
CS 388R: Randomized Algorithms Fall 2017

Lecture 8 — September 26, 2017

Prof. Eric Price Scribe: Sushrut Karmalkar & Ziyang Tang

NOTE: THESE NOTES HAVE NOT BEEN EDITED OR CHECKED FOR CORRECTNESS

1 Perfect Hashing

1.1 Overview

In the previous lecture, we analyzed Cuckoo Hashing, which still has a very low chance of collision.
Also, Cuckoo Hashing requires fully randomize functions. Today we will try to find a perfect
hashing scheme with no collisions, and which only requires pairwise randomized.

1.2 Goal

Definition 1. A hash function h is perfect for S ∈ [U] if it has no collisions, i.e. h(x) 6= h(y) for
all x 6= y and x, y ∈ S.

Goal: For a given set S of size k, find a perfect hash function h : [U] → [m], we want m as small
as possible.

1.3 Intuition and Easy solutions

• Identity function: h(x) = x, but with m = U .

• Giant lookup table via hash table, actually depends on which hash table you pick.

• Pairwise independent hash function with m = O(k), but not perfect with O(log k
log log k) worst

case lookup.

Now we still use a pairwise independent hash function h but with more space than O(k), we want
to find an upper bound for m such that no collisions will occur.

Lemma 2. With probability more than 1
2 we can find a perfect random pairwise independent hash

function h with m = k2 for S.

Proof. Using Markov, we have,

Pr[h is not perfect for S] = Pr[h has at least 1 collision for D] ≤ E[number of collisions for h].

1

By expanding E[number of collisions for h] as pairs of collision indicators we get:

E =
∑

x1<x2 x1,x2∈S

Pr[h(x1) = h(x2)] ≤

(

k

2

)

max
x1,x2

Pr[h(x1) = h(x2)] ≤
k2

2m
(1)

Therefore we know if we let m = k2 and we randomly choose a hash function that is pairwise
independent, we will have failure probability at most a half.

If we design a Las Vegas algorithm to repeatedly find a pairwise independent hash function, after
a constant number of tries, we will get a perfect hash function with high probability.

1.4 Perfect Hashing

Now we have a way to find a perfect hash function with m = k2. However, we want m = O(k).

Suppose we first get a random hash function h∗[U] → [m], with m = O(k). This hash function
may have collisions. Create a linked list for each collision.

Now suppose we map each linked list with size k′ with a perfect hash function with size k′2, we can
then flatten that link list out and store with some extra space to make it a perfect hash function.

h∗(z)

x1

x2

x3

xn

More formally, we have h∗ : [U] → [m], and hi : [U] → [Z2
i] to be a perfect hashing, where Zi is the

number of elements that hash to cell i, or mathematically denoted as |(h∗)−1 ∩ S|.

Record Yi =
∑

j<i Z
2
i . We set our final perfect mapping as

h(u) = Yi + hi(u), where i = h∗(u)

.

It is then easy to see that h is perfect with range
∑m

i=1 Z
2
i , we need to estimate

∑m
i=1 Z

2
i .

Since total number of collisions equals to

m
∑

i=1

(

Zi

2

)

=
1

2
(

m
∑

i=1

Z2
i)−

k

2
,

2

By taking expected value of both sides we have:

E[
m
∑

i=1

Z2
i] = 2E[total number of collisions] + k ≤

2k2

2m
+ k (2)

If we let m = k, we will get 2k to be the expected size of our hash function h.

Now we get a Las Vegas algorithm to rebuild h until size of h is less or equal to 4k. By Markov,
each round our success probability is greater than 2k

4k = 1
2 , thus with O(1) rounds or O(k) total

times we will success with high probability.

If we want to further achieve m = k, we can use a lookup table for the perfect hashing, where we
index each non-empty element in the mapping of perfect hashing h as I, then we take h′(x) = Ih(x)
which still runs in O(k) times.

h(x) I

[4n]

[n]

2 Lower bound on hashing

To hash a set S of size k in [U], lots of scheme give O(k) word of space, where 1 word = logU bits.
A natural question is to ask, can we do better?

Suppose the hash table was stored using b bits, then the total number of possible representations
you can have is at most 2b. Since your representations must include all possible subsets of size k

of U we see that 2b ≥ (|U |k) ≥
(

|U |
k

)k
= 2k log(|U |/k). If k <

√

|U | then we see b ≥ 1
2k log(|U |).

However, log(|U |) is the size of any word, and so we need Ω(k) words. This means if we need to be
able to has ALL POSSIBLE sets, then we cannot do better than a regular hash function.

3 Bloom Filters

This is a set membership data structure with some chance of false positives. In particular, for a
particular set S you can get queries of the kind x ∈ S?, if the answer is ‘yes’ you would like to be

3

always right, however if the answer is ‘no’, then you are allowed to fail with probability 1− δ. It is
possible to do this with O(k log(1δ)) bits.

Applications of this structure:

• Use the filter before a slow operation (for example, chrome uses this to maintain a list of
malicious urls).

• Database joins (‘Does this key have a different entry in the corresponding table?’)

• Bitcoin (to speed up wallet synchronization).

Let n be the number of items, m be the number of buckets. The datastructure picks up k uniform
random hash functions h1, . . . , hk where k is a parameter to be decided later. You then store
~y ∈ {0, 1}m where yj = 1 iff ∃x ∈ S, i ∈ [k].hi(x) = j. Respond with ‘yes’ to a query on x iff
x ∈ ∩i∈[k]Yhi(x).

We now analyze the failure probability of this. Let p = the fraction of 0’s in an array. E[p] =

Pr[any single entry is 0] =
(

1− 1
m

)nk
≈ e−nk/m. The variables negatively associate and hence

concentrate, which means p is most probably going to be the expectation, upto a constant. The
probability that one of these was 1 is (1− p) and so we have δ = (1− p)k ≈ (1− e−nk/m)k. We will
try to find the k that minimizes this value. To do this, observe that (1−e−nk/m)k = [(1−e−z)z]n/m

where z = nk
m . It sufficies to minimize with respect to z which can be done by differentiating the log

and setting it to 0. It turns out that at the minimum k = m
n ln(2) and δ < 1

2k
= 0.618

m

n . Setting
m = O(n log(1/δ)) does the job.

4

