Problem Set 4

Randomized Algorithms

Due Tuesday, October 31

1. [Karger] Suppose you are given a graph whose edge lengths are all integers in the range from 0 to B. Suppose also that you are given the all-pairs distance matrix for this graph (it can be constructed by a variant of Seidel's deterministic distance algorithm). Prove that you can identify the (successor matrix representation of the) shortest paths in $O\left(B^{2} M M(n) \log ^{2} n\right)$ time, where $M M(n)$ is the time to multiply $n \times n$ matrices.
2. Let S be an unknown set of n items (with n known). Suppose that you receive a sample T of k items chosen from S uniformly at random without replacement. Show how to construct a sample T^{\prime} of k items from S, whose distribution is identical to a uniform sample of k items from S drawn with replacement.
3. In class we presented an efficient randomized algorithm for bipartite matching on d-regular graphs.
(a) What goes wrong if the graph is not d-regular?
(b) Additionally, we showed that the algorithm achieves $O(n \log n)$ time in expectation. Show an algorithm that achieves $O(n \log n)$ time with high probability. Hint: it may help to recall how we showed that the coupon collector takes $O(n \log n)$ samples with high probability.
4. Consider the example given in class for how online bipartite matching using random edges achieves a competitive ratio of $R=1 / 2$: each arriving vertex x_{i} has an edge to y_{i} as well as all of $y_{n / 2}, \ldots, y_{n}$. Show
that the algorithm that the algorithm given in class, which randomly ranks the right vertices y_{i}, has $R \leq 3 / 4$ on this example.
