CS 388R: Randomized Algorithms

Lecture 15 - October 26, 2017
Prof. Eric Price
Scribe: Kiyeon Jeon, Xiong Zheng
NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we intoruced Johnson Lindenstrauss lemma and covered subgaussian random variable.

In this lecture we will cover subexponential and subgamma random variables.

2 Revisit Coupon Collector problem

Let's recall the coupon collector problem where we collect coupons until we find all n types of coupons. Each one that arrives is uniform on $[n]$. Let T be the total number you collect. In the lecture 5 , we can know $T=n H_{n}+O(n)$ by Chebyshev inequality with mean $\mathbb{E}[T]$ and variance $\operatorname{Var}[T]$. Now, we will deal with better concentration inequality with subexponential and subgamma random variables.
Let T_{i} be the time to catch the i-th coupon. Then $T_{i} \sim \operatorname{geom}\left(1-\frac{i-1}{n}\right) . \mathbb{E}\left[T_{i}\right]=\frac{1}{1-\frac{i-1}{n}}=\frac{n}{n-i+1}$ $\mathbb{E}[T]=\sum \mathbb{E}\left[T_{i}\right]=n H_{n}=\Theta(n \log n)$. How can we know $\operatorname{Pr}\left(T \geq n H_{n}+t\right)$?
When $x \sim \operatorname{geom}(p), \mathbb{P}[x=t]=p(1-p)^{t-1} \mathbb{P}[x \geq t]=(1-p)^{t-1} \approx e^{-p t} \neq e^{-\frac{t^{2}}{2 \sigma^{2}}}$ for any σ, which means x is not subgaussian variable. So, we cannot use concentration inequality from subgaussian.

3 Concentration Inequality

3.1 Subgaussian

A variable X of mean μ is subgaussian with parameter σ if

1. $M G F-\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}}$ for all $\lambda \in \mathbb{R}$
2. Tail $-\mathbb{P}[|X-\mu|>t] \leq 2 e^{-t^{2} / 2 \sigma^{2}}$ for all $t>0$
3. Moment $-\mathbb{E}\left[|X-\mu|^{k}\right] \leq k^{k / 2} \sigma^{k}$ for all $k>0$

The above three items are equivalent up to constant factors in σ

3.2 Subexponential

A variable X of mean μ is subexponential with parameter σ if

1. $M G F-\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}}$ for all $|\lambda|<1 / \sigma$
2. Tail $-\mathbb{P}[|X-\mu|>t] \leq 2 e^{-t / 2 \sigma}$ for all t
3. Moment $-\mathbb{E}\left[|X-\mu|^{k}\right] \leq k^{k} \sigma^{k}$ for all k

The above three items are equivalent up to constant factors in σ

3.2.1 What MGF?

Suppose $p(z)=e^{-z}$ for all $z>0 . \mathbb{P}[Z>t]=e^{-t}$ and $\mathbb{E}[Z]=1$ Then, MGF is

$$
\begin{aligned}
E\left[e^{\lambda(Z-1)}\right] & =\int_{0}^{\infty} e^{-z} e^{\lambda(z-1)} d z=\frac{e^{-\lambda}}{1-\lambda} \quad \text { for } \lambda<1 \\
& =\frac{1-\lambda+\frac{\lambda^{2}}{2}-\frac{\lambda^{3}}{3!}+\cdots}{1-\lambda} \\
& =1+\frac{\lambda^{2}}{2}+\lambda^{3}\left(\frac{1}{2}-\frac{1}{3!}\right)+\lambda^{4}(\cdots)+\cdots \leq e^{4 \lambda^{2} / 2} \text { for all }|\lambda|<\frac{1}{2}
\end{aligned}
$$

There is a problem that the subexponential is not closed under adding independent copies.

3.3 Subgamma

A variable X of mean μ is subgamma with parameters (σ, c) if:

1. $M G F-\mathbb{E}\left[e^{\lambda(X-\mu)}\right] \leq e^{\frac{\lambda^{2} \sigma^{2}}{2}}$ for all $|\lambda|<\frac{1}{c}$
2. Tail $-\mathbb{P}[|X-\mu|>t] \leq 2 \max \left\{e^{-t^{2} / 2 \sigma^{2}}, 2 e^{-t / 2 c}\right\}$ for all t

Observation 1. subexponential $(\sigma)=\operatorname{subgamma}(\sigma, \sigma)$
Observation 2. $\operatorname{subgaussian}(\sigma)=\operatorname{subgamma}\left(\sigma, 0^{+}\right)$
Tail means

$$
\mathbb{P}[|X-\mu|>t] \leq \begin{cases}2 e^{-t^{2} / 2 \sigma^{2}}, & \text { if }|t|<\sigma^{2} / c \\ 2 e^{-t / 2 c}, & \text { if }|t|>\sigma^{2} / c\end{cases}
$$

It implies that with probability $1-\delta,|X-\mu| \leq \max \{\sigma \sqrt{2 \log (2 / \delta)}, 2 c \log (2 / \delta)\}$
Proposition 3. If X and Y are independent subgamma random variable i.e. $X \in \operatorname{subgamma}\left(\sigma, c_{1}\right)$ and $Y \in \operatorname{subgamma}\left(\sigma, c_{2}\right)$, then $X+Y \in \operatorname{subgamma}\left(\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}, \max \left(c_{1}, c_{2}\right)\right)$

Proof. for all $\lambda<\frac{1}{\max \left(c_{1}, c_{2}\right)}, \mathbb{E}\left[e^{\lambda(X+Y)}\right]=\mathbb{E}\left[e^{\lambda X}\right] \mathbb{E}\left[e^{\lambda Y}\right] \leq e^{\frac{\lambda^{2} \sigma_{1}^{2}}{2}} e^{\frac{\lambda^{2} \sigma_{2}^{2}}{2}}=e^{\frac{\lambda^{2}}{2}\left(\sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)^{2}}$

3.3.1 Coupon Collector problem

Going back to the Coupon Collector problem,

$$
\begin{aligned}
& T_{i} \sim \operatorname{geom}\left(1-\frac{i-1}{n}\right) \\
\Rightarrow & T_{i} \in \operatorname{subexp}\left(\frac{n}{n-i+1}\right)=\operatorname{subgamma}\left(\frac{n}{n-i+1}, \frac{n}{n-i+1}\right) \\
\Rightarrow & \sum T_{i} \in \operatorname{subgamma}(\Theta(n), \Theta(n))\left(\because \sqrt{\sum_{i=1}^{n}\left(\frac{n}{n-i+1}\right)^{2}} \approx \sqrt{n^{2} \frac{\pi^{2}}{6}}=\Theta(n)\right) \\
\Rightarrow & \mathbb{P}\left[T \geq n H_{n}+t\right] \leq 2 \cdot \max \left\{e^{-\frac{t^{2}}{2 n^{2}}}, e^{-\frac{t}{2 n}}\right\} \leq 2 \cdot e^{-\frac{t}{2 n}} \\
\Rightarrow & T \leq n H_{n}+2 n \log (2 / \delta)=O(n \log n) \text { with probability } 1-\delta
\end{aligned}
$$

3.3.2 Bounded random variable

Let $X_{i} \in[0,1]$ have variance σ_{i}^{2}. How about $X=\sum_{i=1}^{n} X_{i}$ with independent X_{i} 's?
Lemma 4. If random variable $X \in[0,1]$ has variance σ, then $X \in \operatorname{subgamma}(\sigma \sqrt{2}, 2)$
Proof. Let $Y=X-\mathbb{E}[X]$

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda Y}\right] & =\sum_{k=0}^{\infty} \frac{\mathbb{E}(\lambda Y)^{k}}{k!} \\
& =1+\sum_{k=2}^{\infty} \frac{\lambda^{k} \mathbb{E}\left[Y^{k}\right]}{k!} \\
& \stackrel{(a)}{\leq} 1+\sum_{k=2}^{\infty} \frac{\lambda^{k} \sigma^{2}}{k!} \\
& \leq 1+\frac{\lambda^{2} \sigma^{2}}{2} \sum_{k=0}^{\infty} \lambda^{k} \\
& =1+\frac{\lambda^{2} \sigma^{2}}{2(1-\lambda)}
\end{aligned}
$$

(a) is established by $\left|Y^{k}\right| \leq\left|Y^{2}\right|\left|Y^{k-2}\right| \leq\left|Y^{2}\right|$

There are two methods for the concentration inequality regarding $\sum X_{i}$.

1. a naive way with subgaussian

$$
\begin{aligned}
& X_{i} \in \operatorname{subgaussian}\left(\frac{1}{2}\right) \\
& X \in \operatorname{subgaussian}\left(\frac{\sqrt{n}}{2}\right) \\
& X=\mathbb{E}[X] \pm \sqrt{2 n \log (2 / \delta)} \text { w.p. } 1-\delta
\end{aligned}
$$

2. a better way with subgamma

$$
\begin{aligned}
X_{i} & \in \operatorname{subgamma}\left(\sqrt{2 \sigma_{i}^{2}}, 2\right) \\
X=\sum X_{i} & \in \operatorname{subgamma}\left(\sqrt{2 \sum \sigma_{i}^{2}}, 2\right) \\
\mathbb{P}[|X-\mu| \geq t] & \leq \max \left\{e^{-\frac{t^{2}}{4 \sum \sigma_{i}^{2}}}, e^{-\frac{t}{4}}\right\}=\max \left\{e^{-\frac{t^{2}}{4 \operatorname{Var}(X)}}, e^{-\frac{t}{4}}\right\} \\
X & =\mathbb{E}[X] \pm(2 \sqrt{\operatorname{Var}(X) \log (2 / \delta)}+4 \log (2 / \delta)) \text { w.p } 1-\delta
\end{aligned}
$$

4 Proof of Distributional JL

Theorem 5. (Distributional JL) There exists distributions on matrices $A \in \mathbb{R}^{m \times d}$ such that for any x in $\mathbb{R}^{d}\|A x\|_{2}=(1 \pm \epsilon)\|x\|_{2}$ with probability $1-\delta$ with $m=O\left(\frac{1}{\epsilon^{2}} \log (1 / \delta)\right)$

Proof. Let $x \in \mathbb{R}^{d}$ with $\|x\|_{2}=1$. We can choose A as $\mathcal{N}(0,1)^{m \times d}$ (or $\left.\{-1,+1\}^{m \times d}\right)$.

$$
\begin{aligned}
A_{j i} \in \operatorname{subgaussian}(1) & \Rightarrow A_{j i} x_{i} \in \operatorname{subgaussian}\left(\left|x_{i}\right|\right) \\
& \Rightarrow(A x)_{j} \in \operatorname{subgaussian}\left(\sum\left|x_{i}\right|^{2}\right)=\operatorname{subgaussian}(1)
\end{aligned}
$$

Let $Z=(A x)_{j}$

$$
\begin{aligned}
Z \in \operatorname{subgaussian}(1) & \Rightarrow \mathbb{E}\left[Z^{2}\right]=1 \\
& \Rightarrow \mathbb{E}\left[\left|Z^{2}\right|^{k}\right]=\mathbb{E}\left[|Z|^{2 k}\right] \leq k^{k} \\
& \Rightarrow E\left[\left|Z^{2}-\mu\right|^{k}\right] \leq Z^{k} k^{k} \\
& \Rightarrow Z \in \operatorname{subexponential}(\sigma=\Theta(1)) \\
& \Rightarrow \sum(A x)_{j}^{2} \in \operatorname{subgamma}(\sqrt{m}, 1)
\end{aligned}
$$

Thus, we can get $\frac{\sum(A x)_{j}^{2}}{m}=1 \pm\left(\sqrt{\frac{2 \log (2 / \delta)}{m}}+\frac{\log (2 / \delta)}{m}\right)$ with probability $1-\delta$ if $m \geq \frac{\Theta(1) \log (2 / \delta)}{\epsilon^{2}}$

