
CS 388R: Randomized Algorithms Fall 2017

Lecture 4 — 09/12, 2017

Prof. Eric Price Scribe: Daniel Liang and Ridwan Syed

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Rolling Dice

Here’s a fun problem. Suppose you roll a fair 6 sided die over and over until you roll a 6. What is
the expected number of rolls before you roll a 6? This can be computed in a straightforward way:

E [# of rolls] =

∞∑
i=1

1

6

5

6

i−1

=
1

6
(1 +

5

6
+

5

6

2

+ . . . =
1

1− 5
6

= 6)

+
1

6
(
5

6
+

5

6

2

+ . . . = 6
5

6
)

+
1

6
(
5

6

2

+ . . . = 6
5

6

2

)

...

= 6

So the expected number of rolls is 6. Here’s an alternative way to get this answer. Notice that the
die has no memory of previous rolls. In particular, after any number of rolls which are not 6, the
expected number of additional rolls before seeing a 6 is equal to the expected total number of rolls
before seeing a 6. Thus we have

E [# of rolls] =
1

6
+

5

6
(1 + E [# of rolls])⇒ E [# of rolls] = 6

Here’s an even more fun problem. What is the expected number of rolls before seeing a six condi-
tioned on only rolling even numbers? You might think that the answer is 3. However the answer
is actually 3/2.

For a moment consider a different experiment. You roll the die over and over until you see a number
other than 2 or 4. By an argument similar to the first problem, the expected number of rolls in
this experiment is 3/2. Notice that the expected number of rolls conditioned on the final roll being
x (for any x ∈ {1, 3, 5, 6}) is still 3/2. Conditioned on the final roll being 6 gives us the random
variable we care about. Thus the expected number of rolls before seeing a 6 conditioned on only
seeing even numbers is 3/2.

1



2 Von Neumann Minimax Principle

Suppose Alice and Bob are playing a 2 player game. Alice and Bob each have a finite set of (pure)
strategies. Alice plays a strategy i ∈ [n] and Bob plays a strategy j ∈ [m]. Each strategy pair (i, j)
has an associated payoff ai,j ∈ R. That is, if Alice plays i and Bob plays j, the payoff of the game
is ai,j . We’ll think of Alice trying to maximize the payoff and Bob trying to minimize the payoff.
We’ll allow the players to select their strategies probabilistically. Alice plays according to (mixed)
strategy p ∈ (R+)n with ‖p‖1 = 1 such that Pr[Alice plays i] = pi. Define q ∈ (R+)m analogously.
Define the game’s payoff matrix A ∈ Rn×m by A(i, j) = ai,j . If we assume Alice and Bob sample
from their strategies independently, we can compute the expected payoff by

E[Payoff] = Ei∈[n]; j∈[m][ai,j ] =
∑

i∈[n]; j∈[m]

piqjai,j =
∑
i∈[n]

pi · (
∑
j∈[m]

ai,jqj) = pTAq

Suppose Bob publishes his strategy q, and Alice is allowed to choose her strategy p knowing q. We
can then write the expected payoff as the following optimization problem:

Vp = max
p

min
q
pTAq

Analogously, suppose Bob can select his strategy q knowing Alice’s choice of p. Then we can
similarly write the expected payoff as the following optimization problem:

Vq = min
q

max
p
pTAq

How are Vp and Vq related? It would seem that the player who selects their strategy after their oppo-
nent is in a better position to maximize (or minimize) the expected payoff. Somewhat surprisingly
this is not the case!

Theorem 1 (Von Neumann Minimax). Suppose Alice and Bob play a game with payoff matrix A.
Let Alice’s (mixed) strategy be p and Bob’s (mixed) strategy be q. Then

max
p

min
q
pTAq = min

p
max
q
pTAq

Thus Vp = Vq!
1. In fact, we can say a bit more. Without loss of generality, the inner minimum in

Vp can be taken over pure strategies j ∈ [m]. In other words we can assume that the first player
plays deterministically! For any p, q we have

pTAq =
∑
i,j

piqjai,j

=
∑
j∈[m]

qi(
∑
i∈[n]

ai,jpi)

=
∑
i∈[m]

qjEi∼p[ai,j ]

≥ min
j∈[m]

Ei∼p[ai,j ]

= min
j∈[m]

pTAej

1The proof of this version of the theorem follows from the Strong Linear Programming Duality Theorem. Though
not difficult, it is beyond the scope of this class. For a proof see [AMS99]

2



By the above for a fixed p we have

min
q
pTAq ≥ min

i∈j
pTAej

Since Bob can always select q to be a point distribution this inequality is tight. Thus we have

max
p

min
q
pTAq = max

p
min
j∈[m]

pTAej

By a similar argument, we Vq does not change if Alice is restricted to play deterministically. Thus
we have

max
p

min
j∈[m]

pTAej = min
q

max
i∈[n]

(ei)
TAq (1)

3 Yao’s Principle

Suppose we are interested in the performance of some algorithm randomized algorithm A for solving
a problem P 2. It is often convenient to view A as a distribution on deterministic algorithm. In
particular, for any choice of random seed s that may be fed in to A, we can think of a deterministic
algorithm As which runs A with s hard-coded in as an ’advice-string’. Similarly, we can think of
a distribution on deterministic algorithms as a randomized algorithm A. We want to understand
the cost (e.g. runtime, number of queries, etc...) of any such randomized A on a worst-case input
I. As we outline below, the game-theoretic setup of the previous section gives a convenient way to
analyze this.

Alice and Bob play the following two player game. Alice plays an instance I of P as a (pure)
strategy, while Bob plays a deterministic algorithm B as a (pure) strategy. Assume as well that
any such B is correct on all inputs. We’ll let the cost incurred by B on instance I, c(I,B) be the
payoff function. As before, Alice tries to maximize the payoff, while Bob tries to minimize the
payoff. As for mixed strategies, Alice chooses from a finite set of instances according to her choice
of distribution I and Bob chooses from a finite set of algorithms according his choice of distribution
A. Applying Theorem 1, we have

max
I

min
A

EI∼I; B∼A[c(I,B)] = min
A

max
I

EI∼I; B∼A[c(I,B)]

By (1) we can re-write the above as

max
I

min
B

EI∼I [c(I,B)] = min
A

max
I

EB∼A[c(I,B)]

We immediately obtain the following.

Theorem 2 (Yao’s Principle). For any distribution I on inputs I and distribution A on determin-
istic algorithms B which don’t make errors,

min
B

EI∼I [c(I,B)] ≤ max
I

EB∼A[c(I,B)]

Yao’s principle asserts that the expected runtime of a randomized algorithm on the worst case
input is at least the expected runtime of the best deterministic algorithm for any distribution on
inputs. As we will see Yao’s principle is a useful tool for proving lower bounds on the expected run
time for Las Vegas algorithms.

2We’ll think of P being a problem whose input size is fixed. For example P could be evaluating a game tree of a
fixed height.

3



4 Game Tree Lower Bounds

Recall from the last class that we wanted to prove there are instances for which any Las Vegas
algorithm must query at least n0.693 leaves in expectation to evaluate a NAND tree with n leaves.
If we want to apply Yao’s principle, we should first come up with a suitable hard distribution. Let’s
try to make each node be 1 with probability ρ independently. In particular we want a solution to
the equation (1−ρ) = ρ2, since a node is 0 if both its children are 1. It is easy to check that we can

take ρ =
√
5−1
2 . Let I be the distribution on inputs for which each leaf is set to 1 independently

with probability ρ. A reasonable deterministic algorithm would be to depth first search the tree,
and discard all the leaves descending from a node whose value has already been determined. In
particular, for any node u whose value the algorithm tries to determine, it first recursively evaluates
one of it’s children. If that child is 0, it discards the remaining leaves descending from that child. It
then determines that u’s value is 1, and ignores the second child. Otherwise it evaluates the second
child. Such an algorithm is called depth first search with pruning. As it turns out this algorithm
is optimal for our distribution I [Santha95]. We record (but do not prove) this as a lemma.

Lemma 3. Let I be the distribution over NAND trees of height h for which each leaf is set to 1

independently with probability ρ =
√
5−1
2 . Let T (h) be expected number of leaves queried by a depth

first search with pruning algorithm on trees I ∼ I. Then, T (h) is the optimal expected number of
leaves queried by any zero error randomized algorithm evaluating trees I ∼ I.

Now, we can calculate T (h). Clearly T (1) = (1 − ρ) · 1 + ρ · 2 = 1 + ρ. Similarly, T (h) =
(1− ρ) · T (h− 1) + ρ · (2 · T (h− 1)) = (1 + ρ)T (h− 1).

T (h) = (1 + ρ)h

= (1 + ρ)log2 n

= 2log2(1+ρ)·log2 n

= nlog2(1+ρ)

≥ n0.693

Thus, applying Lemma 3 along with Yao’s Principle, we see that there are instances for which any
Las Vegas algorithm must query at least n0.693 leaves in expectation to evaluate a NAND tree with
n leaves.

References

[AMS99] Noga Alon, Yossi Matias, Mario Szegedy. The Space Complexity of Approximating the
Frequency Moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.

[Santha95] Miklos Santha. On the Monte Carlo decision tree complexity of read-once formulae
Random Structures and Algorithms, 6:1, 75-87, 1995.

4


