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Abstract

Many real-world signals are approximately sparse, meaning that a small fraction of
the coordinates contain almost all the signal mass; examples include images, audio, and
any signals drawn from Zipfian, power-law, or log-normal distributions. If a signal x ∈
Rn is approximately k-sparse, then ideally the complexity of estimating or manipulating
x should scale primarily with k rather than n.

Such sparse recovery algorithms are possible for a variety of different problem vari-
ants, corresponding to different modalities of measuring x and different guarantees
on the estimation error. In this chapter we will consider streaming algorithms, com-
pressed sensing, and sparse Fourier transforms, as well as extensions to low-rank matrix
recovery.

1 Sparse Recovery

Imagine that you are tallying the results of an election by hand, and would like to find
the top few candidates. You might maintain a sheet of paper recording the count for each
candidate, while you pass through the giant stack of ballots. But write-in candidates make
this challenging in a large election: the recording sheet would run out of space from votes for
“candidates” like Batman or Bart Simpson. You would be fine ignoring such joke candidates
with very few votes, but you don’t want to miss a significant write-in candidate—and you
don’t want to miss them even if all their votes happened late in the day, at the bottom of
the stack of ballots, after your tally sheet has run out of space. An algorithm due to Misra
and Gries (1982), to be covered in the next section, offers a solution that only uses a small
amount of space, at the cost of giving an approximate answer. If there are only k “real”
candidates, and all the other candidates are rare, the approximation error will be small.

This property, that a small fraction of coordinates contains a large fraction of the mass,
has been empirically observed for signals in many different domains. It follows from popular
rules of thumb such as Zipf’s law and the 80/20 rule, as well as popular generative models
that yield power law or lognormal distributions. In Figure 1 we show a few examples of this
phenomenon: in music (the Fourier transform of a short snippet), images (represented in a
basis such as the Haar wavelet), and networks (number of inlinks per page). These different

*Excerpt from Beyond the Worst-Case Analysis of Algorithms, edited by Tim Roughgarden.
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Figure 1: Coefficient decay in three example signals of different domains. In each example,
the ith largest coordinate has magnitude decaying as i−α for some α ∈ (0.5, 1). The audio
data contains the frequencies in a 1/10 second clip of a popular music video; the image data
is the Haar wavelet representation of one frame of this video; the graph data is the number
of inlinks per page on English Wikipedia.

domains vary in how quickly the coefficients decay, but they all have the same qualitative
behavior: the ith largest coordinate has magnitude roughly proportional to i−α for some
α ∈ (0.5, 1) for small i, followed by even faster decay for large i.

None of the results presented in this chapter rely on any distributional assumptions on
signals, and require only that the signal to be recovered or manipulated is (approximately)
sparse. This assumption is analogous to the stability definitions of Chapters 5 and 6, except
with “meaningful solutions” now identified with “(approximate) sparsity.” Most of the al-
gorithms in this chapter provide input-by-input guarantees, parameterized by how close the
unknown signal is to being k-sparse. As with the parameterized guarantees in Chapters 1
and 2, these will be non-trivial only when the parameter is small (i.e., when the signal is
approximately k-sparse).

Outline of the chapter. In Section 2 we give a streaming algorithm for sparse recovery.
In Section 3 we present two linear sketching algorithms for the problem. Linear sketching al-
gorithms have several advantages over other streaming algorithms, and the second algorithm
also achieves a stronger “`2” approximation guarantee for sparse recovery. In Section 4 we
turn to compressed sensing algorithms. Compressed sensing is essentially the same problem
as sparse recovery with linear sketching, but studied by a different community for a differ-
ent purpose, leading to significant differences in techniques and subtler differences in goals.
Section 5 contains a lower bound that matches the algorithms of Sections 3 and 4. Section 6
presents some more involved results in the area. Finally, Section 7 shows how sparse recovery
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techniques extend to low-rank matrix estimation.

Notation. For any x ∈ Rn and k ∈ [n], we use Hk(x) to denote the k-sparse vector in Rn

that sets all but the largest k entries (in magnitude) of x to zero.

2 A Simple Insertion-Only Streaming Algorithm

Algorithm 1 FrequentElements heavy hitters algorithm

1: function FrequentElements(Stream, k)
2: d← Dictionary()
3: for u in Stream do
4: if u in d then
5: d[u] += 1
6: else if d has less than k keys then
7: d[u]← 1
8: else
9: d[u′] −= 1 ∀u′ ∈ d.

10: Remove keys of d that now map to zero
11: end if
12: end for
13: return d
14: end function

The election counting example is one example of a data stream. An (insertion-only) data
stream consists of a long series of items

u1, u2, u3, . . . , uN ∈ [n]

This stream represents the count vector x ∈ Rn given by

xi = |{j : uj = i}|.

The goal of sparse recovery (also known as heavy hitters) in this context is to approximate
x while scanning through u, while storing much less than n or N = ‖x‖1 space (where
‖x‖p := (

∑
i x

p
i )

1/p is the `p-norm).
The straightforward method for estimating x is to store it in a dictionary (a.k.a. asso-

ciative array or map). We would start with an empty dictionary d, and for every element
u that appears in the stream we increment d[u] (with newly added elements set to 1). The
problem with this method is that the space used is the total number of distinct elements in
the stream, which could be as large as n.

The FrequentElements algorithm, presented in Algorithm 1 and due to Misra and
Gries (1982), is a simple twist on the straightforward approach. The only difference is that
we pick a parameter k (think, perhaps, k =

√
n) and, if incrementing d[u] would make d have

more than k keys, we instead subtract 1 from the counter of every key in the dictionary—and
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if that brings a counter to zero, the corresponding key is removed. The space usage is then
Θ(k) words and the error in the final count of every element is, at most, the total number
of times this subtraction occurs. Since each subtraction removes k from the sum of the
values in d, while each addition adds only 1 and the sum of values remains nonnegative, the
subtraction step can happen at most a 1/(k + 1) fraction of the stream steps. Thus:

Lemma 2.1. The estimates x̂u = d[u] given by the FrequentElements algorithm satisfy

xu −
1

k + 1
‖x‖1 ≤ x̂u ≤ xu

for every element u.

One can also get a more refined bound that is significantly stronger in a sparse setting. If
a few elements really do dominate the stream, those elements will end up with large values,
which further constrains the number of deletions. One way to bound this is to consider as a
potential function the sum of the entries of d that do not correspond to the k/2 largest entries
of x. This potential is nonnegative at all times, only increases by 1 at a time, and does so
at most ‖x−Hk/2(x)‖1 ≤ ‖x‖1 times; on the other hand, each subtraction removes at least
k/2 from this potential, so the total number of subtractions is at most ‖x − Hk/2(x)‖1 · 2

k
.

Thus:

Lemma 2.2. The estimates x̂u = d[u] given by the FrequentElements algorithm satisfy

xu −
2

k
‖x−Hk/2(x)‖1 ≤ x̂u ≤ xu

for every element u.

Which of Lemmas 2.1 and 2.2 more accurately characterizes the performance of Fre-
quentElements depends on the sparsity of x. The sparsity-aware bound of Lemma 2.2
gives a better asymptotic bound on the error in terms of k when the frequencies decay faster
than Zipf’s law (in which the ith most common element having frequency proportional to
1/i). When the frequencies decay slower, however, ‖x − Hk/2(x)‖1 ≈ ‖x‖1 for k � n so
Lemma 2.1’s better constant factors give a better bound.

3 Handling Deletions: Linear Sketching Algorithms

The FrequentElements algorithm is designed for insertion-only streams, where items
arrive in sequence and never leave. A more general, and more challenging, setting is that
of turnstile streams, where items can be both inserted and deleted. The name evokes an
amusement park: you want to study the people who are currently inside the park, while
only tracking people as they enter and leave through turnstiles. An important subclass is
the strict turnstile stream, wherein the final vector x has nonnegative values (e.g., people
cannot leave without arriving).

In Algorithm 2 we present two algorithms for solving sparse recovery in turnstile streams:
CountMinSketch (Cormode and Muthukrishnan, 2005) and CountSketch (Charikar
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Algorithm 2 CountMinSketch in black / CountSketch in black and gray

1: function CountMinSketch/CountSketch(Stream, B, R)
2: Pick h1, . . . , hR : [n]→ [B] pairwise independent hash functions.
3: Pick s1, . . . , sR : [n]→ {−1, 1} pairwise independent hash functions.

4: y
(r)
i ← 0 ∀i ∈ [B], r ∈ [R]

5: for (u, a) in Stream do . Corresponding to stream update xu ← xu + a
6: for r ∈ [R] do

7: y
(r)
hr(u) += a·sr(u).

8: end for
9: end for

10: for u ∈ [n] do
11: x̂u ← minr∈[R] yhr(u). . (CountMinSketch only)
12: x̂u ← medianr∈[R] yhr(u) · sr(u). . (CountSketch only)
13: end for
14: return x̂
15: end function

et al., 2002). The two algorithms are almost identical, with CountSketch having a few
more pieces; these extra parts are displayed in gray, and should be ignored to read the
CountMinSketch algorithm.

It turns out that almost every turnstile streaming algorithm can be implemented as a
linear sketch. In a linear sketch, you store y = Ax for some (possibly randomized) matrix
A ∈ Rm×n. This can easily be maintained under streaming updates: when an element is
inserted or deleted, you simply add or subtract the corresponding column of A from the
sketch y. The space used by the linear sketch is m words to store y, plus the size of the
random seed to produce A; and for the algorithms we will consider, the seed is small so this
is essentially m. Another benefit of linear sketching algorithms over insertion-only streaming
is mergability : you can split the stream into pieces (say, multiple routers), sketch the pieces
individually, then add up the results to get the sketch for the full stream. One can observe
that CountMinSketch/CountSketch are linear sketches. In particular, the final value

stored in each coordinate y
(r)
j is

y
(r)
j =

n∑
u=1

1hr(u)=jsr(u) · xu (1)

which is a linear function of x.

3.1 The Count-Min Sketch: an `1 Guarantee

The idea behind CountMinSketch is that if we had unlimited space, we’d just store a
single hash table with the counts for all items in the stream. If we instead store a hash table
of much smaller size B = O(k), there will be collisions. Standard methods for resolving those
collisions, like linked lists, would again need linear space in the number of distinct items.
But what happens if we don’t resolve collisions at all, and just store in each hash cell the
total number of elements that hash there?
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Given such a “hash table”, we can estimate the count for an item by the value in the
cell it hashes to. For strict turnstile streams, this is an overestimate of the true answer: it
contains the true count plus the counts of colliding elements. But any other element has only
a 1/B chance of colliding in the hash table, so the expected error is at most ‖x‖1/B. This
would be a decent bound comparable to Lemma 2.1, except that it is only in expectation
for each element. Almost surely some element will have much higher error—indeed, there is
no way to distinguish between the heavy hitters and the (small fraction, but still numerous)
other elements that happen to collide with them.

To fix this, CountMinSketch repeats the process with R = O(log n) different hash
tables. Since each hash table gives an overestimate, the final estimate of an element is the
minimum estimate from any repetition. This achieves the following:

Theorem 3.1. If x has nonnegative entries, then CountMinSketch, when run with B ≥
4k and R ≥ 2 log2 n, returns an x̂ that satisfies

xu ≤ x̂u ≤ xu +
1

k
‖x−Hk(x)‖1

for all u with 1− 1/n probability.

The statement is very similar to the FrequentElements bound in Lemma 2.2. It is
an overestimate rather than an underestimate, but otherwise the error bound is identical up
to scaling k by 2. Unlike FrequentElements, CountMinSketch can handle deletions,
but this comes at a cost: CountMinSketch uses O(k log n) words of space rather than
O(k), it is randomized, and the time required for computing x̂ at the end of the stream
is O(n log n) rather than O(k) because every coordinate xu must be estimated to find the
largest k. The first two issues cannot be avoided for “typical” values of k ∈ (n0.01, n0.99).
In Section 5 we will show that Ω(k log n) words of space are necessary to handle deletions,
and randomization is needed to achieve o(min(k2, n)) words (Ganguly, 2008). The recovery
time, however, can be improved; see the bibliographic notes for details.

Proof of Theorem 3.1. Define x̂(r) by x̂
(r)
u = yhr(u) for each u, so that x̂u = minr x̂

(r)
u . Let

H ⊆ [n] contain the largest k coordinates of x, known as the “heavy hitters”. Then

0 ≤ x̂(r)
u − xu =

∑
hr(v)=hr(u)

v 6=u

xv =
∑
v∈H

hr(v)=hr(u)
v 6=u

xv

︸ ︷︷ ︸
EH

+
∑
v/∈H

hr(v)=hr(u)
v 6=u

xv

︸ ︷︷ ︸
EL

. (2)

For u to be estimated badly, either EH or EL must be large. EH represents the error u
receives from colliding with heavy hitters. This is usually zero, because there aren’t too
many heavy hitters. EL is the error from non–heavy-hitters. This is likely nonzero, but is
small in expectation. Formally, we have that:

Pr[EH > 0] ≤ Pr[∃v ∈ H \ {u} : hr(v) = hr(u)] ≤ k

B
≤ 1

4
(3)
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by our choice of B ≥ 4k. We also have that

E[EL] =
∑

v∈[n]\H
v 6=u

xv · Pr[h(v) = h(u)] ≤
∑

v∈[n]\H

xv ·
1

B
= ‖x−Hk(x)‖1/B. (4)

Hence by Markov’s inequality,

Pr[EL > ‖x−Hk(x)‖1/k] ≤ k

B
≤ 1

4

so by a union bound, independently for each r

Pr[x̂(r)
u − xu > ‖x−Hk(x)‖1/k] ≤ 1

2
. (5)

Therefore because R ≥ 2 log2 n,

Pr[x̂u − xu > ‖x−Hk(x)‖1/k] ≤ 1

2R
≤ 1

n2
.

Taking a union bound over u gives the result.

Negative entries and CountMedianSketch. The CountMinSketch algorithm relies
on the strict turnstile assumption that the final vector x has only nonnegative coordinates.
If the entries of x may be negative, one can simply replace the min on line 11 with a median
and increase B and R by constant factors. By increasing B, the failure event (5) will have
failure probability 2k/B < 1/2. Then a Chernoff bound can show that with high probability
most iterations r will not fail, and hence the median estimate is good. This algorithm is
known as the CountMedianSketch, and achieves the same 1

k
‖x−Hk(x)‖1 error guarantee

as Theorem 3.1 but with two-sided error.

3.2 Count-Sketch: the `2 Guarantee

The gray lines in Algorithm 2 describe the modifications required to produce the CountS-
ketch algorithm, which is like CountMedianSketch but with random signs introduced.
This changes the error for a single r from (2) to

x̂(r)
u − xu =

∑
hr(v)=hr(u)

v 6=u

xvsr(v)sr(u).

For fixed hr, this is now a random variable in sr, and because sr is pairwise independent and
mean zero, all the cross terms in Esr [(x̂

(r)
u − xu)2] disappear. In particular, (4) becomes

E
hr,sr

[E2
L] =

∑
v∈[n]\H
v 6=u

x2
v · Pr[h(v) = h(u)] ≤ ‖x−Hk(x)‖2

2/B.
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If B ≥ 16k, applying Markov’s inequality and a union bound with the k/B chance that
EH > 0 shows that in each repetition

Pr
[
(x̂(r)

u − xu)2 > ‖x−Hk(x)‖2
2/k
]
< 1/8.

The chance this happens in at least R/2 of the R repetitions is then at most(
R

R/2

)
· (1/8)R/2 < 2R/8R/2 = 1/2R/2 ≤ 1/n2

for R ≥ 4 log2 n. If that failure event doesn’t happen, the median is a good estimate, giving
the following theorem:

Theorem 3.2. CountSketch, when run with B ≥ 16k and R ≥ 4 log2 n, returns an x̂
that satisfies

(x̂u − xu)2 ≤ 1

k
‖x−Hk(x)‖2

2

for all u with 1− 1/n probability.

At first glance, the bounds on |x̂u−xu| given for CountMinSketch (Theorem 3.1) and
CountSketch (Theorem 3.2) may seem incomparable—while ‖x−Hk(x)‖2 ≤ ‖x−Hk(x)‖1,
the denominator is only

√
k for CountSketch rather than k for CountMinSketch.

However, as shown in Exercise 1, this is misleading: up to constant factors, the `2 bound
of Theorem 3.2 is stronger than the `1 bound of Theorem 3.1 for every vector x. For many
natural vectors x, this difference is quite significant; we now examine it in detail.

3.3 Discussion of Recovery Guarantees

To better understand how much better `2 recovery guarantees are than `1 ones, we consider
power-law (or “Zipfian”) distributions where the ith largest element has frequency propor-
tional to i−α. We also suppose the stream is distributed over a number of elements n � k
(which is finite so the sum of frequencies is still finite for α < 1.0). For sharply decaying
distributions of α > 1.0, the `1 guarantee is

‖x̂− x‖∞ ≤
1

k

n∑
i=k+1

xi ≈
1

k
x1 ·

n∑
i=k+1

i−α ≈ 1

α− 1
xk

while the `2 guarantee for α > 0.5 is

‖x̂− x‖∞ ≤

√√√√1

k

n∑
i=k+1

x2
i ≈

√√√√1

k
x2

1 ·
n∑

i=k+1

i−2α ≈ 1√
2α− 1

xk.

When α > 1.0, these two guarantees are identical up to constant factors. But for intermediate
decay of 0.5 < α < 1.0, the `1 guarantee is much worse:

‖x̂− x‖∞ ≤
1

k

n∑
i=k+1

xi ≈
1

k
x1 ·

n∑
i=k+1

i−α ≈ 1

k
x1

1

1− α
n1−α
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Figure 2: Comparison of error as a function of space for sparse recovery algorithms on ran-
dom power law distribution streams, where the ith most common element has frequency
proportional to i−α, with 105 items drawn over a 104 size domain. FrequentElements is
assumed to use two words per entry of its table (one for the key, one for the value). Oracle
stores exactly the largest entries of the stream (with 2 words per entry). For α < 1, the `2

bound of CountSketch gives significant benefit; for α > 1, it performs worse than Count-
MinSketch due to constant factor inefficiency. In both cases, FrequentElements uses
roughly an order of magnitude less space than CountMinSketch due to avoiding the
O(log n) factor.

That is, unless k > n1−α, the `1 guarantee gives no nontrivial estimates (indeed, the all-zeros
vector would satisfy it). Even above that threshold, the `1 guarantee remains a (n/k)1−α

factor worse than the `2 guarantee. For slow decay of α < 0.5, the `2 guarantee becomes

‖x̂− x‖∞ ≤

√√√√1

k

n∑
i=k+1

x2
i ≈

√√√√1

k
x2

1 ·
n∑

i=k+1

i−2α ≈ x1
1√

1− 2α

√
n

k
n−α

which is trivial until k > n1−2α, and remains a
√
n/k factor better than the `1 bound for

larger k.
The intermediate regime of α ∈ (0.5, 1.0) is the most relevant one in practice, as observed

in the examples illustrated in Figure 1 as well as more generally (see, for example, Clauset
et al. (2009)). Therefore the `2 guarantee is significantly more desirable than the `1 one.

In Figure 2 we illustrate these calculations with the empirical performance of the al-
gorithms we have seen so far on such power-law distributions. The results closely match
what one would expect from the theoretical bounds we have shown. For α = 0.8, but not
α = 1.3, CountSketch’s `2 bound is more important than CountMinSketch’s constant
factors, and in certain parameter regimes even enough to beat the Θ(log n) factor savings in
FrequentElements.
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4 Uniform Algorithms

The sparse recovery algorithms described in the preceding sections originated in the computer
science community in the context of streaming algorithms. Another body of work designed
to solve very similar problems comes from the statistics and signal processing communities,
where it is known as compressed sensing or compressive sampling (Donoho et al., 2006;
Candes et al., 2006). The motivation for compressed sensing is situations where one has
a physical process that can cheaply observe linear measurements of a signal of interest—
for example, MRI machines inherently sample Fourier measurements of the desired image;
the single-pixel camera architecture takes pictures by applying brief masks during exposure;
genetic testing companies can mix blood samples before testing; and radio telescopes sample
from the Fourier spectrum based on their geometry. Without any assumption on the signal
structure, learning an arbitrary x ∈ Rn would require n linear measurements, but a structural
assumption such as sparsity can allow for fewer measurements—ideally leading to faster
MRIs, higher-resolution photos, and cheaper genetic testing.

The high-level goal in compressed sensing is thus essentially identical to that of turnstile
streaming sparse recovery: estimating approximately k-sparse vectors x from a small number
of linear measurements y = Ax. (We say that x is k-sparse if it has at most k nonzero
coordinates, and approximately k-sparse if it is “close” to a k-sparse vector.) But the
emphasis is somewhat different, leading to different solutions.

Most notably, compressed sensing algorithms are designed to work even if the observation
matrix A is not fully under the control of the algorithm designer. The observation matrix may
have to satisfy a number of complicated constraints coming from how the physical sensing
apparatus works; but as long as A is “good enough” in a formal sense, the recovery algorithms
will work. Moreover, this allows for a degree of modularity: one can mix and match different
algorithms and matrices, since essentially any “good enough” matrix construction will work
with any algorithm. This modularity is in sharp contrast to most methods from the streaming
community: it makes no sense to try and use (say) the CountSketch measurement matrix
with the faster (Larsen et al., 2016) recovery algorithm, because the algorithms are intimately
tied to their matrices.

4.1 The Restricted Isometry Property

The simplest approach to determining if A is “good enough” is that of incoherence:

Definition 4.1. Let A ∈ Rm×n have columns a1, . . . , an of `2 norm 1. The coherence µ of
A is

µ := max
i 6=j
|〈ai, aj〉|.

If µ = 0, then A has orthonormal columns so it is invertible and recovery is certainly
possible. But our goal is to have m � n, so A cannot have orthonormal columns. The
interesting thing is that even if µ is somewhat larger—up to Θ(1/k)—then sparse recovery
is possible with a variety of algorithms. Unfortunately, every matrix with m < n/2 has

coherence µ >
√

1
2m

, so achieving “good enough” incoherence would require Ω(k2) linear

measurements. For the polynomially-large values of k typically considered, this is rather
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more than the O(k log n) measurements we saw with streaming algorithms, suggesting the
need for a different definition of “good enough”. One popular definition is the Restricted
Isometry Property:

Definition 4.2. For any k, the restricted isometry constant δk = δk(A) of a matrix A ∈ Rm×n

is the smallest δ ≥ 0 such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all k-sparse x.

An equivalent formulation is that

‖(A>A− I)S×S‖ ≤ δ for all S ⊂ [n], |S| ≤ k (6)

where ‖ · ‖ denotes the spectral norm.

We (informally) say that A satisfies the Restricted Isometry Property (RIP) if δCk < c
for some sufficiently large constant C ≥ 1 and sufficiently small c < 1. The algorithmic
results that follow show that the RIP (with sufficiently good constants C, c) implies that
approximate k-sparse recovery is possible. One can show that δk ≤ (k−1)µ, so this subsumes
the incoherence-based results that require µ < Θ(1/k), but the RIP bound is possible with
only m = O(k log(n/k)).

The Gaussian ensemble. A simple way to construct an RIP matrix with good parameters
is by taking i.i.d. Gaussian entries of the appropriate variance.

Theorem 4.3. Let 0 < ε < 1 and k > 1 be parameters. If A ∈ Rm×n has i.i.d. Gaussian
entries of variance 1/m, and m > C 1

ε2
k log n

k
for a sufficiently large constant C, then A has

RIP constant δk < ε with 1− e−Ω(ε2m) probability.

The proof is based on applying a union bound to a net. We start with a lemma that
shows how to bound an operator norm—which is a supremum over a continuous set—by the
maximum over a finite set:

Lemma 4.4. There exists a set T ⊂ Rn of 3n unit vectors such that, for any symmetric
matrix M ∈ Rn×n,

‖M‖ ≤ 4 max
x∈T

x>Mx.

Since ‖M‖ = sup‖x‖2=1 x
>Mx, this lemma loses at most a factor of 4. The proof is given

as Exercise 5.
The other key lemma we need is the distributional Johnson-Lindenstrauss Lemma, which

shows for any specific x that ‖Ax‖2 ≈ ‖x‖2 with high probability:

Lemma 4.5 (Johnson-Lindenstrauss). For any x ∈ Rn and ε ∈ (0, 1), if A ∈ Rm×n has
i.i.d. Gaussian entries of variance 1/m, then

Pr[|‖Ax‖2
2 − ‖x‖2

2| > ε‖x‖2
2] < 2e−Ω(ε2m).
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Proof of Theorem 4.3. Let T ⊂ Rk be the set of size 3k given by Lemma 4.4 such that, for
every set S ⊆ [n] of size k,

‖(A>A− I)S×S‖ ≤ 4 max
x∈T

x>(A>A− I)S×Sx.

By Lemma 4.5 applied with ε′ = ε/4 and n′ = k, we have for each S and x ∈ T that

x>(A>A− I)S×Sx ≤
ε

4
‖x‖2

2 ≤
ε

4

with probability at least 1− 2e−Ω(ε2m). Taking a union bound over all S and x ∈ T , we have
that

δk ≤ 4 max
S

max
x∈T

x>(A>A− I)S×Sx

is bounded by ε with probability at least 1 − 2
(
n
k

)
3ke−Ω(ε2m). If m ≥ O( 1

ε2
k log n

k
), this is

1− e−Ω(ε2m).

Gaussian matrices are just one way of constructing RIP matrices. Another example, with
an essentially identical proof to the above, is a matrix with i.i.d. {±1} entries. We discuss
more involved examples in Section 6 and the bibliographic notes.

4.2 Post-measurement vs Pre-measurement Noise

In streaming algorithms, it makes sense to suppose that y = Ax is stored exactly: we see
all of x eventually, and have complete control of the observations. But for the motivating
applications for compressed sensing, where y represents a physical observation of some signal,
one expects noise in the observation. Therefore we will aim for algorithmic guarantees in
the presence of post-measurement noise: if

y = Ax∗ + e

for an exactly k-sparse x∗ and arbitrary noise vector e, the recovered x̂ will satisfy

‖x̂− x∗‖2 ≤ C‖e‖2 (7)

for some constant C.
Of course, signals such as images are unlikely to be exactly sparse, so a more realistic set-

ting would have both post-measurement noise e and pre-measurement noise x−Hk(x). For
RIP matrices, however, such a result is actually implied by the post-measurement guar-
antee (7) by treating the pre-measurement noise x − Hk(x) as post-measurement noise
A(x−Hk(x)); see Exercise 2.
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4.3 Iterative Methods

We now turn to algorithms that perform sparse recovery with RIP matrices. This can be done
with either iterative methods or convex programming. The iterative methods are generally
simpler and faster, but often require more measurements (by a constant factor). We will
present a simple recovery algorithm, known as IterativeHardThresholding.

For intuition, suppose that there is no noise, so y = Ax∗. Recall that, since A satisfies
the RIP, A>A approximates the identity on any O(k)×O(k) submatrix. Therefore

A>y = A>Ax∗ ≈ x∗,

where the approximation is good over O(k)-sized subsets. In particular, we will show

‖Hk(A
>y)− x∗‖2 ≤ O(δ2k)‖x∗‖2 � ‖x∗‖2.

This means that x(1) = Hk(A
>y) is a good first step in recovering x∗: it is most of the way

there. (The operation Hk, which thresholds to the largest k entries, is known as “hard”
thresholding because of the discontinuity in treatment between elements just above and just
below the threshold.) But x(1) still has some residual error x∗− x(1). To reduce this, we can
compute y − Ax(1) = A(x∗ − x(1)), which is effectively a measurement of this residual. We
then repeat the procedure of multiplying by A> and thresholding, getting a new estimate of
x∗:

x(2) = Hk(x
(1) + A>(y − Ax(1))).

Algorithm 3 Iterative Hard Thresholding (IHT)

1: function IterativeHardThresholding(y, A, k)
2: x(0) ← 0
3: for r ← 0, 1, 2, . . . , R− 1 do
4: x(r+1) ← Hk

(
x(r) + A>(y − Ax(r))

)
5: end for
6: return x(R)

7: end function

In Lemma 4.7 we show that this IterativeHardThresholding procedure works even
with noise: if y = Ax∗ + e for an exactly k-sparse vector x∗, the residual error geometrically
converges to the noise level O(‖e‖2). To establish this, we first show that the thresholding
step does not increase the `2 distance by more than a constant factor:

Lemma 4.6. Let x, z ∈ Rn so that x is k-sparse with support S and T ⊆ [n] consists of the
largest k terms of z. Then

‖x− zT‖2
2 ≤ 3‖(x− z)S∪T‖2

2.

Proof. For every i ∈ S \ T we can assign a unique j ∈ T \ S such that |zj| ≥ |zi|. Therefore

x2
i ≤ (|xi − zi|+ |zi|)2 ≤ (|xi − zi|+ |zj|)2 ≤ 2(xi − zi)2 + 2z2

j .

Adding in the terms for i ∈ T gives the result.

13



Lemma 4.7. In each iteration of IterativeHardThresholding,

‖x(r+1) − x∗‖2 ≤
√

3δ3k‖x(r) − x∗‖2 +
√

6‖e‖2.

Proof. Define

x′ := x(r) + A>(y − Ax(r)) = x∗ + (A>A− I)(x∗ − x(r)) + A>e.

Let S = supp(x(r+1)) ∪ supp(x(r)) ∪ supp(x∗), so |S| ≤ 3k. Note that the RIP implies that

‖A>S ‖2 = ‖(A>A)S×S‖ ≤ 1 + δ3k.

Therefore we have

‖(x′ − x∗)S‖2 ≤ ‖((A>A− I)(x∗ − x(r)))S‖2 + ‖(A>e)S‖2

≤ ‖(A>A− I)S×S‖‖x∗ − x(r)‖2 + ‖A>S ‖ · ‖e‖2

≤ δ3k‖x∗ − x(r)‖2 +
√

1 + δ3k · ‖e‖2.

Finally, since δ3k < 1 and x(r+1) = Hk(x
′) we have by Lemma 4.6 that

‖x(r+1) − x∗‖2 ≤
√

3‖(x∗ − x′)S‖2 ≤
√

3δ3k‖x(r) − x∗‖2 +
√

6‖e‖2.

If δ3k < 1/
√

3, this iteration will eventually converge to O(‖e‖2). If δ3k <
1

4
√

3
≈ 0.144,

we will have

‖x(r+1) − x∗‖2 ≤ max

(
1

2
‖x(r) − x∗‖2,

√
24‖e‖2

)
and hence the residual error ‖x(r+1) − x∗‖2 will converge geometrically to at most

√
24‖e‖2:

Theorem 4.8. If δ3k < 0.14, the output x(R) of IterativeHardThresholding will have

‖x(R) − x∗‖2 ≤
√

24‖e‖2

after R = log2
‖x∗‖2
‖e‖2 iterations.

Uniformity vs nonuniformity. The above argument relies on the fact that RIP works
uniformly for all sparse vectors, even ones that depend on the matrix A (as the residuals
x∗ − x(r) do). As a result, the theorem also applies to y = Ax∗ + e for every x∗ and e.
This stands in contrast to the non-uniform randomized guarantee of CountMinSketch:
for each matrix A, there are many vectors x that will cause CountMinSketch to violate
its `1 guarantee. For RIP-based algorithms, while the matrix A is typically randomized and
as such might fail to satisfy the RIP, as long as A satisfies the RIP the recovery guarantee
will hold on every input.

Uniformity is very convenient in proofs because it allows us to ignore any possible depen-
dencies between the error and the measurement matrix. However, some properties cannot be
achieved uniformly: the `2 bound achieved by CountSketch is one (Cohen et al., 2009).
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4.4 L1 Minimization

Another method for performing compressed sensing from an RIP matrix is L1 minimization,
also known as basis pursuit or, in its Lagrangian form, the LASSO. The intuition is that,
since the true x∗ is k-sparse, one would like to find the sparsest vector x̂ that approximately
matches the measurements; here we say x̂ “matches” the measurements if ‖y − Ax̂‖2 ≤ R
for some external estimate R on the noise ‖e‖2. However finding the sparsest x̂ is a hard
non-convex optimization problem, so we settle for minimizing its convex relaxation ‖x̂‖1.
Remarkably, and in contrast to minimizing ‖x̂‖p for p > 1, this tends to yield sparse solutions.

Algorithm 4 L1 minimization

1: function L1Minimization(y, A, R)
2: x̂← arg min‖y−Ax′‖2≤R ‖x

′‖1

3: return x̂
4: end function

Theorem 4.9. There exists a constant C > 0 such that the following holds. Let A ∈ Rm×n

have RIP constant δ2k < 0.62. Then for any k-sparse x ∈ Rn and any e ∈ Rm, and any
R ≥ ‖e‖2, the L1 minimization result x̂ = L1Minimization(Ax+ e, A,R) satisfies

‖x̂− x∗‖2 ≤ CR.

See Candes et al. (2006), or the presentation in Foucart and Rauhut (2013), for a proof.
Up to constant factors, this is essentially the same result as Iterative Hard Thresholding.

5 Lower Bound

A linear sparse recovery algorithm consists of a distribution on random matrices A ∈ Rm×n

and an algorithm for recovering x̂ from A and y = Ax. In the preceding sections we have
given various such algorithms that achieve various guarantees, the weakest of which is the
`1/`1 guarantee:

‖x̂− x‖1 ≤ O(1) · ‖x−Hk(x)‖1.

Both CountMinSketch and CountSketch achieved this with O(k log n) linear mea-
surements, and IterativeHardThresholding and L1Minimization achieve this with
O(k log n

k
) Gaussian linear measurements; for k < n0.99, the two bounds are equivalent. We

now show that this many measurements are necessary for any linear sketching algorithm.

Theorem 5.1 (Do Ba et al. (2010)). Any `1/`1 linear sparse recovery algorithm with con-
stant approximation factor and constant success probability requires Ω(k log n

k
) linear mea-

surements.

Proof sketch. The proof is based on communication complexity. Roughly speaking, we will
produce a distribution on x that contains a lot of information, then show how to extract
that information from Ax using the `1/`1 sparse recovery algorithm. This implies Ax also
contains a lot of information, so m must be fairly large.
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We pick a large “codebook” T ⊆ {0, 1}n of k-sparse binary vectors of minimum Hamming
distance k/2. One can construct such a T of size 2Ω(k log n

k
) using a greedy construction (see

Exercise 6).
Now, suppose we have an algorithm that can perform `1/`1 sparse recovery with approx-

imation factor C. Set R = Θ(log n), and for any x1, x2, . . . , xR ∈ T take

x = x1 + εx2 + ε2x3 + . . .+ εRxR

for ε = 1
4C+6

a small constant. The idea of the proof is the following: given y = Ax, we can
recover x̂ such that

‖x̂− x1‖1 ≤ ‖x− x1‖1 + ‖x̂− x‖1 ≤ (C + 1)‖x− x1‖1 ≤ (C + 1)k
ε

1− ε
< k/4

and so, because T has minimum distance k/2, we can exactly recover x1 by rounding x̂ to
the nearest element of T . But then we can repeat the process on 1

ε
(Ax − Ax1) to find x2,

then x3, up to xR, for R lg |T | = Ω(Rk log(n/k)) bits total. Thus Ax must contain this
many bits; but if the entries of A are rational numbers with poly(n) bounded numerators
and denominators, then each entry of Ax can be described in O(R + log n) bits, so

m ·O(R + log n) ≥ Ω(Rk log(n/k))

or m ≥ Ω(k log(n/k)).
There are two issues that make the above outline not totally satisfactory, which we only

briefly address how to resolve here. First, the theorem statement makes no supposition on
the entries of A being polynomially bounded. To resolve this, we perturb x with a tiny
(polynomially small) amount of additive Gaussian noise, after which discretizing Ax at an
even tinier (but still polynomial) precision has negligible effect on the failure probability.
The second issue is that the above outline requires the algorithm to recover all R vectors, so
it only applies if the algorithm succeeds with 1 − 1/ log n probability rather than constant
probability. This is resolved by using a reduction from the communication complexity of the
augmented indexing problem.

6 Different Measurement Models

6.1 A Hybrid Result: the RIP-1 and Sparse Matrices

Sparse matrices are much more convenient to store and manipulate than dense ones. Unfor-
tunately, sparse matrices cannot satisfy the standard RIP (see Exercise 3). However, they
can satisfy an `1 version of it:

Definition 6.1. For any k, the RIP-1 constant δ
(1)
k of a matrix A ∈ Rm×n is the smallest

δ ≥ 0 such that

(1− δ)‖x‖1 ≤
1

d
‖Ax‖1 ≤ ‖x‖1 for all k-sparse x

for some scale factor d.
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We (informally) say that A satisfies the RIP-1 if δ
(1)
Ck < c for some sufficiently good

constants C ≥ 1, c < 1. The definition of the RIP-1 differs from the standard RIP in that it
uses the `1 norm and that it includes a scale factor d. The scale factor is convenient, because
the prototypical RIP-1 matrix is the adjacency matrix of an unbalanced bipartite expander
graph:

Definition 6.2. A (k, ε) unbalanced bipartite expander is a bipartite graph G = (A,B,E)
with left degree d such that, for any set S ⊆ A of vertices on the left with size |S| ≤ k, the
neighborhood N(S) ⊆ B has size |N(S)| ≥ (1− ε)d|S|.

A random bipartite graph of left degree d = Θ(log n), n right vertices, and m =
Θ( 1

ε2
k log n) left vertices is an expander with high probability. There also exist explicit con-

structions, albeit with slightly worse parameters. Bipartite expansion is closely connected
to the RIP-1:

Lemma 6.3 (Berinde et al. (2008a)). A binary matrix A ∈ {0, 1}m×n with d ones per column

has RIP-1 constant δ
(1)
k < ε if and only if it is the adjacency matrix of a (k,Θ(ε))-bipartite

expander.

Just like with the standard RIP, sparse recovery from RIP-1 matrices is possible through
either linear programming or iterative methods. One such iterative method is Sparse-
MatchingPursuit (Berinde et al., 2008b), shown in Algorithm 5.

Algorithm 5 Sparse Matching Pursuit (SMP)

1: function SparseMatchingPursuit(y, A, k)
2: x(0) ← 0
3: for r ← 0, 1, 2, . . . , R− 1 do
4: ui ← medianAji=1(y − Ax(r))j ∀i ∈ [n]

5: x(r+1) ← Hk

(
x(r) +H2k(u)

)
6: end for
7: return x(R)

8: end function

Theorem 6.4. Let A ∈ Rm×n be a binary matrix with RIP-1 constant δ
(1)
Ck < c for sufficiently

large constant C and small constant c. Then for any x ∈ Rn, the result x̂ of either SMP or
L1 minimization has

‖x̂− x‖ ≤ O(1) · ‖x−Hk(x)‖1.

The SparseMatchingPursuit algorithm is very similar to IterativeHardThresh-
olding. In fact, if the H2k threshold were removed and the median replaced by a mean,
the algorithm would be identical to IterativeHardThresholding on A/

√
d for d-regular

graphs A. It seems plausible that IterativeHardThresholding also works in this set-
ting, but we are not aware of such a result.

Alternatively, one can view SparseMatchingPursuit as an iterative version of Count-
MedianSketch. If the random hash functions used in CountMedianSketch were fully
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independent, not just pairwise independent, then the associated matrix A would be a near-
optimal RIP-1 matrix with high probability. Furthermore, the first iterate x(1) of Sparse-
MatchingPursuit is identical to the (thresholded to top k) result of CountMedianS-
ketch, which achieves the `1/`1 result with high probability for each x. By iteratively
refining the estimates, SparseMatchingPursuit can achieve the `1/`1 result uniformly
for all x.

Relative to algorithms previously considered in this chapter, the RIP-1 algorithm com-
bines the uniform guarantees of RIP-based algorithms with the sparse matrices and fast
algorithms of CountMin and CountSketch. The downside is that the Theorem 6.4 re-
covery guarantee is weaker than all the others: it depends on the `1 not the `2 norm of the
tail, and only bounds the `1 not the `2 or `∞ error of the result.

6.2 Fourier Measurements

An important subclass of linear measurements is that of Fourier measurements, where A
consists of rows of a Fourier matrix. In this section we will focus on the unidimensional
discrete Fourier matrix F ∈ Cn×n given by

Fij =
1√
n
e2πiij/n,

although similar results exist for other Fourier-related matrices such as Hadamard or multi-
dimensional discrete Fourier matrices. In this context, we consider the measurement matrix
A = FΩ that consists of a subset Ω ⊂ [n] of rows of the discrete Fourier matrix. The goal is
to find conditions on Ω and algorithms under which sparse recovery is possible and efficient.

This problem is of interest to both the streaming and compressed sensing communities,
but as with previous sections of this chapter there are differences in emphasis.

Compressed sensing. The main compressed sensing motivation for Fourier measurements
is that physical processes such as MRIs, radio astronomy, and wireless communication natu-
rally yield Fourier measurements of the signal. The secondary motivation is that subsampled
Fourier matrices make compressed sensing algorithms more efficient: they can be stored in
O(m) words rather than the O(mn) required by i.i.d. Gaussian matrices, and the running
time for recovery algorithms—being dominated by the cost of multiplying a vector by A or
A>—becomes Õ(n) rather than Õ(mn) by using the Fast Fourier Transform (FFT).

Fortunately, subsampled Fourier matrices satisfy the RIP with relatively few rows:

Theorem 6.5 (Haviv and Regev (2017)). Let 0 < ε < 1 and k > 1 be parameters. Let
Ω ⊂ [n] by a random subset of size m. If m > C 1

ε2
k log n log2 k for a sufficiently large

constant C, then
√

n
m
FΩ satisfies δk < ε with high probability.

Therefore, with an extra O(log2 k) factor in measurements, standard recovery algorithms
such as IterativeHardThresholding and L1Minimization give sparse recovery from
Fourier measurements. We do not know if the extra log2 k factor relative to Gaussian ma-
trices’ O(k log(n/k)) is necessary. For the case of Hadamard matrices, the same theorem
applies but we do know at least one extra log k is necessary (B lasiok et al., 2019).
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Sublinear algorithms. The streaming and sublinear algorithms community became in-
terested in sparse recovery with Fourier measurements for a different reason: it gives the
prospect of a faster Fourier transform than the FFT, one which can approximate the Fourier
transform of a signal in sublinear time.

Theorem 6.6 (Hassanieh et al. (2012)). There exists an algorithm to compute x̂ using
O(k log(n/k) log(n/δ)) time and queries to Fx such that

‖x̂− x‖2 ≤ 2‖x−Hk(x)‖2 + δ‖x‖2

with 9/10 probability.

One can also optimize the number of queries at the expense of time, down toO(k log(n/δ))
queries with O(k logO(1) n) time (Kapralov, 2017).

The basic approach for these results is to try to simulate streaming algorithms like
CountSketch using Fourier measurements. We pick a “filter” g ∈ Cn that is sparse
in both Fourier (“frequency”) domain and regular (“time”) domain: Fg is B = O(k)-sparse,
while g is approximately n/B-sparse. We can use our queries to Fx to compute the sparse
result of pointwise multiplication Fx · Fg. By the Fourier convolution theorem,

F−1(Fx · Fg) = x ∗ g.

We can use a B-dimensional inverse FFT on Fx·Fg to quickly compute (x∗g)j at B different
positions j. If g is chosen carefully, the result can be shown to behave similarly to the linear
observations (1) in CountSketch: we can approximately “hash” the coordinates down to
B cells, and observe the sum within each cell.

7 Matrix Recovery

A natural extension of sparse recovery is that of low-rank matrix recovery. Rather than
estimating a k-sparse vector x ∈ Rn, we consider estimating a rank-k matrix X. For this brief
overview, we only consider positive semidefinite matrices X ∈ Rn×n. Let the eigenspectrum
of X be λ = λ(X) ∈ Rn, sorted in decreasing order: λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. Then X having
rank k is equivalent to λ being k-sparse. Low-rank matrix recovery shares much motivation
with sparse recovery, since the matrix spectra often do empirically decay. Moreover, the
techniques used in sparse recovery often extend to the matrix case. Such techniques include:

Insertion-only. Suppose that the matrixX is received as a series of rank one updates, X =∑
uiu
>
i for a stream of vectors ui ∈ Rn. This setting is much like insertion-only streaming

algorithms, and a simple extension of FrequentElements due to Liberty (2013), known
as FrequentDirections, achieves a result analogous to Lemma 2.1. The idea is to keep
track of a rank-k approximation X̂ to X (which can be stored in kn space). On any update

uiu
>
i , first the update is added to X̂, then this updated matrix—which could have rank

up to k + 1—is “shrunk” back down to rank k by subtracting si := λk+1(X̂) from every
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Algorithm 6 FrequentDirections matrix heavy hitters algorithm

1: function FrequentDirections(Stream, k)

2: X̂ ← 0 ∈ Rn×n

3: for u in Stream do
4: X̂ += uu>

5: if X̂ has rank k + 1 then
6: Compute the eigendecomposition X̂ =

∑k+1
i=1 λiviv

>
i

7: Set X̂ ←
∑k

i=1(λi − λk+1)viv
>
i

8: end if
9: end for

10: return X̂
11: end function

eigenvalue. As shown in Exercise 4, one can prove bounds for this algorithm analogous to
the FrequentElements bounds of Lemmas 2.1 and 2.2: both

X − 1

k + 1
‖λ‖1I � X̂ � X (8)

and a sparsity-aware bound

X − 2

k
‖λ−Hk/2(λ)‖1I � X̂ � X. (9)

L1 minimization. The above algorithm relies on “insertion-only”–like updates to X.
With more general updates, one would like an algorithm that can reconstruct an estimate
of X from linear measurements A : Rn×n → Rm.

The natural analog of L1 minimization is to minimize the nuclear norm, which for positive
semidefinite matrices equals the trace:

‖X̂‖∗ := ‖λ(X̂)‖1 = Tr(X̂) =
n∑
i=1

λi.

This nuclear norm minimization problem

min
A(X̂)=y

‖X̂‖∗

is a semidefinite program, and it turns out that this leads to an `1/`1 bound for recovery:

‖X − X̂‖∗ ≤ O(1)‖λ−Hk(λ)‖1

if A is a “good” set of observations, as Gaussian linear measurements are w.h.p. once m ≥
O(kn).

Note that just as in the vector case, this `1/`1 bound from L1 minimization is weaker
than the `∞/`1 achieved by FrequentElements/FrequentDirections. Unlike the
vector case, however, here L1 minimization does not lose an additional log(n/k) factor in
the sample/space complexity.

20



Streaming algorithms. Nuclear norm minimization requires solving a semidefinite pro-
gram, which is polynomial time but still not that efficient. It also uses a dense linear sketch
A(X), which takes m = O(kn) time to update whenever a single entry of X is updated.

One alternative is to store

Y = XΩ and W = ΨX

for random Gaussian matrices Ω ∈ Rn×2k+1,Ψ ∈ R4k+3×n. These can be updated in O(k)
time under single-entry updates to X. Moreover, there is a relatively fast algorithm to
compute a good approximation X̂ toX from Y andW : if Y has SVDQΣR> forQ ∈ Rn×2k+1,

X̂ := Q(ΨQ)+W

satisfies
E[‖X − X̂‖2

F ] ≤ 4‖λ−Hk(λ)‖2
2.

This is an `2/`2 bound on the eigenvalues of the approximation, which is stronger than the
`1/`1 bound from L1 minimization (although the latter is a uniform bound).

8 Notes

For much more detail on compressed sensing, in both the vector and matrix case, we rec-
ommend the book by Foucart and Rauhut (2013). For a survey on sparse recovery from the
perspective of streaming algorithms, see Gilbert and Indyk (2010). An empirical study of
power-law distributions can be found in Clauset et al. (2009).

Algorithms similar to CountMinSketch or CountSketch but with sublinear recov-
ery time can be found in Cormode and Hadjieleftheriou (2008), Gilbert et al. (2012), and
Larsen et al. (2016).

Alternative RIP matrices. The sample complexity m required for subsampled Fourier
matrices to satisfy the RIP has been the focus of a long line of improvements (Candes et al.,
2006; Rudelson and Vershynin, 2008; Cheraghchi et al., 2012; Bourgain, 2014; Haviv and
Regev, 2017). Partial circulant matrices are another construction of RIP matrices with
similar benefits to subsampled Fourier matrices: they use O(n) bits of randomness, they can
be multiplied with a vector in O(n log n) time, and they satisfy the RIP with O(k logc n)
measurements (Krahmer et al., 2014). The best deterministic construction of RIP matrices
uses m = k2−ε rows for a very small constant ε > 0 Bourgain et al. (2011). The lower bound
on sparsity of RIP matrices given in Exercise 3 is due to Chandar (2010).

Matrix recovery. Nuclear norm minimization for low-rank matrix recovery was first
shown for exactly low-rank matrices by Recht et al. (2010), and extended to the robust
case by Candes and Plan (2011). The streaming algorithm we present is from Tropp et al.
(2017), based on Upadhyay (2018) and Clarkson and Woodruff (2009).

21



References

Berinde, Radu, Gilbert, Anna C, Indyk, Piotr, Karloff, Howard, and Strauss, Martin J.
2008a. Combining geometry and combinatorics: A unified approach to sparse signal re-
covery. Pages 798–805 of: 2008 46th Annual Allerton Conference on Communication,
Control, and Computing. IEEE.

Berinde, Radu, Indyk, Piotr, and Ruzic, Milan. 2008b. Practical near-optimal sparse re-
covery in the l1 norm. Pages 198–205 of: 2008 46th Annual Allerton Conference on
Communication, Control, and Computing. IEEE.

B lasiok, Jaros law, Lopatto, Patrick, Luh, Kyle, and Marcinek, Jake. 2019. An Improved
Lower Bound For Sparse Reconstruction From Subsampled Hadamard Matrices. FOCS.

Bourgain, Jean. 2014. An improved estimate in the restricted isometry problem. Pages 65–70
of: Geometric aspects of functional analysis. Springer.

Bourgain, Jean, Dilworth, Stephen, Ford, Kevin, Konyagin, Sergei, Kutzarova, Denka, et al.
2011. Explicit constructions of RIP matrices and related problems. Duke Mathematical
Journal, 159(1), 145–185.

Candes, Emmanuel J, and Plan, Yaniv. 2011. Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements. IEEE Transactions on
Information Theory, 57(4), 2342–2359.

Candes, Emmanuel J, Romberg, Justin K, and Tao, Terence. 2006. Stable signal recovery
from incomplete and inaccurate measurements. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 59(8),
1207–1223.

Chandar, Venkat Bala. 2010. Sparse graph codes for compression, sensing, and secrecy.
Ph.D. thesis, Massachusetts Institute of Technology.

Charikar, Moses, Chen, Kevin, and Farach-Colton, Martin. 2002. Finding frequent items in
data streams. Pages 693–703 of: International Colloquium on Automata, Languages, and
Programming. Springer.

Cheraghchi, Mahdi, Guruswami, Venkatesan, and Velingker, Ameya. 2012. Restricted isom-
etry of Fourier matrices and list decodability of random linear codes. ”SODA”.

Clarkson, Kenneth L, and Woodruff, David P. 2009. Numerical linear algebra in the stream-
ing model. Pages 205–214 of: Proceedings of the forty-first annual ACM symposium on
Theory of computing. ACM.

Clauset, Aaron, Shalizi, Cosma Rohilla, and Newman, Mark EJ. 2009. Power-law distribu-
tions in empirical data. SIAM review, 51(4), 661–703.

Cohen, A., Dahmen, W., and DeVore, R. 2009. Compressed sensing and best k-term ap-
proximation. J. Amer. Math. Soc, 22(1), 211–231.

22



Cormode, Graham, and Hadjieleftheriou, Marios. 2008. Finding frequent items in data
streams. Proceedings of the VLDB Endowment, 1(2), 1530–1541.

Cormode, Graham, and Muthukrishnan, Shan. 2005. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1), 58–75.

Do Ba, Khanh, Indyk, Piotr, Price, Eric, and Woodruff, David P. 2010. Lower bounds for
sparse recovery. Pages 1190–1197 of: Proceedings of the twenty-first annual ACM-SIAM
symposium on Discrete Algorithms. SIAM.

Donoho, David L, et al. 2006. Compressed sensing. IEEE Transactions on information
theory, 52(4), 1289–1306.

Foucart, Simon, and Rauhut, Holger. 2013. A mathematical introduction to compressive
sensing. Springer.

Ganguly, Sumit. 2008. Lower bounds on frequency estimation of data streams. Pages 204–215
of: International Computer Science Symposium in Russia. Springer.

Gilbert, Anna, and Indyk, Piotr. 2010. Sparse recovery using sparse matrices. Proceedings
of the IEEE, 98(6), 937–947.

Gilbert, Anna C, Li, Yi, Porat, Ely, and Strauss, Martin J. 2012. Approximate sparse
recovery: optimizing time and measurements. SIAM Journal on Computing, 41(2), 436–
453.

Hassanieh, H., Indyk, P., Katabi, D., and Price, E. 2012. Nearly Optimal Sparse Fourier
Transform. STOC.

Haviv, Ishay, and Regev, Oded. 2017. The restricted isometry property of subsampled Fourier
matrices. Pages 163–179 of: Geometric Aspects of Functional Analysis. Springer.

Kapralov, Michael. 2017. Sample efficient estimation and recovery in sparse FFT via isolation
on average. Pages 651–662 of: 2017 IEEE 58th Annual Symposium on Foundations of
Computer Science (FOCS). Ieee.

Krahmer, Felix, Mendelson, Shahar, and Rauhut, Holger. 2014. Suprema of chaos processes
and the restricted isometry property. Communications on Pure and Applied Mathematics,
67(11), 1877–1904.

Larsen, Kasper Green, Nelson, Jelani, Nguyên, Huy L, and Thorup, Mikkel. 2016. Heavy hit-
ters via cluster-preserving clustering. Pages 61–70 of: 2016 IEEE 57th Annual Symposium
on Foundations of Computer Science (FOCS). IEEE.

Liberty, Edo. 2013. Simple and deterministic matrix sketching. Pages 581–588 of: Proceedings
of the 19th ACM SIGKDD international conference on Knowledge discovery and data
mining. ACM.

Misra, Jayadev, and Gries, David. 1982. Finding repeated elements. Science of computer
programming, 2(2), 143–152.

23



Recht, Benjamin, Fazel, Maryam, and Parrilo, Pablo A. 2010. Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization. SIAM review, 52(3),
471–501.

Rudelson, M., and Vershynin, R. 2008. On sparse reconstruction from Fourier and Gaussian
measurements. CPAM, 61(8), 1025–1171.

Tropp, Joel A, Yurtsever, Alp, Udell, Madeleine, and Cevher, Volkan. 2017. Practical sketch-
ing algorithms for low-rank matrix approximation. SIAM Journal on Matrix Analysis and
Applications, 38(4), 1454–1485.

Upadhyay, Jalaj. 2018. The price of privacy for low-rank factorization. Pages 4176–4187 of:
Advances in Neural Information Processing Systems.

9 Exercises

1. Comparison of CountSketch and CountMinSketch guarantees.

(a) For any vector x ∈ Rn, show that

‖x−Hk(x)‖2 ≤
1√
k
‖x‖1.

(b) Show that if x̂ is the result of CountSketch for k′ = 2k, then

‖x̂− x‖∞ ≤
1

k
‖x−Hk(x)‖1.

Compare this bound to the Theorem 3.1 bound for CountMinSketch.

2. Pre-measurement noise and RIP-based methods.

(a) Show that, if A has RIP constant δk,

‖A(x−Hk(x))‖2 ≤
(1 + δk)√

k
‖x‖1

for any vector x ∈ Rn.

(b) Show that the result x̂ of L1Minimization or IterativeHardThresholding
from y = Ax satisfies

‖x̂− x‖2 ≤
O(1)√
k
‖x−Hk(x)‖1

if A satisfies a sufficiently strong RIP.
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(c) Use the Johnson-Lindenstrauss Lemma to show that, if A has i.i.d. Gaussian en-
tries of variance 1/m, the result x̂ of L1Minimization or IterativeHardThresh-
olding from y = Ax will satisfy

‖x̂− x‖2 ≤ O(1)‖x−Hk(x)‖2

with 1− e−Ω(m) probability. Note that this is a nonuniform bound. How does it
compare to the bound in (b)?

3. In this problem we show that matrices that satisfy the RIP cannot be very sparse. Let
A ∈ Rm×n have δk < 1/2 for m < n. Suppose that the average column sparsity of A is
d, i.e., A has nd nonzero entries. Furthermore, suppose that A ∈ {0,±α}m×n for some
parameter α.

(a) By looking at the sparsest column, give a bound for α in terms of d.

(b) By looking at the densest row, give a bound for α in terms of n,m, d and k.

(c) Conclude that either d ≥ k/C or m ≥ n/C for a universal constant C.

(d) [Optional] Extend the result to general settings of the non-zero Ai,j.

4. Consider the matrix FrequentElements-like algorithm FrequentDirections de-
scribed in Algorithm 6.

(a) Use the potential function Tr(X̂) to show that
∑

i si ≤
1

k+1
‖λ‖1, where si is the

eigenvalue shrinkage after the ith update. Conclude that FrequentElements
achieves (8).

(b) Now let Π be the orthogonal projection matrix onto the span of all but the

top k/2 eigenvectors of X. Using Tr(ΠX̂) as a potential function, prove that
FrequentDirections also satisfies the bound (9).

5. Prove Lemma 4.4. Choose T to be a 1/2-cover of the unit `2 ball B, meaning that
T ⊂ B and, for every x ∈ B, there exists an x′ in T such that ‖x′−x‖2 ≤ 1

2
. (This will

give a set T satisfying the lemma of at most unit norm elements, but scaling them up
to unit norm only makes the result more true.)

6. Construct the codebook T used in the proof of Theorem 5.1. First construct a code of
Hamming distance k/4 over [n/k]k, then embed this into {0, 1}n.
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