we just need to transform the Turing machine into an equivalent circuit of polynomial size.

Reducing Turing machine to SAT by unrolling across time

Variables

$$L_{i,j} :=$$
 Machine at tape position j at time i

 $Q_{i,j} :=$ Machine in state j at time i

 $T_{i,j,k} :=$ Tape at position j at time i has value k

• Polynomial time, states, values \implies polynomially many vars.

Transition rules

If $L_{i,j} \cap T_{i,j,k} \cap Q_{i,\ell}$ then machine moves based on reading k in state ℓ :

 $\begin{aligned} L_{i+1,t} &= 1 \text{ if } t = g(k,\ell) \text{ else } 0 & \text{Move left/right} \\ Q_{i+1,t} &= 1 \text{ if } t = f(k,\ell) \text{ else } 0 & \text{Change state} \\ T_{i+1,j,t} &= 1 \text{ if } t = h(k,\ell) \text{ else } 0 & \text{Write new char.} \end{aligned}$

Example: $g(k, \ell) = \ell + 1$ if, when reading k in state ℓ , you move right.

Reducing Turing machine to SAT by unrolling across time

Variables

 $L_{i,j} := \text{Machine at tape position } j \text{ at time } i$ $Q_{i,j} := \text{Machine in state } j \text{ at time } i$ $T_{i,j,k} := \text{Tape at position } j \text{ at time } i \text{ has value } k$

• Polynomial time, states, values \implies polynomially many vars.

Transition rules

• Add a few more rules (e.g., machine in only one state at each time).

Reducing Turing machine to SAT by unrolling across time

Variables

 $L_{i,j} := \text{Machine at tape position } j \text{ at time } i$ $Q_{i,j} := \text{Machine in state } j \text{ at time } i$ $T_{i,j,k} := \text{Tape at position } j \text{ at time } i \text{ has value } k$

• Polynomial time, states, values \implies polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).
- Output is what's written when you halt.

Reducing Turing machine to SAT by unrolling across time

Variables

 $L_{i,j} := \text{Machine at tape position } j \text{ at time } i$ $Q_{i,j} := \text{Machine in state } j \text{ at time } i$ $T_{i,j,k} := \text{Tape at position } j \text{ at time } i \text{ has value } k$

• Polynomial time, states, values \implies polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).
- Output is what's written when you halt.
- Turing machine outputs YES if and only if the circuit outputs YES.

Reducing Turing machine to SAT by unrolling across time

Variables

 $L_{i,j} := \text{Machine at tape position } j \text{ at time } i$ $Q_{i,j} := \text{Machine in state } j \text{ at time } i$ $T_{i,j,k} := \text{Tape at position } j \text{ at time } i \text{ has value } k$

• Polynomial time, states, values \implies polynomially many vars.

Transition rules

- Add a few more rules (e.g., machine in only one state at each time).
- Output is what's written when you halt.
- Turing machine outputs YES if and only if the circuit outputs YES.
- Q for NP verifier: does there exist an initial input (= tape state) such that output is YES?

Eric Price (UT Austin)

• Suppose we want to show B is hard by reducing A to B

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
 - Show that, given an oracle for *B*, can solve *A* in poly time

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
 - ▶ Show that, given an oracle for *B*, can solve *A* in poly time
 - Can call *B* many times, do intermediate processing, etc.

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
 - ▶ Show that, given an oracle for *B*, can solve *A* in poly time
 - ► Can call *B* many times, do intermediate processing, etc.
 - If $B \in P$ then $A \in P$.

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
 - ▶ Show that, given an oracle for *B*, can solve *A* in poly time
 - ► Can call *B* many times, do intermediate processing, etc.
 - If $B \in P$ then $A \in P$.
- Karp reduction: simpler

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
 - ▶ Show that, given an oracle for *B*, can solve *A* in poly time
 - ► Can call *B* many times, do intermediate processing, etc.
 - If $B \in P$ then $A \in P$.
- Karp reduction: simpler
 - Transform any instance x of A into a (very specific) instance x' of B (of polynomial size).

- Suppose we want to show B is hard by reducing A to B
- Cook reduction: more powerful
 - ▶ Show that, given an oracle for *B*, can solve *A* in poly time
 - ► Can call *B* many times, do intermediate processing, etc.
 - If $B \in P$ then $A \in P$.
- Karp reduction: simpler
 - Transform any instance x of A into a (very specific) instance x' of B (of polynomial size).
 - ▶ Such that x is YES for A if, and only if, x' is YES for B.

Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
- 2 Show how to transform any certificate for x into a certificate for y.

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
- 2 Show how to transform any certificate for x into a certificate for y.
 - (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
- 2 Show how to transform any certificate for x into a certificate for y.
 - (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
 - ▶ Hence if *x* is YES, *y* must be YES.

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
- 2 Show how to transform any certificate for x into a certificate for y.
 - (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
 - ▶ Hence if *x* is YES, *y* must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
- 2 Show how to transform any certificate for x into a certificate for y.
 - (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
 - ▶ Hence if *x* is YES, *y* must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.
 - ▶ Hence if *y* is YES, *x* must be YES.

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
- 2 Show how to transform any certificate for x into a certificate for y.
 - (Certificate: satisfying assignment / max independent set / Hamiltonian cycle / other short "proof" of YES.)
 - ▶ Hence if *x* is YES, *y* must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.
 - ▶ Hence if *y* is YES, *x* must be YES.
- ④ To prove NP-completeness: show B ∈ NP by showing that arbitrary instances of B have certificates.

Karp's 21 NP-complete problems

- Every NP problem reduces to Circuit-SAT
- Circuit-SAT reduces to SAT
- SAT reduces to 3-SAT
- 3-SAT reduces to independent set
 - Independent set reduces to vertex cover
 - * Vertex cover reduces to directed Hamiltonian cycle
 - * Directed Hamiltonian cycle reduces to undirected hamiltonian cycle
- 3-SAT reduces to graph coloring
 - Chromatic number reduces to exact cover
 - ★ Exact cover reduces to subset sum.

Definition (Subset Sum)

$$\sum_{i\in S}a_i=T?$$

Definition (Subset Sum)

Given $a_1, a_2, \ldots, a_n > 0$ —each represented with poly(n) bits—and a number T, does there exist $S \subseteq [n]$ such that

$$\sum_{i\in S}a_i=T?$$

• Reduce from vertex cover.

Definition (Subset Sum)

Given $a_1, a_2, \ldots, a_n > 0$ —each represented with poly(*n*) bits—and a number *T*, does there exist $S \subseteq [n]$ such that

$$\sum_{i\in S}a_i=T?$$

• Reduce from vertex cover.

• Assign the edges $e \in E$ numbers in $0, \ldots, |E| - 1$.

Definition (Subset Sum)

$$\sum_{i\in S}a_i=T?$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots, |E| 1$.
- Two kinds of numbers: b_e and a_v , both written in base 4.

Definition (Subset Sum)

$$\sum_{i\in S}a_i=T?$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots, |E| 1$.
- Two kinds of numbers: b_e and a_v , both written in base 4.
 - $b_e = 000100000_4$, with a 1 at position *e*.

Definition (Subset Sum)

$$\sum_{i\in S}a_i=T?$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots, |E| 1$.
- Two kinds of numbers: b_e and a_v , both written in base 4.
 - $b_e = 000100000_4$, with a 1 at position *e*.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.

Definition (Subset Sum)

$$\sum_{i\in S}a_i=T?$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots, |E| 1$.
- Two kinds of numbers: b_e and a_v , both written in base 4.
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
- For any vertex cover S of size k,

$$\sum_{v \in S} a_v = k4^{|E|} + \sum_e 4^e \cdot \begin{cases} 1 & \text{if } |e \cap S| = 1\\ 2 & \text{if } |e \cap S| = 2 \end{cases}$$

Definition (Subset Sum)

Given $a_1, a_2, \ldots, a_n > 0$ —each represented with poly(n) bits—and a number T, does there exist $S \subseteq [n]$ such that

$$\sum_{i\in S}a_i=T?$$

- Reduce from vertex cover.
- Assign the edges $e \in E$ numbers in $0, \ldots, |E| 1$.
- Two kinds of numbers: b_e and a_v , both written in base 4.
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
- For any vertex cover S of size k,

$$\sum_{v \in S} a_v = k4^{|E|} + \sum_e 4^e \cdot \begin{cases} 1 & \text{if } |e \cap S| = 1\\ 2 & \text{if } |e \cap S| = 2 \end{cases}$$

• Hence $T = k4^{|E|} + 22222222222_4$ is possible.

Eric Price (UT Austin)

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_e 2 \cdot 4^e$

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position *e*.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_e 2 \cdot 4^e$

2 Show how to transform any certificate for x into a certificate for y.

- ▶ Done: given cover *S*, take a_v for $v \in S$ and some b_e as necessary.
- ▶ Hence if *x* is YES, *y* must be YES.

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position *e*.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_e 2 \cdot 4^e$
- 2 Show how to transform any certificate for x into a certificate for y.
 - ▶ Done: given cover *S*, take a_v for $v \in S$ and some b_e as necessary.
 - Hence if x is YES, y must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_{e} 2 \cdot 4^{e}$

2 Show how to transform any certificate for x into a certificate for y.

- ▶ Done: given cover *S*, take a_v for $v \in S$ and some b_e as necessary.
- Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x.

• Certificate for y is a set of S_V and S_E with

$$\sum_{v \in S_V} a_v + \sum_{e \in S_E} b_e = T = k4^{|E|} + \sum_e 2 \cdot 4^e$$

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_{e} 2 \cdot 4^{e}$

2 Show how to transform any certificate for x into a certificate for y.

- ▶ Done: given cover *S*, take a_v for $v \in S$ and some b_e as necessary.
- Hence if x is YES, y must be YES.

3 Show how to transform any certificate for y into a certificate for x.

• Certificate for y is a set of S_V and S_E with

$$\sum_{v\in S_V} a_v + \sum_{e\in S_E} b_e = T = k4^{|E|} + \sum_e 2\cdot 4^e.$$

▶ In base 4, the e = (u, v)th digit appears in a_u, a_v , and b_e .

- Transform an *arbitrary* instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_{e} 2 \cdot 4^{e}$

2 Show how to transform any certificate for x into a certificate for y.

- ▶ Done: given cover S, take a_v for $v \in S$ and some b_e as necessary.
- Hence if x is YES, y must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.
 - Certificate for y is a set of S_V and S_E with

$$\sum_{v\in S_V}a_v+\sum_{e\in S_E}b_e=T=k4^{|E|}+\sum_e2\cdot 4^e.$$

- ▶ In base 4, the e = (u, v)th digit appears in a_u, a_v , and b_e .
- Hence no overflows, and one of a_u or a_v must be picked for each $e \in E$.

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_{e} 2 \cdot 4^{e}$

2 Show how to transform any certificate for x into a certificate for y.

- ▶ Done: given cover *S*, take a_v for $v \in S$ and some b_e as necessary.
- Hence if x is YES, y must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.
 - Certificate for y is a set of S_V and S_E with

$$\sum_{v\in S_V}a_v+\sum_{e\in S_E}b_e=T=k4^{|E|}+\sum_e2\cdot 4^e.$$

- ▶ In base 4, the e = (u, v)th digit appears in a_u, a_v , and b_e .
- Hence no overflows, and one of a_u or a_v must be picked for each $e \in E$.
- Exactly k of the a_u picked so $4^{|E|}$ term matches.

- Transform an arbitrary instance x of A into a very specific instance y of B (of polynomial size).
 - $b_e = 000100000_4$, with a 1 at position e.
 - ► $a_v = 1010010010010_4$, with a 1 at position *e* if $v \in e$, and another 1 at position |E|.
 - $T = k4^{|E|} + \sum_{e} 2 \cdot 4^{e}$
- 2 Show how to transform any certificate for x into a certificate for y.
 - ▶ Done: given cover *S*, take a_v for $v \in S$ and some b_e as necessary.
 - Hence if x is YES, y must be YES.
- 3 Show how to transform any certificate for y into a certificate for x.
 - Certificate for y is a set of S_V and S_E with

$$\sum_{v\in S_V}a_v+\sum_{e\in S_E}b_e=T=k4^{|E|}+\sum_e2\cdot 4^e.$$

- ▶ In base 4, the e = (u, v)th digit appears in a_u, a_v , and b_e .
- ▶ Hence no overflows, and one of a_u or a_v must be picked for each $e \in E$.
- Exactly k of the a_u picked so $4^{|E|}$ term matches.
- Hence S_V is a vertex cover.

Eric Price (UT Austin)

Some very similar NP-complete problems

Given a graph G = (V, E)

Definition (Max independent set)

Does there exist a set $S \subseteq V$ of size $\geq k$ such that, for all $(u, v) \in E$, at most 1 of $u \in S$ and $v \in S$?

Definition (Max clique)

Does there exist a set $S \subseteq V$ of size $\geq k$ such that, for all $(u, v) \in S$, $(u, v) \in E$?

Definition (Min vertex cover)

Does there exist a set $S \subseteq V$ of size $\leq k$ such that, for all $(u, v) \in E$, at least 1 of $u \in S$ and $v \in S$?

From here: preview of next class

- P: Polynomial time
- NP: Nondeterministic polynomial time
- BPP: Probabilistic polynomial time, failure probability at most 1/3.
 - PP: failure probability < 1/2.
- BQP: Probabilistic quantum polynomial time, failure probability at most 1/3.
- PSPACE: Polynomial space
- EXPTIME: Exponential time

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

• Know: $P \neq EXPTIME$, $PSPACE \neq EXPSPACE$.

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

- Know: $P \neq EXPTIME$, $PSPACE \neq EXPSPACE$.
- That's about it.

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

- Know: $P \neq EXPTIME$, $PSPACE \neq EXPSPACE$.
- That's about it.

 $P \subseteq BPP \subseteq BQP \subseteq PSPACE$

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

- Know: $P \neq EXPTIME$, $PSPACE \neq EXPSPACE$.
- That's about it.

 $P \subseteq BPP \subseteq BQP \subseteq PSPACE$

• Most people expect: P = BPP, everything else \subsetneq .

$P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE \subseteq \dots$

- Know: $P \neq EXPTIME$, $PSPACE \neq EXPSPACE$.
- That's about it.

$P \subseteq BPP \subseteq BQP \subseteq PSPACE$

- Most people expect: P = BPP, everything else \subsetneq .
- Don't know *NP* compared to *BPP* or *BQP* (or even if one is inside the other).

Prototypical examples

- P: evaluate a function
 - ▶ Given a circuit *f* and input *x*, what is *f*(*x*)?
- NP: solve a *puzzle*
 - SAT: given f, determine if $\exists x : f(x) = 1$?
 - Given a puzzle, find the solution
 - Easy to verify once the solution is found.
- PSPACE: solve a 2-player game
 - $\blacktriangleright \mathsf{TQBF}: \exists x_1 \forall x_2 \exists x_3 \cdots \forall x_n : f(x) = 1$
 - Think chess: do I have a move, so no matter what you do, I can find a move, so no matter, etc., etc., I end up winning?
- Caveat: requires the puzzle/game to only have a *polynomial number* of moves.
 - Puzzles/games with exponentially many moves may be harder.
 - Go: actually EXPTIME-complete to solve a position.
 - Zelda: actually PSPACE-complete to solve a level.

Eric Price (UT Austin)

Eric Price (UT Austin)