$$
\begin{aligned}
& \text { CS 388R: Randomized Algorithms } \\
& \\
& \\
& \text { Lecture } 22-\text { November 21, } 2017 \\
& \text { Prof. Eric Price }
\end{aligned}
$$

1 Overview

This lecture continues our discussion on Markov chains; specifically, chains where

$$
P_{u v}= \begin{cases}\frac{1}{d(u)} & (u, v) \in E \\ 0 & \text { Otherwise }\end{cases}
$$

for all edges (u, v). That is, we cover random walks on graphs.

2 Definitions

Here we recall a few definitions from last time.

- The hitting time $h_{u, v}$ is the expected number of steps to go from vertex u to a vertex v.
- The commute time $C_{u, v}=h_{u, v}+h_{v, u}$ is the expected number of steps to return to a vertex u after hitting vertex v.
- $C_{u}(G)$ is the expected time to tour the entire graph G starting at u.
- $C(G)=\max _{u} C_{u}(G)$ is the graph's cover time.

In this lecture we are interested in proving some bounds about these properties.

3 Motivating Example: The Lollipop Graph

Figure 1: The Lollipop Graph on 14 Vertices

The lollipop graph on n vertices is a clique of $\frac{n}{2}$ vertices connected to a path of $\frac{n}{2}$ vertices. Let u be any vertex in the clique that does not neighbour a vertex in the path, and v be the vertex
at the end of the path that does not neighbour the clique. Then $h_{u, v}=\theta\left(n^{3}\right)$ while $h_{v, u}=\theta\left(n^{2}\right)$. This is because it takes $\theta(n)$ time to go from one vertex in the clique to another, and $\theta\left(n^{2}\right)$ time to successfully proceed up the path, but when travelling from u to v the walk will fall back into the clique $\theta(1)$ times as often as it makes it a step along the path to the right, adding an extra factor of n to the hitting time.

We now wish to prove this formally.

4 Electrical Resistance and Commute Time of a Graph

View graph G as an electrical network with unit resistors as edges. Let $R_{u, v}$ be the effective resistance between vertices u and v. Then the commute time between u and v in a graph is related to $R_{u, v}$ by

$$
C_{u, v}=2 m R_{u, v}
$$

We get the following inequalities assuming this relation.
If $(u, v) \in E$,

$$
R_{u, v} \leq 1 \therefore C_{u, v} \leq 2 m
$$

In general, $\forall u, v \in V$,

$$
R_{u, v} \leq n-1 \therefore C_{u, v} \leq 2 m(n-1)<n^{3}
$$

Here is the high level idea behind the proof: We inject $d(v)$ amperes of current into all vertices $v \in V$. Now fix some vertex $u \in V$ and remove $2 m$ current from u leaving net $d(u)-2 m$ current at u. Now we get voltages $x_{v} \forall v \in V$. We will show that $x_{v}-x_{u}=h_{v, u} \forall v \neq u \in V$ which will give us a relation between commute time and resistance.

4.1 Lollipop Graph

Let us revisit the lollipop graph with the electrical network view and compute $h_{u, v}$ and $h_{v, u}$ with u and v as before. To compute $h_{u, v}$. Let u^{\prime} be the vertex common to the clique and the path. Clearly, the path has resistance $\theta(n) . \theta(n)$ current is injected in the path and $\theta\left(n^{2}\right)$ current is injected in the clique.

Consider draining current from v. The current in the path is $\theta\left(n^{2}\right)$ as $2 m-1=\theta\left(n^{2}\right)$ current is drained from v which enters v through the path implying $x_{u}^{\prime}-x_{v}=\theta\left(n^{3}\right)$ using Ohm's law $(V=I R)$. Now consider draining current from u instead. The current in the path is now $\theta(n)$ implying $x_{v}-x_{u}^{\prime}=\theta\left(n^{2}\right)$ by the same argument.

Since the effective resistance between any edge in the clique is less than 1 and $\theta\left(n^{2}\right)$ current is injected, there can be only $\theta\left(n^{2}\right)$ voltage gap between any 2 vertices in the clique. We get $h_{u, v}=x_{u}-x_{v}=\theta\left(n^{3}\right)$ in the former case and $h_{v, u}=x_{v}-x_{u}=\theta\left(n^{2}\right)$ in the latter.

4.2 Proof of Relation

Recall that the Laplacian of G is defined by:

$$
L_{u v}= \begin{cases}d(u) & v=u \\ -1 & v \neq u\end{cases}
$$

and the degree matrix D is:

$$
D_{u v}= \begin{cases}d(u) & v=u \\ 0 & v \neq u\end{cases}
$$

Consider adding $d(v)$ amps of current to every vertex v, and then removing $2 m \mathrm{amps}$ from a vertex u. Let x be the voltage vector for the resulting graph. Then we have

$$
\begin{gather*}
L x=i_{u}=D-2 m \mathbb{1}_{u} \\
\forall v \in V, \sum_{(u, v) \in E} x_{v}-x_{u}=d(v) \tag{1}
\end{gather*}
$$

Define $h_{v, u}=0$ when $v=u$. We can then write

$$
h_{v, u}=1+\sum_{(v, w) \in E} \frac{1}{d(v)} h_{w, u}
$$

because we take one step in our random walk out of v to another vertex $h_{w, u}$ with probability $\frac{1}{d(v)}$ and then have $h_{w, u}$ expected time to reach u. Multiplying through by $d(v)$, we get:

$$
\begin{equation*}
d(v)=\sum_{(v, w) \in E} h_{v, u}-h_{w, u} \tag{2}
\end{equation*}
$$

Equations 1 and 2 are linear systems with unique solutions and are identical under $x_{v}-x_{u}=h_{v, u}$ (up to same additive shift to each entry). $x_{v}=h_{v, u}$ if $x_{u}=0$.

We have shown that for $i_{u}=D-2 m \mathbb{1}_{u}$ with $x=L^{+} i_{u}$ that $x_{v}-x_{u}=h_{v, u}$. For u^{\prime}, we have $x^{\prime}=L^{+} i_{u^{\prime}}$. Now, we have,

$$
x-x^{\prime}=L^{+}\left(i_{u}-i_{u^{\prime}}\right)=2 m L^{+}\left(e_{u^{\prime}}-e_{u}\right)
$$

where e_{v} is 1 at the entry corresponding to v and 0 elsewhere. The above is equivalent to $2 m$ times voltage obtained if you inject 1 ampere at u^{\prime} and remove 1 ampere from u. Using Kirchoff's law and our previously proven equality that $x_{v}-x_{u}=h_{v, u}$ we get

$$
\begin{aligned}
2 m R_{u, u^{\prime}} & =\left(x-x^{\prime}\right)_{u^{\prime}}-\left(x-x^{\prime}\right)_{u} \\
& =\left(x_{u^{\prime}}-x_{u}\right)-\left(x_{u}^{\prime}-x_{u^{\prime}}^{\prime}\right) \\
& =h_{u^{\prime}, u}+h_{u, u^{\prime}}=C_{u, u^{\prime}}
\end{aligned}
$$

5 Cover Time of a Graph

We define $C_{u}(G)$ as the expected time for a random walk starting at u to visit all vertices in a graph. $C(G)$ is the maximum of $C_{u}(G)$ over all $u \in V$.

5.1 Bound for $C(G)$

We have $\forall u \in V$,

$$
C_{u}(G) \leq 2 m(n-1)
$$

Consider the spanning tree T of graph G. The cover time is bounded by traversing the edges of the tree in both directions (as we could just do a DFS on the spanning tree), and hitting time gives the expected time of moving along an edge, we get

$$
\begin{aligned}
C_{u}(G) & \leq \sum_{(u, v) \in E(T)} h_{u, v}+h_{v, u} \\
& =\sum_{(u, v) \in E(T)} C_{u, v} \\
& \leq(n-1) \max _{u} C_{u, v} \\
& \leq 2 m(n-1)
\end{aligned}
$$

This above inequality is tight for lollipop $\left(\theta\left(n^{3}\right)\right)$ but not for cliques which has $O(n \log n)$ as we can model it as a coupon collector problem.

5.2 Using resistance for a better bound

Let $R_{\text {max }}=\max _{u, v \in V} R_{u, v}^{e f f}$. Then:

$$
m R_{\max } \leq C(G) \lesssim m R_{\max } \log n
$$

Let (u, v) have $R_{u, v}^{e f f}=R_{\text {max }}$

$$
C(G) \geq \max \left(h_{u v}, h_{v u}\right) \geq \frac{h_{u v}+h_{v u}}{2}=\frac{C_{u v}}{2}=M \cdot R_{u v}^{e f f}=M \cdot R_{\max }
$$

5.3 Expected time from node u to any node v

$$
h_{u v} \leq C_{u v}=2 M \cdot R_{u v}^{e f f} \leq 2 M \cdot R_{\max }
$$

So after $8 M \cdot R_{\text {max }}$ steps, you will be reached $v w \cdot p .3 / 4$
Let's repeat the process $\log (n)$ times,

$$
\begin{aligned}
& \operatorname{Pr}(\text { never reach } v) \leq\left(\frac{1}{4}\right)^{\log (n)}=\frac{1}{n^{2}} \\
& \operatorname{Pr}(\text { any vnotreached }) \leq \frac{1}{n^{2}} \cdot n=\frac{1}{n}
\end{aligned}
$$

$$
\begin{aligned}
E[T] & \leq \operatorname{Pr}(T \leq B) \cdot B+\operatorname{Pr}(T \geq B) \cdot E[T \mid T \geq B] \\
& \leq 8 M \cdot R_{\max } \log (n)+\frac{1}{n^{2}} \cdot\left(2 M n+M R_{\max } \log (n)\right) \\
& =\Theta\left(M R_{\max } \log (n)\right)
\end{aligned}
$$

References

[MR] Rajeev Motwani, Prabhakar Raghavan Randomized Algorithms. Cambridge University Press, 0-521-47465-5, 1995.

