
CS 388R: Randomized Algorithms Fall 2017

Lecture 16 — October 31, 2017

Prof. Eric Price Scribes: Andrew Russell, Aditya Gupta

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

n Coin Flips

Question: We have n coins, the probability of heads on each coin is p(� 1). Find Pr(#heads ≥
n
2 )

Approach 1) We begin by finding lower and upper bounds.

For lower bound, when all tosses are heads,

Pr(#heads ≥ n

2
) ≥ pn

For upper bound, using union bound,

Pr(#heads ≥ n

2
) ≤

(
n
n
2

)
p

n
2

≤ 2np
n
2

≤ (4p)
n
2 = e

−nlog( 1
4p

)θ(1)

Approach 2) Let Xi ∈ [0, 1], V ar(Xi) = p(1− p),

Xi ∈ subgamma(2
√
p, 2)

n∑
i=1

Xi ∈ subgamma(2
√
np, 2)

Pr[
n∑
i=1

Xi ≥ np+ t] ≤ e−min{
t2

8np
, t
4
}

Set t = (12 − p)n ≥
n
4

≤ e−min{
n

128p
, n
16
}

≤ e−
n
16

Thus, using the first approach gives us a tighter bound.
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1 Overview

In this lecture we discuss streaming algorithms. Our primary motivation here is to be able

to compute interesting functions on a stream v1, v2, . . . , vm of data and corresponding counts

x = (x1, x2, . . . , xn) where xi = (#j ∈ [m] | vj) where n and m are much larger than our ca-

pacity to store.

There are two models of streams that we will consider.

• Insertion-only: items are only added to the stream.

• “Turnstile”: items can be inserted and deleted from the stream.

In this lecture, we will primarily focus on the insertion only model.

2 Streaming

Suppose we want to answer the following questions about the stream’s count vector.

1. We wish to estimate the zero norm ||x||0 := (# nonzero xi) within a multiplicative factor of

(1± ε) with probability (1− δ).

2. Sample a random i ∈ Supp(x) where Supp(x) is the nonzero coordinates of x.

3. Estimate ||x||1.

4. Estimate ||x||2.

We will make frequent use of hash functions to conserve space.

2.1 Estimating the 2-norm

We start with estimating the 2-norm. First we note that if we pick an m×n matrix A with entries

aij ∈ {−1, 1} then if m = O( 1
ε2

log 1
δ we will have 1

m ||Ax||
2
2 = (1 ± ε)||x||22. So if we can compute

Ax progressively, we can estimate ||x||2. We can do this by applying A progressively to the stream

values. If ei is the ith standard basis vector for Rn, then we have:

Ax = A

(
m∏
i=1

evj

)
=

m∏
i=1

Aevj

We now have one last thing to consider, which is the storage of matrix A. We can generate A

progressively by using 4-wise independent hash functions hi for each row i of A. Specifically,
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Aij = hi(j). This is known as the “AMS Sketch.” Note that this gives us a result with constant

probability: for m = O( 1
ε2

rows, we get an estimation (1 ± ε)||x||22 with 9
10 probability. To get a

higher probability 1− δ, we can use the median of matrices A1, A2, . . . , Alog δ.

2.2 Sampling from the support

First, consider a random hash function h : [n] → [0, 1]. As we receive stream data vj , keep track

of the vj that has minimum h(vj). Since h is a random function, this minimum value will be

random also, and independent of the order of the stream data. This approach is known as the

“min-hash.” However, this is problematic for our space-constrained setting, since storing a truly

random function is O(n). So instead we will use a O(log(1ε )-wise independent hash function, which

gives us

P[minx∈S(h(x)) = h(x̃)] =
1± ε
|S|

∀S ⊆ [n], x̃ ∈ S

2.3 Estimating the zero norm

We will use the min-hash technique for this problem as well. Let k = ||x||0 be the number of

nonzero entries of x. Intuitively, if we use a random hash function, its minimum value across

nonzero values of x will get smaller as the number of nonzero values of x increases. More precisely,

we have E[min(h(x))] = 1
k+1 since the range of the hash function is the unit interval. Thus,

k ≈ 1
min(h(x)) − 1 and so we want to estimate E[min(h(x))], which we can do more precisely

with multiple hash functions: 1
S

∑|S|
i=1minx∈S(hi(x)). This requires 1

ε2
words (O( 1

ε2
log n) bits).

Alternatively, we can store the log of the minimum (i.e., the number of leading zeros), which would

give us a log log n factor rather than log n.
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