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1 Overview

In this lecture we will do the non-commutative Bernstein Inequality and Graph Sparsification
problem.

2 Bernstein Inequality

Let X1, X2, . . . , Xn bet n independent, not necessarily identically distributed random variables.
Further,

|Xi| ≤ K ∀i ∈ [n]

E

[
n∑
i=1

X2
i

]
≤ σ2.

We wish to find the tail bounds for |
∑n

i=1Xi|, i.e., P [|
∑n

i=1Xi| ≥ t] ≤?

Note that Xis are sub-gaussian(K). This in turn implies that
∑n

i=1Xi is sub-gaussian(K
√
n).

Thus,

P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ e−

t2

2K2n .

This in turn implies |
∑n

i=1Xi| ' K
√
n. However, note that the bound is weak when σ � K

√
n.

Note that Xis are also sub-gamma random variables. E[X2
i ] ≤ σ2iK

2, |Xi| ≤ K implies that
Xi is sub-gamma(2

√
2σiK, 4K). Let us assume σi is such that it subsumes K in the argument.

Thus, Xi ∈ sub-gamma(2
√

2σi, 4K), and
∑n

i=1Xi ∈ sub-gamma(2
√

2σ, 4K). Using bounds for
sub-gamma random variables, we can now write

P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
]
≤ 2e

−min
{

t2

16σ2
, t
8K

}
.

But the mean may not be 0. We use E[
∑n

i=1Xi] ≤ E[
∑n

i=1X
2
i ]

1
2 = σ to write

P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ t
]

(a)

≤ 2e
−min

{
(t−σ)2

16σ2
,
(t−σ)
8K

}

≤ 2e
C−min

{
t2

σ2
, t
K

}
,
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where C > 0 is some constant. Also, note that (a) is meaningful only if (t− σ) ≥ 4σ
√

ln(2).

Notation: ‖A‖ = sup‖x‖≤1 ‖Ax‖2.

Theorem 1 (Non-commutative Bernstein inequality). Extension of Bernstein-type inequalities to
matrices.

Let X1, . . . , Xm be independent symmetric matrices with zero mean, i.e., E[Xi] = 0 ∀i ∈ [m].

Also, ‖Xi‖ ≤ K∀i ∈ [m], and

∥∥∥∥∥
n∑
i=1

E[X2
i ]

∥∥∥∥∥ ≤ σ2. Then, ∃ C < 0, such that

P

[∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≥ t
]
≤ 2n · eCmin

{
t2

σ2
, t
K

}

We omit the proof of this theorem.

Theorem 2 (R-V theorem). Let X1, . . . , Xm be independent, and identically distributed vectors in
Rn such that ‖Xi‖2 ≤ K ( K ≥ 1), and ‖E[XiX

>
i ]‖ ≤ 1 ∀i ∈ [m]. Then,

E

[∥∥∥∥∥ 1

m

m∑
i=1

XiX
>
i − E[XX>]

∥∥∥∥∥
]

> K

√
log n

m

Proof. Let Yi = XiX
>
i − E[XiX

>
i ]. We want to apply the non-commutative Bernstein theorem to∑m

i=1 Yi.

Upper bound for Y :

‖Yi‖ ≤
∥∥∥XiX

>
i

∥∥∥+
∥∥∥E [XiX

>
i

]∥∥∥ ≤ 2K2

Upper bound for
∥∥∑m

i=1 E[Y 2
i ]
∥∥

∥∥∥∥∥
m∑
i=1

E[Y 2
i ]

∥∥∥∥∥ ≤ m‖E[Y 2
1 ]‖

= m
∥∥∥E [(XX>)2 − E[XX>]2

]∥∥∥
≤ m

(∥∥∥E[‖X‖22 ·XX>]
∥∥∥+

∥∥∥E[XX>]
∥∥∥2)

≤ 2mK2

We can now apply the non-commutative Bernstein inequality.

P

[∥∥∥∥∥
m∑
i=1

E[Yi]

∥∥∥∥∥ ≥ mt
]
≤ 2n · e−Cmin

(
mt2

2K2 ,
mt
K2

)

Hence, when t ≥ K2

m log
(
n
δ

)
, and t ≥ K

√
log(n

δ
)

m
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P

[∥∥∥∥∥
m∑
i=1

E[Yi]

∥∥∥∥∥ ≥ C2K

√
log(nδ )

m

]
≤ δ

More on the subject can be found here [2].

3 Graph Sparsifier

Graph Sparsification problem is the following: Given a dense graph G = (V,EG,WG), find a sparse
graph H = (V,EH ,WH), which approximately preserves some properties of G. The vertex set will
remain the same, but the edge set and their weights can be different. We will henceforth denote
|V | by n.

3.1 Cut-Sparsifier

In the first lecture we studied a randomized algorithm to compute the min-cut in a graph. Here we
study a related problem of finding a cut-sparsifier, namely, a sparse graph H, that approximately
preserves all the cuts in G.

For a given graph G = (V,E,W ), a cut S ⊆ V has size:

CG(S) =
∑

(u,v)∈E

W (u, v) · I{u∈S,v /∈S}

Definition 3 (Cut-sparsifier). H is a cut-sparsifier for G if:

∀S ⊆ V,CH(S) = (1± ε)CG(S)

3.2 Spectral Sparsifier

The Spectral Sparsifier is a generalized form of cut-sparsification [1]. Let us define

LG =
∑

(u,v)∈EG

Au,v.

so that,

LG(u, v) =

{
−W (u, v) u 6= v∑

tW (u, t) u = v

LG is called the Laplacian Matrix of the graph. Let PG(x) = x>LGx

Definition 4 (Spectral Sparsifier). A spectral sparsifier is a graph that spectrally approximates the
graph Laplacian. i.e. for all vectors x, we should have

PH(x) = (1± ε)PG(x)
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⇔ (1− ε)x>LGx ≤ x>LHx ≤ (1 + ε)x>LGx ∀ x ∈ Rn

⇔ (1− ε)LG � LH � (1 + ε)LG

Notation: � is the generalized matrix inequality on symmetric matrices: two symmetric matrices
A and B satisfy A � B iff (B −A) is positive semidefinite.

Theorem 5. Spectral Sparsifier =⇒ Cut-sparsifier

Proof. Will be done in next class.
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