1 Overview

In this lecture we will do the non-commutative Bernstein Inequality and Graph Sparsification problem.

2 Bernstein Inequality

Let $X_{1}, X_{2}, \ldots, X_{n}$ bet n independent, not necessarily identically distributed random variables. Further,

$$
\begin{aligned}
\left|X_{i}\right| & \leq K \quad \forall i \in[n] \\
\mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{2}\right] & \leq \sigma^{2} .
\end{aligned}
$$

We wish to find the tail bounds for $\left|\sum_{i=1}^{n} X_{i}\right|$, i.e., $\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}\right| \geq t\right] \leq$?

Note that X_{i} s are sub-gaussian (K). This in turn implies that $\sum_{i=1}^{n} X_{i}$ is sub-gaussian $(K \sqrt{n})$. Thus,

$$
\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}\right| \geq t\right] \leq e^{-\frac{t^{2}}{2 K^{2} n}}
$$

This in turn implies $\left|\sum_{i=1}^{n} X_{i}\right| \simeq K \sqrt{n}$. However, note that the bound is weak when $\sigma \ll K \sqrt{n}$.
Note that X_{i} s are also sub-gamma random variables. $\mathbb{E}\left[X_{i}^{2}\right] \leq \sigma_{i}^{2} K^{2},\left|X_{i}\right| \leq K$ implies that X_{i} is sub-gamma $\left(2 \sqrt{2} \sigma_{i} K, 4 K\right)$. Let us assume σ_{i} is such that it subsumes K in the argument. Thus, $X_{i} \in \operatorname{sub}-g a m m a\left(2 \sqrt{2} \sigma_{i}, 4 K\right)$, and $\sum_{i=1}^{n} X_{i} \in \operatorname{sub}-g a m m a(2 \sqrt{2} \sigma, 4 K)$. Using bounds for sub-gamma random variables, we can now write

$$
\mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}\right| \geq t\right] \leq 2 e^{-\min \left\{\frac{t^{2}}{16 \sigma^{2}}, \frac{t}{8 K}\right\}} .
$$

But the mean may not be 0 . We use $\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \leq \mathbb{E}\left[\sum_{i=1}^{n} X_{i}^{2}\right]^{\frac{1}{2}}=\sigma$ to write

$$
\begin{aligned}
& \mathbb{P}\left[\left|\sum_{i=1}^{n} X_{i}\right| \geq t\right] \stackrel{(a)}{\leq} 2 e^{-\min \left\{\frac{(t-\sigma)^{2}}{16 \sigma^{2}}, \frac{(t-\sigma)}{8 K}\right\}} \\
& \leq 2 e^{C-\min \left\{\frac{t^{2}}{\sigma^{2}}, \frac{t}{K}\right\}},
\end{aligned}
$$

where $C>0$ is some constant. Also, note that (a) is meaningful only if $(t-\sigma) \geq 4 \sigma \sqrt{\ln (2)}$.
Notation: $\|A\|=\sup _{\|x\| \leq 1}\|A x\|_{2}$.
Theorem 1 (Non-commutative Bernstein inequality). Extension of Bernstein-type inequalities to matrices.

Let X_{1}, \ldots, X_{m} be independent symmetric matrices with zero mean, i.e., $\mathbb{E}\left[X_{i}\right]=0 \quad \forall i \in[m]$. Also, $\left\|X_{i}\right\| \leq K \forall i \in[m]$, and $\left\|\sum_{i=1}^{n} \mathbb{E}\left[X_{i}^{2}\right]\right\| \leq \sigma^{2}$. Then, $\exists C<0$, such that

$$
\mathbb{P}\left[\left\|\sum_{i=1}^{n} X_{i}\right\| \geq t\right] \leq 2 n \cdot e^{C \min \left\{\frac{t^{2}}{\sigma^{2}}, \frac{t}{K}\right\}}
$$

We omit the proof of this theorem.
Theorem 2 (R-V theorem). Let X_{1}, \ldots, X_{m} be independent, and identically distributed vectors in \mathbb{R}^{n} such that $\left\|X_{i}\right\|_{2} \leq K(K \geq 1)$, and $\left\|\mathbb{E}\left[X_{i} X_{i}{ }^{\top}\right]\right\| \leq 1 \forall i \in[m]$. Then,

$$
\mathbb{E}\left[\left\|\frac{1}{m} \sum_{i=1}^{m} X_{i} X_{i}^{\top}-\mathbb{E}\left[X X^{\top}\right]\right\|\right] \lesssim K \sqrt{\frac{\log n}{m}}
$$

Proof. Let $Y_{i}=X_{i} X_{i}^{\top}-\mathbb{E}\left[X_{i} X_{i}^{\top}\right]$. We want to apply the non-commutative Bernstein theorem to $\sum_{i=1}^{m} Y_{i}$.
Upper bound for Y :

$$
\left\|Y_{i}\right\| \leq\left\|X_{i} X_{i}^{\top}\right\|+\left\|\mathbb{E}\left[X_{i} X_{i}^{\top}\right]\right\| \leq 2 K^{2}
$$

$\underline{\text { Upper bound for }\left\|\sum_{i=1}^{m} \mathbb{E}\left[Y_{i}^{2}\right]\right\|}$

$$
\begin{aligned}
\left\|\sum_{i=1}^{m} \mathbb{E}\left[Y_{i}^{2}\right]\right\| & \leq m\left\|\mathbb{E}\left[Y_{1}^{2}\right]\right\| \\
& =m\left\|\mathbb{E}\left[\left(X X^{\top}\right)^{2}-\mathbb{E}\left[X X^{\top}\right]^{2}\right]\right\| \\
& \leq m\left(\left\|\mathbb{E}\left[\|X\|_{2}^{2} \cdot X X^{\top}\right]\right\|+\left\|\mathbb{E}\left[X X^{\top}\right]\right\|^{2}\right) \\
& \leq 2 m K^{2}
\end{aligned}
$$

We can now apply the non-commutative Bernstein inequality.

$$
\mathbb{P}\left[\left\|\sum_{i=1}^{m} \mathbb{E}\left[Y_{i}\right]\right\| \geq m t\right] \leq 2 n \cdot e^{-C \min \left(\frac{m t^{2}}{2 K^{2}}, \frac{m t}{K^{2}}\right)}
$$

Hence, when $t \geq \frac{K^{2}}{m} \log \left(\frac{n}{\delta}\right)$, and $t \geq K \sqrt{\frac{\log \left(\frac{n}{\delta}\right)}{m}}$

$$
\mathbb{P}\left[\left\|\sum_{i=1}^{m} \mathbb{E}\left[Y_{i}\right]\right\| \geq C_{2} K \sqrt{\frac{\log \left(\frac{n}{\delta}\right)}{m}}\right] \leq \delta
$$

More on the subject can be found here [2].

3 Graph Sparsifier

Graph Sparsification problem is the following: Given a dense graph $G=\left(V, E_{G}, W_{G}\right)$, find a sparse graph $H=\left(V, E_{H}, W_{H}\right)$, which approximately preserves some properties of G. The vertex set will remain the same, but the edge set and their weights can be different. We will henceforth denote $|V|$ by n.

3.1 Cut-Sparsifier

In the first lecture we studied a randomized algorithm to compute the min-cut in a graph. Here we study a related problem of finding a cut-sparsifier, namely, a sparse graph H, that approximately preserves all the cuts in G.

For a given graph $G=(V, E, W)$, a cut $S \subseteq V$ has size:

$$
C_{G}(S)=\sum_{(u, v) \in E} W(u, v) \cdot \mathbb{I}_{\{u \in S, v \notin S\}}
$$

Definition 3 (Cut-sparsifier). H is a cut-sparsifier for G if:

$$
\forall S \subseteq V, C_{H}(S)=(1 \pm \epsilon) C_{G}(S)
$$

3.2 Spectral Sparsifier

The Spectral Sparsifier is a generalized form of cut-sparsification [1]. Let us define

$$
L_{G}=\sum_{(u, v) \in E_{G}} A_{u, v}
$$

so that,

$$
L_{G}(u, v)= \begin{cases}-W(u, v) & u \neq v \\ \sum_{t} W(u, t) & u=v\end{cases}
$$

L_{G} is called the Laplacian Matrix of the graph. Let $P_{G}(x)=x^{\top} L_{G} x$
Definition 4 (Spectral Sparsifier). A spectral sparsifier is a graph that spectrally approximates the graph Laplacian. i.e. for all vectors x, we should have

$$
P_{H}(x)=(1 \pm \epsilon) P_{G}(x)
$$

$$
\begin{gathered}
\Leftrightarrow(1-\epsilon) x^{\top} L_{G} x \leq x^{\top} L_{H} x \leq(1+\epsilon) x^{\top} L_{G} x \quad \forall x \in \mathbb{R}^{n} \\
\Leftrightarrow(1-\epsilon) L_{G} \preceq L_{H} \preceq(1+\epsilon) L_{G}
\end{gathered}
$$

Notation: \preceq is the generalized matrix inequality on symmetric matrices: two symmetric matrices A and B satisfy $A \preceq B$ iff $(B-A)$ is positive semidefinite.

Theorem 5. Spectral Sparsifier \Longrightarrow Cut-sparsifier
Proof. Will be done in next class.

References

[1] J. Batson, D. A. Spielman, N. Srivastava, and S.-H. Teng. Spectral sparsification of graphs: Theory and algorithms. Commun. ACM, 56(8):87-94, Aug. 2013.
[2] D. A. Spielman and N. Srivastava. Graph sparsification by effective resistances. In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC '08, pages 563-568, New York, NY, USA, 2008. ACM.

