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Class Outline

@ Complexity classes

Eric Price (UT Austin) Complexity Theory: Zooming Out



A few complexity classes

o P: Polynomial time

Eric Price (UT Austin) Complexity Theory: Zooming Out 3/14



A few complexity classes

o P: Polynomial time

o NP: Nondeterministic polynomial time

Eric Price (UT Austin) Complexity Theory: Zooming Out 3/14



A few complexity classes
o P: Polynomial time

o NP: Nondeterministic polynomial time
o PP: failure probability < 1/2.

Eric Price (UT Austin) Complexity Theory: Zooming Out 3/14



A few complexity classes

o P: Polynomial time

o NP: Nondeterministic polynomial time
o PP: failure probability < 1/2.
» Kind of silly: NP C PP

Eric Price (UT Austin) Complexity Theory: Zooming Out 3/14



A few complexity classes

o P: Polynomial time

o NP: Nondeterministic polynomial time
o PP: failure probability < 1/2.

» Kind of silly: NP C PP (guess x; if f(x) true, return True; if f(x)
false, flip a coin)
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A few complexity classes

©

P: Polynomial time

©

NP: Nondeterministic polynomial time
o PP: failure probability < 1/2.

> Kind of silly: NP C PP (guess x; if f(x) true, return True; if f(x)
false, flip a coin)
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BPP: Probabilistic polynomial time, failure probability at most 1/3.
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o PP: failure probability < 1/2.

» Kind of silly: NP C PP (guess x; if f(x) true, return True; if f(x)
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BPP: Probabilistic polynomial time, failure probability at most 1/3.

©

BQP: Probabilistic quantum polynomial time, failure probability at
most 1/3.
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P: Polynomial time

o NP: Nondeterministic polynomial time
o PP: failure probability < 1/2.

» Kind of silly: NP C PP (guess x; if f(x) true, return True; if f(x)
false, flip a coin)

o BPP: Probabilistic polynomial time, failure probability at most 1/3.

o BQP: Probabilistic quantum polynomial time, failure probability at
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o PP: failure probability < 1/2.
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o NPSPACE: Nondeterministic, polynomial space
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o PP: failure probability < 1/2.

» Kind of silly: NP C PP (guess x; if f(x) true, return True; if f(x)
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most 1/3.
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A few complexity classes

©

P: Polynomial time

o NP: Nondeterministic polynomial time
o PP: failure probability < 1/2.

» Kind of silly: NP C PP (guess x; if f(x) true, return True; if f(x)
false, flip a coin)

o BPP: Probabilistic polynomial time, failure probability at most 1/3.

o BQP: Probabilistic quantum polynomial time, failure probability at
most 1/3.

o PSPACE: Polynomial space

o NPSPACE: Nondeterministic, polynomial space
» NPSPACE = PSPACE: try all proofs.

o EXP: Exponential time

o NEXP: Nondeterministic exponential time
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Relations of complexity classes

P C NP C PSPACE C EXP C NEXP C EXPSPACE C ...
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Relations of complexity classes

P C NP C PSPACE C EXP C NEXP C EXPSPACE C ...

Know: P # EXP, PSPACE # EXPSPACE.
That's about it.

©

©

P C BPP C BQP C PSPACE

o Most people expect: P = BPP, everything else C.
o Don't know NP compared to BPP or BQP (or even if one is inside
the other).
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o NP: solve a puzzle
» SAT: given f, determine if 3x : f(x) =17
» Think candy crush: is there any sequence of moves to achieve score X7
» Easy to verify once the solution is found.
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» Given a circuit f and input x, what is f(x)?
o NP: solve a puzzle
» SAT: given f, determine if 3x : f(x) =17
» Think candy crush: is there any sequence of moves to achieve score X7
» Easy to verify once the solution is found.
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of moves.
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Prototypical examples

o P: evaluate a function
» Given a circuit f and input x, what is f(x)?
o NP: solve a puzzle
» SAT: given f, determine if 3x : f(x) =17
» Think candy crush: is there any sequence of moves to achieve score X7
» Easy to verify once the solution is found.

o PSPACE: solve a 2-player game
» TQBF: 3x1Vxodx3 -+ - Vx, : f(x) =1
» Think chess: do | have a move, so no matter what you do, | can find a
move, so no matter, etc., etc., | end up winning?

o Caveat: requires the puzzle/game to only have a polynomial number
of moves.

» Puzzles/games with exponentially many moves may be harder.
> Go (Japanese rules): actually EXP-complete to solve a position.
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Prototypical examples

o P: evaluate a function
» Given a circuit f and input x, what is f(x)?
o NP: solve a puzzle
» SAT: given f, determine if 3x : f(x) =17
» Think candy crush: is there any sequence of moves to achieve score X7
» Easy to verify once the solution is found.

o PSPACE: solve a 2-player game
» TQBF: 3x1Vxodx3 -+ - Vx, : f(x) =1
» Think chess: do | have a move, so no matter what you do, | can find a
move, so no matter, etc., etc., | end up winning?

o Caveat: requires the puzzle/game to only have a polynomial number
of moves.
» Puzzles/games with exponentially many moves may be harder.
> Go (Japanese rules): actually EXP-complete to solve a position.
» Zelda: actually PSPACE-complete to solve a level.
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Interactive proofs

o You're a lowly P peon, and can't solve NP problems (like candy
crush), PSPACE ones (like chess), or EXP ones (like go).
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Interactive proofs
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You're a lowly P peon, and can't solve NP problems (like candy
crush), PSPACE ones (like chess), or EXP ones (like go).

If a god appears before you, can they convince you of the answer?
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» But you're skeptical—maybe it's actually a devil before you.
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The god of candy crush can tell you the solution, and you can check.
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The god of chess can:
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o If a god appears before you, can they convince you of the answer?
» But you're skeptical—maybe it's actually a devil before you.
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Interactive proofs

o You're a lowly P peon, and can't solve NP problems (like candy

crush), PSPACE ones (like chess), or EXP ones (like go).

If a god appears before you, can they convince you of the answer?
» But you're skeptical—maybe it's actually a devil before you.

©

©

The god of candy crush can tell you the solution, and you can check.

©

The god of chess can:

> tell you one line of play that wins for white?

» with interactivity: convince you he's better than you at chess?

> Remarkable fact: with interactivity, and careful questioning, can
convince you white wins.

» IP = PSPACE [1992]

The god of go:
» Probably cannot convince you (if PSPACE # EXP)
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Interactive proofs

o You're a lowly P peon, and can't solve NP problems (like candy
crush), PSPACE ones (like chess), or EXP ones (like go).
o If a god appears before you, can they convince you of the answer?
» But you're skeptical—maybe it's actually a devil before you.
o The god of candy crush can tell you the solution, and you can check.
o The god of chess can:

> tell you one line of play that wins for white?

» with interactivity: convince you he's better than you at chess?

> Remarkable fact: with interactivity, and careful questioning, can
convince you white wins.

» IP = PSPACE [1992]

o The god of go:

» Probably cannot convince you (if PSPACE # EXP)
» But two gods of go, in different rooms unable to communicate, can!
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Interactive proofs

o You're a lowly P peon, and can't solve NP problems (like candy

crush), PSPACE ones (like chess), or EXP ones (like go).

If a god appears before you, can they convince you of the answer?
» But you're skeptical—maybe it's actually a devil before you.

©

©

The god of candy crush can tell you the solution, and you can check.

©

The god of chess can:

> tell you one line of play that wins for white?

» with interactivity: convince you he's better than you at chess?

> Remarkable fact: with interactivity, and careful questioning, can
convince you white wins.

» IP = PSPACE [1992]

The god of go:

» Probably cannot convince you (if PSPACE # EXP)
» But two gods of go, in different rooms unable to communicate, can!
> In fact, MIP=NEXP [1991]

©
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Halting Problem

o Given a piece of code, determine if it runs forever or will halt.
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o Consider the following function:

1. function TROUBLE(S)
2 if HALTS(s, s) then
3 while True do

4: pass

5 else

6 return
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o Consider the following function:

1. function TROUBLE(S)
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3 while True do
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» If it does, it doesn’t; if it doesn't, it does.

o Resolution to paradox: HALTS cannot be written down.
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Halting Problem

o Given a piece of code, determine if it runs forever or will halt.

o Suppose you had a program HALTS(p, x) that determines if the
program with code p halts on input x.

o Consider the following function:

1. function TROUBLE(S)
2 if HALTS(s, s) then
3 while True do

4: pass

5 else

6 return

o Does TROUBLE(TROUBLE) halt?
» If it does, it doesn’t; if it doesn't, it does.

o Resolution to paradox: HALTS cannot be written down.

o Implies that HALTS(p)—with no input x—is also uncomputable.
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Halting problem: attempts to solve it

o How about this solution:
1. function HALTS(p)
2: Run p for T steps (e.g., 1 hour).
3: If it halts, return TRUE
4 Otherwise, return FALSE.
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Halting problem: attempts to solve it

o How about this solution:

1. function HALTS(p)

2: Run p for T steps (e.g., 1 hour).
3 If it halts, return TRUE

4 Otherwise, return FALSE.

o Works for short programs!
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Halting problem: attempts to solve it

o How about this solution:
1. function HALTS(p)
2: Run p for T(|p|) steps.
3 If it halts, return TRUE
4 Otherwise, return FALSE.
o Works for short programs!

o T needs to grow with the program size
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Halting problem: attempts to solve it

o How about this solution:

1: function HALTS(p)
2: Run p for T(|p|) steps.
3: If it halts, return TRUE
4: Otherwise, return FALSE.

o Works for short programs!

o T needs to grow with the program size

o There are a finite number of size-k programs, and one of them takes
the longest before halting. This is the busy beaver number BB(k).
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3: If it halts, return TRUE
4: Otherwise, return FALSE.

o Works for short programs!
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Halting problem: attempts to solve it

o How about this solution:

1: function HALTS(p)
2: Run p for T(|p|) steps.

3: If it halts, return TRUE
4: Otherwise, return FALSE.
o Works for short programs!

T needs to grow with the program size

o There are a finite number of size-k programs, and one of them takes
the longest before halting. This is the busy beaver number BB(k).

o Picking any T(k) > BB(k) would work.
o ... but HALTS is uncomputable, so BB(k) is too.
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Halting problem: attempts to solve it

o How about this solution:

1: function HALTS(p)

2: Run p for T(|p|) steps.

3: If it halts, return TRUE
4: Otherwise, return FALSE.

©

Works for short programs!
T needs to grow with the program size

There are a finite number of size-k programs, and one of them takes
the longest before halting. This is the busy beaver number BB(k).

Picking any T (k) > BB(k) would work.
... but HALTS is uncomputable, so BB(k) is too.
Still, there exists a program that solves HALTS on any 1Gb program.

©

©

©

©
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Halting problem: attempts to solve it

o How about this solution:

1: function HALTS(p)

2: Run p for T(|p|) steps.

3: If it halts, return TRUE
4: Otherwise, return FALSE.

©

Works for short programs!

T needs to grow with the program size

There are a finite number of size-k programs, and one of them takes

the longest before halting. This is the busy beaver number BB(k).

Picking any T (k) > BB(k) would work.

... but HALTS is uncomputable, so BB(k) is too.

Still, there exists a program that solves HALTS on any 1Gb program.
> And it's even short!
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©

©

©
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Halting problem: attempts to solve it

o How about this solution:

1: function HALTS(p)

2: Run p for T(|p|) steps.

3: If it halts, return TRUE
4: Otherwise, return FALSE.

Works for short programs!

©

T needs to grow with the program size

©

There are a finite number of size-k programs, and one of them takes

the longest before halting. This is the busy beaver number BB(k).

Picking any T (k) > BB(k) would work.

... but HALTS is uncomputable, so BB(k) is too.

Still, there exists a program that solves HALTS on any 1Gb program.
» And it's even short! Just needs to know the slowest size-k machine.

©

©

©

(]
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Halting problem: attempts to solve it

o How about this solution:

1: function HALTS(p)

2: Run p for T(|p|) steps.

3: If it halts, return TRUE
4: Otherwise, return FALSE.

Works for short programs!

©

T needs to grow with the program size

©

There are a finite number of size-k programs, and one of them takes
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The uncomputability of busy beaver

o BB(k) := longest number of steps any k-state Turing machine takes
before halting.
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o To be clear, we have no clue what the actual values are.
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The uncomputability of busy beaver

o BB(k) := longest number of steps any k-state Turing machine takes
before halting.

Per Wikipedia: BB(2) = 6, BB(3) = 21, BB(4) = 107,

©

10107
BB(5) = 47176870 (?), BB(6) > 7.4 x 1030534 BB(7) > 100"
o To be clear, we have no clue what the actual values are.

9
o Doesn't really reveal the true enormousness of busy beavers! 9% s
big too, but BB is utterly different.
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The uncomputability of busy beaver

o BB(k) := longest number of steps any k-state Turing machine takes
before halting.

o Per Wikipedia: BB(2) = 6, BB(3) = 21, BB(4) = 107,
107
BB(5) = 47176870 (?), BB(6) > 7.4 x 103534 BB(7) > 1010
o To be clear, we have no clue what the actual values are.

9
o Doesn't really reveal the true enormousness of busy beavers! 9% s
big too, but BB is utterly different.

o BB(2000) is impossible to prove an upper bound on. It's just a
number, but you can't prove that the number is correct.
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Godel's Incompleteness Theorem

Theorem (Godel's second incompleteness theorem) J

No consistent system of axioms can prove its own consistency.
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cannot be proven under A.

Eric Price (UT Austin) Complexity Theory: Zooming Out 11 /14



Godel’s Incompleteness Theorem

Theorem (Godel's second incompleteness theorem) J

No consistent system of axioms can prove its own consistency.

o Mathematical proofs are based on a set of axioms

» Euclidean geometry (two points determine a line, etc.)
» ZFC: Zermelo-Fraenkel set theory with the axiom of choice is standard.

o Axioms are inconsistent if they can prove a contradiction.
1: function FINDINCONSISTENCY(A)

2: for every possible string s do
3 if s is a valid proof under A of a contradiction then
4: return s

o FINDINCONSISTENCY(A) halts <= A is inconsistent.

o Therefore, if A is consistent, HALTS(FINDINCONSISTENCY, A)
cannot be proven under A.

o Therefore BB(|FINDINCONSISTENCY| + |ZFC|) cannot be upper

bounded under ZFC.
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The uncomputability of busy beaver

o Godel says: we cannot prove any upper bound on
BB(|FINDINCONSISTENCY| + |ZFC|) is.
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The uncomputability of busy beaver

o Godel says: we cannot prove any upper bound on
BB(|FINDINCONSISTENCY| + |ZFC|) is.

» Concretely: we cannot prove BB(2000). [O'Rear, Aaronson-Yedidia
'16]
» (Probably impossible to prove for much smaller values, too.)
o Bounding BB(744) would show the Riemann hypothesis is provable
(one way or the other).
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Back to interactivity

o Recall: MIP = NEXP:
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> If the program doesn’t halt, the prover doesn't have to halt either—it
just shouldn’t give the wrong answer.
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» So the prover could just run the program till it halts...
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Back to interactivity

o Recall: MIP = NEXP:
» Two non-interacting provers in separate rooms can convince a P
verifier of anything computable in nondeterministic exponential time.
o MIP*: two quantum entangled non-interacting provers can convince a
P verifier that a program halts.
» MIP* = RE [Ji-Natarajan-Vidick-Wright-Yuen '20].
o Note: unlike the halting problem, this is computable

> If the program doesn’t halt, the prover doesn't have to halt either—it
just shouldn’t give the wrong answer.

» So the prover could just run the program till it halts...

> but certainly not in polynomial time!
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Summary

P C NP C PSPACE C EXP C NEXP C EXPSPACE C ...
P C BPP C BQP C PSPACE

o Halting problem and busy beaver are uncomputable
o Cannot prove BB(2000) in ZFC
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