
CS 388R: Randomized Algorithms Fall 2017

Lecture 5 — 09/14/2017

Prof. Eric Price Scribe: Satyanarayana, Ajil Jalal

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In this lecture we study the Coupon Collector problem and calculate expected and high probability
estimates for the problem. We also study the famous Balls in Bins problem and negative dependence
among random variables.

2 Coupon Collector’s Problem

Suppose you go to a coupon shop which has coupons of n different colors. When you buy a coupon,
the shopkeeper picks a color (coupon) uniformly at random and sells it. Your goal is to keep on
buying coupons until you collect all the n varieties of coupons.

(a) Let T be the random variable describing the total number of coupons you buy to collect all
the n colors (coupons). What is E[T ]?

(b) How well does T concentrate about E[T ]?

Solution (a) Let Zi be the random variable describing the number of coupons you need to buy
to collect a new color after collecting (i− 1) colors.

So, T =
n∑
i=1

Zi and hence E[T ] =
n∑
i=1

E[Zi].

After collecting i − 1 colors, the probability that the shopkeeper picks a new color for the next
coupon is n−i+1

n . Let this be pi.

We know that, Pr(Zi = k) = (1− pi)k−1pi

E[Zi] =
∞∑
k=1

k(1− pi)k−1pi
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Let S =
∞∑
k=1

k(1− pi)k−1.

S = 1.(1− pi)0 + 2.(1− pi)1 + 3.(1− pi)2 + 4.(1− pi)3 + . . .

(1− pi)S = 0 + 1.(1− pi)1 + 2.(1− pi)2 + 3.(1− pi)3 + . . .

On subtracting them, pi.S = (1− pi)0 + (1− pi)1 + (1− pi)2 + (1− pi)4 + . . .

pi.S =
1

pi

S =
1

p2
i

Hence, E[Zi] = pi.S = 1
pi

= n
n−i+1 .

E[T ] =
n∑
i=1

E[Zi] =
n∑
i=1

n
n−i+1 =

n∑
j=1

n
j = nHn ≤ n(lnn+ 1)

Solution (b) By Markov’s inequality, we know that

Pr(T ≥ n2) ≤ E[T ]

n2

≤ lnn+ 1

n

Hence, for large values of n, T does not exceed n2 with high probability. Now, let’s try to get a
better bound with chebysev’s inequality Pr(|T −E[T ]| > t) ≤ V ar(T )

t2
, where V ar(T ) is the variance

of T .

V ar(T ) = V ar(

n∑
i=1

Zi)

=

n∑
i=1

V ar(Zi)

=

n∑
i=1

1− pi
p2
i

=

n∑
i=1

n
i− 1

(n− i+ 1)2

= n

n∑
i=1

n− i
i2

≤
n∑
i=1

n2

i2

≤ n2.
π2

6
= Θ(n2)

Hence, Pr(|T − E[T ]| > t) ≤ Θ(n
2

t2
). So, T lies between n.Hn − O(n) and n.Hn + O(n) with high

probability.
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Note: To get the tightest bound possible, use the fact that each Zi is a sub-exponential ran-
dom variable, and hence T is a sub-gamma variable. This gives O(n log n) − O(n log 1

δ ) ≤ T ≤
O(n log n) +O(n log 1

δ ) with probability 1− δ.

3 Balls and Bins

Given n balls thrown uniformly and independently at random into n bins. Let Xi be the random
variable denoting the number of balls that land in bin i.

(a) Find E[Xi].

(b) Find a good Upper bound on E[max
i
Xi].

(c) Find a good Lower bound on E[max
i
Xi].

(d) Find the expected number of empty bins and concetration bounds for it.

Solution (a) Let Xij be the indicator random variable denoting whether ball j falls into bin i.

So, Xi =
n∑
j=1

Xij . We know that, E[Xij ] = 1
n . Hence E[Xi] =

n∑
j=1

E[Xij ] = 1

Solution (b) Let Y = max
i
Xi. In order to compute E[Y ], we use the following result.

E[Y ] =
∑
k

Pr(Y ≥ k)

Hence it suffices to compute Pr(max
i
Xi ≥ k) ∀k.

We know that,

Pr(Xi = k) =

(
n

k

)
(
1

n
)k.(1− 1

n
)n−k

By Sterling’s approximation which states that (nk )k ≤
(
n
k

)
≤ ( enk )k,

Pr(Xi = k) ≤ (
en

k
)k.(

1

n
)k.1

= (
e

k
)k

(1)

and since (1− 1
n)n−k ≥ 1

e ,

Pr(Xi = k) ≥ (
n

k
)k.(

1

n
)k.(1− 1

n
)n−k

≥ (
n

k
)k.(

1

n
)k.(

1

e
)

=
1

e.kk

(2)
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Now let’s compute Pr(max
i
Xi ≥ k), which is equal to the probability that any of the Xi’s exceed

k. This can be calculated using union bound as follows.

Pr(max
i
Xi ≥ k) = Pr(

n⋃
i=1

Xi ≥ k)

≤
n∑
i=1

Pr(Xi ≥ k) Using union bound

= n.Pr(Xi ≥ k) for any i

≤ n.
∑
k′≥k

Pr(Xi = k′)

≤ n.
∑
k′≥k

( e
k′
)k′

From Equation 1

≤ n.
∑
k′≥k

( e
k

)k′
≤ n.

( ek )k

1− e
k

(
As

∑
k′≥k

pk
′ ≤

∞∑
k′=k

pk
′

=
pk

1− p

)
≤ 2n.(

e

k
)k for k ≥ 6

(3)

As stated above,

E[max
i
Xi] =

n∑
k=1

Pr(max
i
Xi ≥ k)

≤
n∑
k=1

min(1, 2n
( e
k

)k
) From Inequality 3

Let k∗ be the minimum value of k such that 2n
(
e
k

)
< 1. Then,

E[max
i
Xi] ≤

n∑
k=1

min(1, 2n
( e
k

)k
) From Inequality 3

≤ (k∗ − 1) +

n∑
k=k∗

2n
( e
k

)k
≤ (k∗ − 1) + 2

(
2n
( e
k∗
)k∗)

≤ k∗ − 1 + 2

≤ k∗ + 1

Now let’s compute the value of k∗.

2n(
e

k∗
)k∗ < 1 =⇒ (

e

k∗
)k∗ <

1

2n
=⇒ k∗ log(

k∗

e
) < log 2n

It’s easy to see that k∗ = Θ
(

logn
log logn

)
satisifies the above inequality. Hence, E[max

i
Xi] ≤ Θ

(
logn

log logn

)
.
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Solution (c) Using Stirling’s approximation, a lower bound on P(Xi ≥ k) is,

P(Xi ≥ k) ≥
(n
k

)k 1

nk

(
1− 1

n

)n−k
,

≥
(

1

k

)k
e−1.

For k = logn
3 log logn , this gives P(Xi ≥ k) ≥ 1

en1/3 .

The variables Xi, i ∈ [n] are negatively associated (formally defined in the next section). One
implication of negative association among random variables is:

P(Xi ≥ k | X1 < k, · · · , Xi−1 < k) ≥ P(Xi ≥ k) ∀ i ∈ [n]

Hence the probability that all Xi are less than k is given by,

P(∩ni=1Xi < k) =P(X1 < k)P(X2 < k|X1 < k) · · ·P(Xn < k|X1 < k,X2 < k, · · · , Xn−1 < k),

≤
(

1− 1

en1/3

)n
= e−Ω(n2/3) .

From part (b) and (c), we conclude that with high probability, the maximum number of balls in a
bin is within a constant factor of the expected maximum number of balls.

3.1 Number of Empty Bins

An extension to the above problem is to ask how many bins are empty in expectation, and how
well they concentrate around the expectation.

Let Zi = 1Xi=0 indicate the event that bin i is empty, and Z =
∑n

i=1 Zi denote the number of
empty bins. In this case,

P [Zi = 1] =

(
1− 1

n

)n
≤ 1

e
⇒ E [Z] ≤ n

e
.

If Xi are independent variables, then Zi would also be independent Bernoulli variables, and we could
apply a Chernoff bound to obtain a high probability estimate of Z. However, negative association
of {Zi}ni=1 allows for application of Chernoff-Hoeffding bounds on Z, which takes the form,

P [|Z − EZ| ≥ t] ≤ 2e−2t2/n.

Hence Z ∈
[
EZ −O

(√
n log 2

δ

)
,EZ +O

(√
n log 2

δ

)]
with probability 1− δ.

4 Negatively Associated Random Variables

All material for this section can be found in [DD96].

Let X := (X1, X2, · · · , Xn) be a vector of random variables.
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Definition 1. The random variables X = {X1, X2, . . . , Xn} are negatively associated, if for every
two disjoint index sets, I, J ⊆ [n],

E [f(XI)g(XJ)] ≤ E [f(XI)]E [g(XJ)] ,

for all non-decreasing functions f and g.

Negative association implies the following properties:

1. Negative correlation: E
[∏

i∈I xi
]
≤
∏
i∈I E [xi].

Proof : Let XI = (Xi1 , Xi2 , · · · , Xik) Choose f(XI\ik) =
∏
i∈I,i 6=ik xi and g(Xik) = xik . This

gives E
[∏

i∈I xi
]
≤ E

[∏
i∈I,i 6=ik xi

]
E [xik ]. Apply induction over all k variables.

2. Negative orthants: P [Xi ≥ ti∀i ∈ I] ≤
∏
i∈I P [Xi ≥ ti].

Proof : Similar to negative correlation, choose f, g to be indicator functions and apply induc-
tion.

3. Chernoff-Hoeffding Bounds: E
[
eλ

∑
i xi
]
≤
∏
i E
[
eλxi

]
. (Equality holds if all variables are

independent)

Proof : Similar to negative correlation, choose f(XI\ik) =
∏
i∈I,i 6=ik e

λxi , g(Xik) = eλxik and
apply induction.

4. If X and Y are negatively associated individually, and X,Y are independent, then (X,Y) is
jointly negatively associated.

5. For disjoint index sets Ij ⊆ [n], let Yj = fj(XIj ), where fj are all non-decreasing functions.
Then {Yj} are negatively associated.

4.1 Negative Association in Balls and Bins

Lemma 2. Zero-One Lemma: If X1, X2, · · · , Xn ∈ {0, 1} and
∑n

i=1Xi = 1, then X1, X2, · · · , Xn

are negatively associated.

Proof. Without loss of generality, assume f(
−→
0 ) = 0, g(

−→
0 ) = 0 (if this is not true, you can add

appropriate constants). For disjoint index sets I, J ⊆ [n], either f(XI) = 0 or g(XJ) = 0, since the
index corresponding to the non zero value cannot be in I and J simultaneously. Hence,

E [f(XI)g(XJ)] =0, E [f(XI)] ≥ 0, E [g(XJ)] ≥ 0,

⇒ E [f(XI)g(XJ)] ≤E [f(XI)]E [g(XJ)] .

For the balls and bins problem, let Yij := 1 if ball i lands in bin j, and Yij = 0 otherwise. By the
Zero-One lemma, {Yij}nj=1 are negatively associated. Property (4) from the previous subsection

implies that {Yij}i=n,j=ni=1,j=1 are negatively associated.

Since Xj =
∑n

i=1 Yij , property (5) from the previous subsection implies that {Xj}nj=1 are nega-
tively associated. This also implies that the indicator random variables Zj = 1Xj=0 are negatively
associated.
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