Problem Set 5

Randomized Algorithms

Due Tuesday, November 14

- 1. Let $X_1, \ldots, X_n \sim N(0, 1)$ for some $n \ge 10$, and let $Z = \max_i X_i$.
 - (a) Show that

$$\frac{1}{2} \le \frac{\mathbb{E}[Z]}{\sqrt{\log n}} \le 3$$

(b) Show that

$$\frac{\mathbb{E}[Z]}{\sqrt{2\log n}} = 1 - o(1)$$

as $n \to \infty$.

- 2. Let X_1 and X_2 be zero-mean subgaussians with parameters σ_1 and σ_2 , respectively.
 - (a) Show that if X_1 and X_2 are independent, then X_1X_2 is subgamma. What are the parameters in terms of σ_1 and σ_2 ?
 - (b) Show that in general, without assuming independence, $X_1 + X_2$ is subgaussians with parameter $2\sqrt{\sigma_1^2 + \sigma_2^2}$.
- 3. Suppose you can sample elements x_1, \ldots, x_m from a mean zero subgaussian variable X, and would like to compute its *kurtosis*

$$\kappa = \frac{\mathbb{E}[X^4]}{\mathbb{E}[X^2]^2}$$

(a) Consider the algorithm that computes the empirical fourth and second moments $\frac{\sum x_i^4}{m}$ and $\frac{\sum x_i^2}{m}$, and outputs the former divided by the latter squared. How large must m be for this to be an (ϵ, δ) approximation to κ ?

- (b) Construct a different algorithm that achieves an (ϵ, δ) approximation to κ with fewer measurements.
- 4. For a hash family \mathcal{H} from [U] to [n], and a set of items $S \subset [U]$, let $X(\mathcal{H}, S)$ be the random variable denoting the load in the first bin:

$$X := |\{i \in S \mid h(i) = 1\}|$$

as a distribution over $h \in \mathcal{H}$. Further, let $f(\mathcal{H}, S)$ denote the expected max load in any bin:

$$f(\mathcal{H}, S) := \underset{h \in \mathcal{H}}{\mathbb{E}} \max_{j \in [n]} |\{i \in S \mid h(i) = j\}|.$$

(a) For any $t \ge 1$, and for any k-wise independent hash family \mathcal{H} with k = O(1), and any set S with |S| = n, show that

$$\Pr[X \ge t] \lesssim 1/t^k.$$

Hint: bound $\mathbb{E}[X^k]$.

(b) Show that for a k-wise independent family $\mathcal{H}, k = O(1)$, that

$$f(\mathcal{H}, S) \lesssim n^{1/k}$$

for any S with |S| = n.

(c) Show that there exists a pairwise independent hash family \mathcal{H} and set S with |S| = n such that

$$f(\mathcal{H}, S) \gtrsim \sqrt{n}.$$