
CS 388R: Randomized Algorithms Fall 2017

Lecture 11 — Oct. 5, 2017

Prof. Eric Price Scribe: Prateek Kolhar, Matt Jordan

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture, we look at the problem of finding the shortest paths between all nodes in a graph.
We will first briefly look at some deterministic algorithms to achieve this and then look at certain
randomized strategies.

Some standard deterministic algorithms:

Algorithm Sources Negative Weight Time

Dijkstra Single No O(m + n log n)
Bellman-Ford Single Yes O(mn)

Floyd-Warshall All Pairs Yes O(n3)

Floyd-Warshall Algorithm is the simplest to implement with the following pseudo code:

Data: Distance matrix D
Result: Shortest path matrix D
for k ∈ [n] do

for i ∈ [n] do
for j ∈ [n] do

Dij = min(Dij , Dik + Dkj)
end

end

end

2 Faster Algorithm using Matrix Multiplication

The elements of the output matrix in matrix multiplication operation can be written down this
way:

(AB)ij =
∑
k

Aik ×Bkj

In this operation if we replace (
∑

,×) with (min,+) we essentially get the Floyd-Warshall Algo-
rithm. And by doing so, all shortest paths can be computed in the same time complexity as matrix
multiplication.
Matrix multiplication algorithms proposed in the past:

1

• Naive: O(n3)

• Strassen ‘69: O(n2.8074)

• Coppersmith & Winograd ‘89: O(n.375477)

• Strothers ‘10: O(n2.374)

• Vassilevska-Williams ‘11: O(n2.372873)

• A better lower bound for matrix multiplication is still an open problem

In general, the time complexity of matrix multiplication is represented as O(nω). Our goal is to
leverage some of these faster matrix multiplication techniques in finding shortest paths.

2.1 Naive Method

Consider A, the adjacency matrix, then A2
ij is the number of paths from i to j of length 2. And,

Al
ij is the number of length l paths from i to j. Adding the identity matrix to A acts as if we added

self loops to the graph, so then Al
ij gives the paths for length ≤ l.

To get the lengths of all pair shortest paths we just compute:

A1, A2, A3, ..., An

and set the path length:
Dij = argmin

k
I[(Ak)ij = 1]

I[∗]→ indicator function

The time complexity is O(n · nω) ' O(n3.373). This is worse than Floyd-Warshall algorithm.

2.2 Approximation

Suppose we want a 2-approximation of Dij , which is Xij such that Dij ∈ [
Xij

2 , Xij]. We can
compute:

A1, A2, A4, A8, ..., An

in O(nω) log(n)) time by repeatedly squaring.

Now consider the graph formed by using A2 adjacency matrix. This is the graph with all length
2 paths as new edges. Let D

′
be the distance between all pairs in this graph. Our goal is to find

D from D
′

and A in O(nω) time. When you compare the A graph with the A2 graph there are 2
cases possible:

• if Dij is even then D
′
ij =

Dij

2

• if Dij is odd then D
′
ij =

Dij+1
2

2

So, we need to calculate Dij mod (2) ∀i, j from D
′

and A. Lets look at the following 2 cases for
nodes around the neighborhood, N(i), of node-i:

• If Dij is even then ∀u ∈ N(i), D
′
uj ∈ {D

′
ij , D

′
ij + 1} and for at least 1 u ∈ N(i), we have

D
′
uj = D

′
ij

• if Dij is odd then ∀u ∈ N(i), D
′
uj ∈ {D

′
ij , D

′
ij − 1} and for at least 1 u ∈ N(i), we have

D
′
uj = D

′
ij − 1

This can be clearly seen from the fact that if the distance from i to j in A is even (2l) then the
neighbor u of i is at a distance of only 2l − 1, 2l or 2l + 1. In A2, the distance from i to j is l
and from u to j is l or l + 1. If Duj = 2l − 1 in A, then it still takes l steps from u to j in A2, A
similar argument can be made for the case when Dij is odd. Coming back to the original problem
of reconstructing Dij , we sum up the distances over the neighborhood of i:

• if Dij is even then
∑

u∈N(i)D
′
uj > D

′
ij · |N(i)|

• if Dij is odd then
∑

u∈N(i)D
′
uj < D

′
ij · |N(i)|

We can express these sums in matrix multiplication form as:∑
u∈N(i)

D
′
uj =

∑
u∈[n]

AiuD
′
uj = (AD

′
)ij

We compare AD
′

to D
′ |N(i)| to get Dij mod (2) and set

D = 2D
′ − (D mod 2)

This takes nω time for each step and a total time of O(nω log(n))

3 Determining shortest paths

In the last section we discussed how to compute the lengths of all pairs shortest paths, which we
summarized in the matrix D. Note that D says nothing about what the paths are. Suppose we’re
given D and A; we want an efficient algorithm for finding the successor matrix S such that Sij is
k when the shortest path from node i to node j looks like i → k → ... → j. This will allow us to
determine shortest paths in time proportional to path length.

3.1 Easy case

Let’s start with an easy case: let G be tripartite composed of a left, middle and right set. Let
A refer to the adjacency matrix between the left and middle sets, and B refer to the adjacency
matrix between the middle and right sets. Observe that the number of middle nodes k such that
i→ k → j is a path is equivalent to the (i, j)’th entry of AB:

(AB)ij =
∑
k

AikBkj = # of middle nodes

3

To make things easy, suppose only one such middle node, k∗ exists, and our goal is to identify
which node it is. Define A′ such that A′ik = k · Aik, so (A′B)ij = k∗. Thus we can identify the
intermediate node for a path in O(nω) time. We say that this intermediate node, k is a witness for
the product of AB.

3.2 Easy-ish case

Suppose now that there are exactly r witnesses k1, k2, ..., kr such that i→ kd → j is a path for all
d ∈ [r]. Our technique from the easy case will no longer work, because (A′B)ij as defined above
wouldn’t allow us to determine a particular kd. The idea here is to delete all but one of these
i→ kd edges so we only end up with one witness, or rather, delete each edge independently with
probability 1− 1

r .

Define A′ik = Aik · k · Zk where Zk is a Bernoulli random variable with probability 1
r . Then the

probability that exactly one witness k∗ remains is

r · (1− 1

r
)r−1 · 1

r
= (1− 1

r
)r−1 >

1

e

So now we just need to repeat this procedure O(log n) and then we have exactly one witness at
least once with high probability. This approach has runtime O(nω log n).

3.3 Medium case

What happens if now there are many different r’s? That is, the number of intermediate nodes is
not constant across our choice of source node i? We don’t want to try the approach used in the
’easy-ish case’ with all possible r, but instead we can try r to be powers of 2: r = 1, 2, 4..., n.

Suppose for a given i, the true number of intermediate nodes is r∗. Then when we let r be such
that r∗ ≤ r ≤ 2r∗, meaning we delete edges in A with probability 1

r . Then the probability that
exactly one witness remains is

P [1 witness remains] = r∗
(

1− 1

r

)(r∗−1) 1

r
≥ r∗

1

2r∗
1

e
≥ 1

2e

So if we run each choice of r O(log n) times then with high probability we find a witness for all i, j.
Since there are O(log n) choices of r, and each step requires O(nω) time, then the total runtime is
O(nω log2 n).

3.4 Hard Case

Now we’re ready to extend the techniques we used in tripartite graphs to general (non-tripartite)
graphs. Recall our goal: for all i, j we want to find a k such that Aik = 1 and Dkj = Dij − 1.

The idea here is to find the successor matrix for all paths of length l, l − 1, ... 1. We can do this
by defining a matrix R(l) to be an n× n 0− 1 matrix:

R
(l)
ij =

{
1 if Dij = l − 1

0 otherwise

4

Suppose that the shortest path from i to j is of length l. Then k is a witness for this path if and
only if it is one of the witnesses for AR(l). This follows because if k is a witness for the i→ j path,
then Dkj = l − 1 so both Aik = 1 and Dkj = 1, which is to say that (AR(l))ij = 1 which is the
same as k being a witness for AR(l). We can find witnesses for AR(l) with high probability using
the technique described in the ’medium case’ above in O(nω log2 n) time.

However the length of the shortest path between any two nodes can adopt n different values, so if
we were to use the above strategy, we’d have to define n different R(l) matrices. Recall from our
deterministic technique to find D that for any neighbor k of node i, Dij − 1 ≤ Dkj ≤ Dij + 1. And
note that any k such that Dkj = Dij − 1 is a successor for i → j. So as long as Dkj ≡ Dij − 1
mod 3, k is a successor.

Instead of having to compute R(l) for each l ∈ [n], we only need to compute three R(0):

R
(0)
ij =

{
1 if Dij ≡ 0 mod 3

0 otherwise

and similarly for R(1) and R(2). This is exactly solving the ’medium’ case above 3 times, so the
runtime is a total of O(nω log2 n).

References

[AMS99] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the
Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[MR95] Rajeev Motwani and Prabhakar Raghavan. 1995. Randomized Algorithms. Cambridge Uni-
versity Press, New York, NY, USA.

5

