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Class Outline

1 Complexity classes

2 Computability
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A few complexity classes

P: Polynomial time

NP: Nondeterministic polynomial time

PP: failure probability < 1/2.

I Kind of silly: NP ⊆ PP

(guess x ; if f (x) true, return True; if f (x)
false, flip a coin)

BPP: Probabilistic polynomial time, failure probability at most 1/3.

BQP: Probabilistic quantum polynomial time, failure probability at
most 1/3.

PSPACE: Polynomial space

NPSPACE: Nondeterministic, polynomial space

I NPSPACE = PSPACE: try all proofs.

EXP: Exponential time

NEXP: Nondeterministic exponential time
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Relations of complexity classes

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ . . .

Know: P 6= EXP, PSPACE 6= EXPSPACE .

That’s about it.

P ⊆ BPP ⊆ BQP ⊆ PSPACE

Most people expect: P = BPP, everything else (.

Don’t know NP compared to BPP or BQP (or even if one is inside
the other).
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Prototypical examples

P: evaluate a function

I Given a circuit f and input x , what is f (x)?

NP: solve a puzzle

I SAT: given f , determine if ∃x : f (x) = 1?
I Think candy crush: is there any sequence of moves to achieve score X?
I Easy to verify once the solution is found.

PSPACE: solve a 2-player game

I TQBF: ∃x1∀x2∃x3 · · · ∀xn : f (x) = 1
I Think chess: do I have a move, so no matter what you do, I can find a

move, so no matter, etc., etc., I end up winning?

Caveat: requires the puzzle/game to only have a polynomial number
of moves.

I Puzzles/games with exponentially many moves may be harder.
I Go (Japanese rules): actually EXP-complete to solve a position.
I Zelda: actually PSPACE-complete to solve a level.
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Interactive proofs

You’re a lowly P peon, and can’t solve NP problems (like candy
crush), PSPACE ones (like chess), or EXP ones (like go).

If a god appears before you, can they convince you of the answer?

I But you’re skeptical—maybe it’s actually a devil before you.

The god of candy crush can tell you the solution, and you can check.

The god of chess can:

I tell you one line of play that wins for white?
I with interactivity: convince you he’s better than you at chess?
I Remarkable fact: with interactivity, and careful questioning, can

convince you white wins.
I IP = PSPACE [1992]

The god of go:

I Probably cannot convince you (if PSPACE 6= EXP)
I But two gods of go, in different rooms unable to communicate, can!
I In fact, MIP=NEXP [1991]
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Class Outline

1 Complexity classes

2 Computability
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Halting Problem

Given a piece of code, determine if it runs forever or will halt.

Suppose you had a program Halts(p, x) that determines if the
program with code p halts on input x .

Consider the following function:

1: function Trouble(s)
2: if Halts(s, s) then
3: while True do
4: pass

5: else
6: return

Does Trouble(Trouble) halt?

I If it does, it doesn’t; if it doesn’t, it does.

Resolution to paradox: Halts cannot be written down.

Implies that Halts(p)—with no input x—is also uncomputable.
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Halting problem: attempts to solve it

How about this solution:

1: function Halts(p)
2: Run p for T steps (e.g., 1 hour).
3: If it halts, return True
4: Otherwise, return False.

Works for short programs!

T needs to grow with the program size

There are a finite number of size-k programs, and one of them takes
the longest before halting. This is the busy beaver number BB(k).

Picking any T (k) ≥ BB(k) would work.

... but Halts is uncomputable, so BB(k) is too.

Still, there exists a program that solves Halts on any 1Gb program.

I And it’s even short!

Just needs to know the slowest size-k machine.
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The uncomputability of busy beaver

BB(k) := longest number of steps any k-state Turing machine takes
before halting.

Per Wikipedia: BB(2) = 6

, BB(3) = 21, BB(4) = 107,

BB(5) = 47176870 (?), BB(6) ≥ 7.4× 1036534, BB(7) ≥ 1010
1010

107

.

To be clear, we have no clue what the actual values are.

Doesn’t really reveal the true enormousness of busy beavers! 99
99

is
big too, but BB is utterly different.

BB(2000) is impossible to prove an upper bound on. It’s just a
number, but you can’t prove that the number is correct.
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Gödel’s Incompleteness Theorem

Theorem (Gödel’s second incompleteness theorem)

No consistent system of axioms can prove its own consistency.

Mathematical proofs are based on a set of axioms

I Euclidean geometry (two points determine a line, etc.)
I ZFC: Zermelo-Fraenkel set theory with the axiom of choice is standard.

Axioms are inconsistent if they can prove a contradiction.

1: function FindInconsistency(A)
2: for every possible string s do
3: if s is a valid proof under A of a contradiction then
4: return s

FindInconsistency(A) halts ⇐⇒ A is inconsistent.

Therefore, if A is consistent, Halts(FindInconsistency, A)
cannot be proven under A.

Therefore BB(|FindInconsistency|+ |ZFC |) cannot be upper
bounded under ZFC .
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The uncomputability of busy beaver

Gödel says: we cannot prove any upper bound on
BB(|FindInconsistency|+ |ZFC |) is.

I Concretely: we cannot prove BB(2000). [O’Rear, Aaronson-Yedidia
’16]

I (Probably impossible to prove for much smaller values, too.)

Bounding BB(744) would show the Riemann hypothesis is provable
(one way or the other).
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Back to interactivity

Recall: MIP = NEXP:

I Two non-interacting provers in separate rooms can convince a P
verifier of anything computable in nondeterministic exponential time.

MIP*: two quantum entangled non-interacting provers can convince a
P verifier that a program halts.

I MIP* = RE [Ji-Natarajan-Vidick-Wright-Yuen ’20].

Note: unlike the halting problem, this is computable

I If the program doesn’t halt, the prover doesn’t have to halt either—it
just shouldn’t give the wrong answer.

I So the prover could just run the program till it halts...
I but certainly not in polynomial time!
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Summary

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE ⊆ . . .

P ⊆ BPP ⊆ BQP ⊆ PSPACE

Halting problem and busy beaver are uncomputable

Cannot prove BB(2000) in ZFC
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