
CS 388R: Randomized Algorithms Fall 2017

Lecture 7 — 09/21/, 2017

Prof. Eric Price Scribe: Isidoros Tziotis, Nathan Guermond

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Overview

In the last lecture we covered how to throw balls into bins with two choices.

In this lecture we begin by the problem of approximating the mean of an unknown distribution by
sampling, and then we turn our attention towards Hash Tables and specifically Cuckoo Hashing
and some of its properties. Cuckoo Hashing takes constant time for lookup and delete in the worst
case and constant expected time for insertion. On the other hand it requires linear space.

2 Approximating the mean

Consider the following problem– we have an unknown distribution D over R with an unknown
mean µ and variance σ2. The goal is determine an approximation µ̂ for µ by sampling, so that

P[|µ̂− µ| ≤ εσ] ≥ 1− δ

for an appropriately chosen δ.

Say we have independent random samples X1, . . . , Xn ∼ D. A simple solution would be to take
the average µ̂ = Z = 1

n

∑n
i=1Xi. Now, how can we bound µ̂ from the average µ? Chebyshev’s

inequality gives us the bound

P[|Z − µ| ≤ t] ≤
σ2Z
t2

=
σ2

nt2
,

where σ2Z is the variance for Z, and σ2 is the variance of each variable Xi.

Set t = εσ, and the above bound gives us

P[|Z − µ| ≤ εσ] ≤ 1

nε2
= δ,

so we should choose n = 1
ε2δ

. Can we do better than this (ie. is this bound tight)?

Let’s first see what happens with the Gaussian distribution Z ∼ N (µ, σ2/n), then one can show
that

P[|Z − µ| ≥ tσ√
n

] ≤ 2e−t
2/2,

so setting ε = t√
n

, we would need to choose n ≥ 2
ε2

log δ
2 .

1

To answer whether this is tight, let us first consider examples for which Markov’s inequality is
tight. Consider the distribution in which 0 is chosen with probability 1 − p and k is chosen with
probability p. Then for a random variable X, µ = kp and Markov tells us

p = P[X ≥ k] ≤ µ

k
= p,

which is tight. We can do the same with Chebyshev’s inequality. Consider the distribution in which
α = 1√

pσ and −α are each chosen with probability p/2, and 0 is chosen with probability 1 − p.
Then for a random variable X, the variance is σ2 and Chebyshev tells us

p = P[|X| ≥ 1
√
p
σ] ≤ σ2

α2
= p.

Now, for some chosen δ, n suppose we have the average Z = 1
n

∑n
i=1Xi where each Xi is distributed

according to the preceding distribution with p = 2δ
n . Notice that

P[|Z| ≥ 1

n
√
p
σ] ≥ P[∃!i s.t. Xi 6= 0] = np(1− p)n−1 = 2δ(1− 2δ

n
)n ≈ 2δe−2δ > δ.

Now, in order for
P[Z ≥ εσ] > 2δ

to be less than or equal to δ, we need we need ε ≥ 1
n
√
pσ = σ√

2δn
, and thus n ≥ 2

ε2δ
. This shows

that our original bound is tight.

We will now see what happens if instead of taking the average, we take the median of the Xi. Note
here that there is no ε dependence, ie. since all the Xi take values in ±1, Z will also take values in
±1. We now want to bound the probability that |Z − µ| ≥ 2σ. Note that since |Z − µ| = 1 = σ,
then for the median to not be in ±2σ we need n/2 of the samples to be above or below ±2σ.

Now notice that
P[Any |Xi| ≤ 2σ] ≥ 3/4,

so for Yi the indicator function of whether |Xi| ≤ 2σ we have

P[At most
n

2
of the |Xi| ≤ 2σ] ≤ P[

n∑
i=1

Yi ≤ n/2]

≤ P[

n∑
i=1

Yi ≤ E[2Yi]−
n

4
]

≤ 2−n/8 ≤ δ,

so we would need to choose n ≥ 8 log 1
δ .

Now, if we put it all together and combine the two methods and pick independent samples

X11 X12 . . . X1n

X21 X22 . . . X2n
...

...
. . .

...
Xm1 Xm2 . . . Xmn,

2

then we estimate µ by taking µ̂i = meanj∈[m]Xij , and µ̂ = mediani∈[m]µ̂i. First, notice that using
Chebyshev,

P[µ̂i − µ| ≤ εσ] ≥ 1− 1

nε2
≥ 1− δ1,

where we must choose n ≥ 1
δ1ε2

, and we will see later that it suffices to have δ1 = 1
4 .

We now consider the median of the µ̂i’s. Let the random variable Zi = 1 if |µ̂i − µ| ≤ εσ and 0
otherwise, then

P[|mediani∈[m]µ̂i − µ| ≤ εσ] ≥ P[

m∑
i=1

Zi > m/2]

= 1− P[

m∑
i=1

Zi ≤ m(1− δ1)−m(
1

2
− δ1)]

≥ 1− P[

m∑
i=1

Zi ≤ E[

m∑
i=1

Zi]−m(
1

2
− δ1)]

≥ 1− exp(−2(m(
1

2
− δ1))2/m)

≥ 1− δ2

where we would need m ≥ 1
2(1/2−δ1)2 log 1

δ2
, so if we choose δ1 = 1

4 , then we only need m ≥ 8 log 1
δ2

.

3 Cuckoo Hashing

• As we saw in previous lectures if we create a Hash Table and use random placement we get
a worst case lookup time O(logn

log logn).

• If instead we use the Power of Two Choices we get O(log log n) which is much better.

• Aiming however for constant lookup time we turn our attention to Cuckoo Hashing.

In Cuckoo Hashing every cell of the hash table is considered a vertex and every element is mapped
(from 2 different hash functions) to 2 vertices thus considered a (directed) edge.

n vertices (bins)

m edges (balls)

Each element can occupy either end of the edge. If an element is mapped to 2 already occu-
pied hash cells then we randomly evict one of them and repeat the same process until an open cell
is found.

But things can go sour for our algorithm if a barbell appears in the graph.

3

Figure 1: Our algorithm fails if a barbell occurs in the graph.

In order to upper bound the probability our algorithm fails it suffices to compute the probability
that any cycle appears in the graph.

Note: The analysis will borrow elements from Erdos Renyi G(n, p) graphs and Galton-
Wachon processes.

So what is the chance a cycle exists?

P[any cycle exists] ≤
n∑
i=2

[any length i cycle exists]

Without loss we can focus on undirected cycles and given that we have
(
n
i

)
different cycles of length

i we proceed:

≤
n∑
i=2

ni P[specific cycle of length i exists] ≤
n∑
i=2

ni P[any particular set of i edges exists]

Focusing on the probability that any particular set of i edges exists we notice that there are
(
m
i

)
possible edge assignments and each one of them is taking place with probability

(
n
2

)−i
thus

n∑
i=2

ni P[any particular set of i edges exists] ≤
n∑
i=2

nimi

(
n

2

)−i
≤

n∑
i=2

O((
m

n
)i)

If we have that m < cn for a sufficiently small c then

n∑
i=2

O((
m

n
)i) = O((

m

n
)2) <

1

10000

Thus for sufficiently small m,

P[Cuckoo Hashing fails] <
1

10000

If a cycle is encountered then we create new hash functions and rebuild the table. Obviously the
expected times of rebuilding the table is O(1).

E[time to build] =

m∑
i=1

E[time to insert the ith element]

≤ mE[the size of the component of any element]

≤ 2mE[size of component of any vertex]

4

Finally in order to prove that the expected size of the component of any vertex is constant we will
use the analysis from Erdos Renyi G(n, p) and Galton-Watson processes.

We pick arbitrarily any node u as the root. u has n− 1 potential children-neigbors and each one of
them has probability m

(
n
2

)−i
. Thus the expected number of u’s neighbors is at most 2m/n << 1.

Similarly any child v has itself n− 1− j ≤ n− 1 potential children (where j are the nodes that are

already in the same component as u) and each of them has probabilty at most m
(
n
2

)−i
.

From Galton-Watson process analysis it follows that the expected size of the component of u is
O(1).

f(n, p) = E[size of component]

≤ 1 + p(n− 1)f(n− 1, p)

≤ 1 + np+ np2 +

≤ 1

1− np

which is obviously constant for p = m/
(
n
2

)
.

References

[1] P. Erdos and A. Renyi. On random graphs, i. Publicationes Mathematicae (Debrecen) 6:290-
297, 1959.

[2] P. Erdos and A. Renyi. On the evolution of random graphs. Akad. Kiado, 1960.

[3] H. KESTEN, P. NEY, and F. SPITZER Galton-Watson processes with mean one and finite
variance Theor. Probability Appl., Vol. 13, pp. 513-540, 1966.

5

